机械设备智能诊断故障的现状及发展趋势
- 格式:pdf
- 大小:250.97 KB
- 文档页数:2
机械设备故障诊断与监测的常用方法及其发展趋势摘要在新时期时代背景影响下,所研发的先进机械设备具有多样性,并为设备的使用提供了广泛的空间支持。
在各项生产活动中,对机械设备的使用性能提出了较高的要求,应确保机械设备能够持续处于良性运转阶段。
在使用机械设备时,由于受到多种干扰因素所带来的影响,所以导致设备故障发生几率相对较高,需要促进机械设备故障诊断作业及时开展,并结合常用的监测方法,确保机械设备故障能够及时排除。
关键词机械设备;故障诊断;监测方法;发展趋势0引言在工业发展过程中,突出了机械设备使用的重要性,为了确保机械设备长期使用,并保障设备运行的安全性与可靠性,需要及时开展故障诊断作业,并借助常用的监测方法,提高机械设备应用水平,并加快工业化发展整体进程。
1机械设备故障诊断与监测发展现状对于机械设备的故障诊断与监测作业来说,已经突出了重要性和必要性,成为企业设备管理阶段的基础内容,需要结合机械设备的运行过程进行监测,保障设备运行状况分析结果有效性。
基于充足数据参考,对可能会存在的故障隐患进行预测,及时提出有个对性的问题处理措施,在减少设备维护费用的情况下,能够确保继续设备持续处于正常运转状态。
现阶段在机械设备故障诊断技术的发展过程中,为大数据、人工智能等技术的应用,提供了广泛的空间支持,并且能够转变传统的机械设备故障诊断与监测工作趋势,使其朝着自动化、智能化以及科学化的方向转型。
2机械设备故障诊断与监测的常用方法2.1振动监测诊断技术对于振动监测诊断技术来说,在操作过程中具有简易性和便利性的特点,且获得的诊断形象具有准确性,能够形成多维化的振动参数,在投入过程中所需用的费用成本相对较低。
通过对目前所使用的监测方法予以分析,可以看出通常是以振动监测诊断技术为主,且此项技术一般能够列为首选技术类型。
通过对机械设备的振动参数予以分析,综合考虑设备的振动特点,对设备运行阶段的整体状态进行明确掌握,结合故障问题发生的可能性,对故障类型进行预测,为探究作业的开展提供了充足的数据支持。
机械设备故障诊断与监测的常用方法及其发展趋势机械设备因为长期使用,存在断裂、腐蚀等故障,影响机器的性能和安全。
因此,机械故障的诊断和监测变得至关重要。
随着技术的发展,越来越多的方法被开发出来用于故障诊断和监测。
以下是机械设备故障诊断和监测的常用方法及其发展趋势。
1. 振动分析振动分析是最常用的机械设备故障诊断方法之一。
通过检测机器运转时产生的振动,可以判断故障的原因。
振动分析包括振动监测、信号分析和频谱分析等子项。
观察机器运行的振动特征,可以诊断出许多故障,如轴承损坏、齿轮啮合不良和不平衡等。
2. 红外热像技术红外热像技术利用红外辐射检测机器的温度差异。
几乎所有的机械设备故障都伴随着温度变化。
红外热像技术可以通过检测温度异常来找到机器的故障来源。
例如,并非所有的机器故障都会导致机器的发热,但是利用热像技术,可以找到由于故障所带来的温度差异,预警相关的故障。
红外热像技术具有快速、非接触、安全等优点,逐渐被广泛应用。
3. 谱系分析谱系分析是通过将信号转换成频域信号,对频率分布进行分析,检测出信号中存在的谐波和振动噪声等,并可确定谐波所对应的故障类型。
谱系分析适用于早期故障的诊断和分析,预测机械设备的寿命,提前预测发生故障的可能性。
4. 声音分析技术声音分析技术通过检测机器工作时所产生的声音情况,以判断最终是否存在故障。
声音分析依靠声音传导、产生时的波形和谱特性等方面的知识,到达诊断机器障碍的目的。
1. 智能化智能化实际上是人工智能技术在机械故障检修领域的运用。
检测设备可以采用大数据云计算、物联网等技术,帮助设备预测维护。
2. 平台化将多种技术整合在一起来识别和解决故障。
人们可以通过一种平台处理和分析数据,得出正确的结论。
3. 无人化节省人工的运用,减少工业重复劳动,提高机器操作的安全性。
总之,机械设备故障诊断和监测的方法正在不断发展壮大,专家也在不断探索其它可能的技术方法。
未来,预计发展将更加智能、自上而下地维修监测、平台化的集成解决方案。
大数据背景下机械故障的智能诊断发展研究【摘要】随着大数据技术的不断发展,机械故障智能诊断成为了一个备受关注的领域。
本文从大数据在机械故障诊断中的应用、机械故障诊断智能化技术的发展现状、大数据与机械故障智能诊断的结合方式、智能诊断系统的关键技术以及案例分析与实验结果等方面进行了系统的研究和总结。
通过对现有智能诊断系统的分析和案例研究,可以看出大数据在机械故障智能诊断领域的巨大潜力和发展前景。
文章展望了大数据背景下机械故障智能诊断的未来发展方向,并对研究成果进行了总结,为未来的研究提供了有益的启示。
通过本文的研究,可以为提升机械故障诊断效率和精度提供重要参考。
【关键词】大数据、机械故障、智能诊断、发展研究、技术、结合方式、关键技术、案例分析、实验结果、展望、成果总结、未来研究方向1. 引言1.1 背景介绍在当今数字化和信息化的时代,大数据技术的广泛应用已经深刻改变了各行各业的发展模式。
机械制造行业作为制造业的重要组成部分,也受益于大数据技术的发展。
在机械制造领域,机械故障是一个常见而又重要的问题,对于制造企业而言,及时准确地诊断机械故障可以有效地减少设备停机时间,提高生产效率,降低维修成本,增强设备的可靠性和稳定性。
随着大数据技术的日益成熟和完善,机械故障的智能诊断也逐渐成为研究热点。
利用大数据技术可以收集、分析和挖掘大量的机械运行数据,实现对机械设备状态的实时监测和预测,提高机械故障诊断的准确性和效率。
基于大数据技术的机械故障智能诊断成为了当前研究的重要方向。
本文旨在探讨大数据背景下机械故障的智能诊断发展趋势,分析大数据技术在机械故障诊断中的应用现状,研究机械故障诊断智能化技术的发展趋势,探讨大数据与机械故障智能诊断的结合方式,深入分析智能诊断系统的关键技术和案例分析,以期为未来的研究和实践提供重要的参考和借鉴。
1.2 研究意义在当前大数据时代,机械设备的故障诊断和预测已经成为工业生产中的重要问题。
车辆工程技术69机械电子1 引言 机械设备发生故障表示机械系统中至少有某一个关键性能或设备参数超出了正常工作时的限度,导致机械设备无法正常完成指定功能的情况。
对机械设备的故障诊断就是通过利用不同检查验证方式对设备进行测试,以发现其系统或零部件上存在的问题。
故障诊断首先要确定机械设备是否发生故障,然后通过一步步地检测精确得到故障发生的位置。
随着机械工业的发展,机械设备越来越高端精密,尤其对于大型工业生产中多用到的机械设备更加复杂,这对机械设备的故障诊断工作提出了更高要求。
这种情况下传统人工检测方式已远不能满足需求,在我国智能化诊断技术已经有了一定的发展,一些研究成果已经在实际生产过程中有了应用。
但是很多智能诊断技术的合理性和可操作性仍需要论证,这需要投入更多的研究来促进更多智能化诊断技术落地。
2 智能诊断技术现状2.1 故障树诊断方法 故障树诊断方法核心思想就是从设备最关键的位置开始检测,通过逐步的排查分析将故障位置进行不断地精细化,对故障出现的可能原因进行分析探讨,以达到最终找出故障位置的目的。
通过利用故障树诊断方式,可以将系统内各部件之间的联系和故障发生关系以图表的形式绘制得到,进而可以更加直观地了解设备各部件之间的内在联系。
在准确找到设备故障之外,利用诊断过程所得到的可视化图表,可以对设备各部件的磨损程度和发生故障的概率进行测算,便于后续故障检测工作。
但是故障树诊断方法在实行过程中容易受到工作人员主观因素的影响而较片面,而且故障树信息也会因设备技术的发展而出现改变,具有较大的局限性。
2.2 故障诊断专家系统 专家系统的工作原理是在诊断系统内存储大量人工诊断知识,以此作为一个故障诊断专家库,然后从设备故障表述中提取特征信息,通过对描述信息和故障之间构建关系网,来找到与表述相对应的设备故障。
专家系统在工作过程中根据故障描述,基于推理机方式对描述进行特征匹配。
专家诊断系统是一种应用广泛的智能诊断技术,常用于没有精确数学模型或难以建立数学模型的诊断环境。
人工智能在故障诊断中的发展现状与未来趋势分析随着科技的飞速发展,人工智能(Artificial Intelligence, AI)作为一项引人注目的技术,正在逐渐渗透到各个领域。
其中,人工智能在故障诊断领域的应用备受关注。
本文将从发展现状和未来趋势两个方面,探讨人工智能在故障诊断中的重要性,以及其所带来的机遇和挑战。
一、发展现状人工智能在故障诊断中的应用,远远超出了传统的手动方式。
在传统方式中,故障定位依赖于技术人员的经验和猜测,这往往需要花费大量时间和精力。
而人工智能的出现,则为故障诊断提供了全新的解决方案。
通过深度学习和机器学习等技术的运用,人工智能可以根据历史数据和模型进行故障预测和诊断,准确、高效地找出故障源,从而实现故障的快速修复。
因此,人工智能在故障诊断中显现出巨大的优势。
目前,许多工厂和企业已经开始使用人工智能来进行设备故障诊断。
以制造业为例,在生产线上安装传感器和监控设备,人工智能可以通过监测设备运行状态和故障信号,及时发现异常情况并给出相应的故障诊断报告。
这大大提高了生产效率和产品质量,降低了成本和资源浪费。
此外,人工智能在医疗领域也有着广泛应用。
在医疗设备故障诊断中,人工智能可以通过分析医疗设备的传感器数据和患者的身体数据,帮助医生快速定位设备故障和改进操作流程,提高工作效率和患者满意度。
同时,人工智能还可以在医疗影像诊断中发挥作用,通过深度学习算法分析大量医学影像数据,辅助医生进行疾病诊断和治疗决策。
二、未来趋势随着技术的不断进步和研究的深入,人工智能在故障诊断领域的未来前景令人充满期待。
首先,人工智能将更加智能化和自动化。
传统的人工智能系统通常需要输入大量的训练数据,而未来的发展趋势则是让系统具备学习能力和自主决策能力。
通过对大量实时数据的分析和学习,人工智能可以提供更加精准的故障诊断和预测,为企业和机构提供更加高效的维护和保养服务。
其次,人工智能与物联网的结合也是未来的重要趋势。
2024年机械设备故障检测诊断技术发展前景随着科技的不断进步,机械设备故障检测诊断技术在2024年将迎来全新的发展前景。
随着工业化的不断普及和机械设备的广泛应用,故障检测诊断技术的重要性日益凸显。
以下将从以下几个方面分析2024年机械设备故障检测诊断技术的发展前景。
一、人工智能技术在机械故障检测诊断中的应用人工智能技术在机械故障检测诊断中的广泛应用将成为2024年发展的主要趋势。
通过使用深度学习算法和大数据分析技术,可以对机械设备的运行状态进行实时监测和分析。
人工智能技术可以通过对大量的数据进行分析和比对,识别出机械设备的故障模式,并预测出可能发生的故障。
这种预测性维护可以大大减少机械设备的停机时间和维修成本,提高生产效率。
二、无损检测技术的发展无损检测技术是一种可以在不破坏或干扰被检测物体的情况下,对其进行检测和评估的技术。
在2024年,无损检测技术将得到更加广泛的应用。
通过使用超声波、磁粉检测、热像仪等技术,可以检测机械设备内部的隐性缺陷和故障,如裂纹、疲劳等。
这种无损检测技术可以帮助工程师们更好地评估设备的状态和安全性,并及时采取相应的维修措施。
三、机器视觉技术在故障检测中的应用机器视觉技术是一种通过使用相机和图像处理算法来模拟人类视觉的技术。
在2024年,机器视觉技术将在故障检测中发挥重要作用。
通过使用机器视觉技术,可以对机械设备进行在线视觉检测,实时监测设备的工作状态和表面缺陷。
机器视觉技术可以识别出设备表面的变形、磨损和裂纹等故障模式,并及时向操作人员发出警报,帮助他们采取及时的维修措施。
四、联网技术在故障检测中的应用随着物联网技术的广泛应用,机械设备的故障检测将变得更加智能化和自动化。
通过将机械设备与云平台相连接,可以实现对设备的远程监测和控制。
在2024年,联网技术将广泛应用于机械设备的故障检测领域。
通过实时监测设备的运行状态和工作参数,并将数据传输到云平台进行分析和比对,可以及时发现设备的故障,并远程修复或寻找更好的解决方案。
军用机械装备的智能故障诊断与处理研究随着科技的不断发展,军事装备的智能化成为现代军事装备发展的重要方向。
其中,智能故障诊断与处理技术在军用机械装备领域中起着关键作用。
本文将探讨军用机械装备的智能故障诊断与处理研究的重要性、目前的研究现状以及未来的发展方向。
智能故障诊断与处理技术是指利用先进的计算机技术和人工智能算法,通过对装备的数据和信号进行分析、模式识别和判断,实现故障的快速和准确诊断,并提供相应的修复和处理方法的一种技术。
智能故障诊断与处理技术可以大大提高军用机械装备的可靠性和寿命,减少维修时间和费用,提高作战效能。
目前,军用机械装备的智能故障诊断与处理已经取得了一定的进展。
首先,数据采集和处理方面,使用传感器和数据采集装置实时获取装备运行状态的数据,经过信号处理和特征提取,构建故障诊断模型。
其次,故障诊断方面,通过模式识别、人工智能算法等对数据进行匹配和分析,能够快速准确地诊断出装备的故障类型和位置。
最后,故障处理方面,通过智能决策和控制技术,给出相应的处理方案,或者自动执行修复操作。
然而,目前的研究还存在一些问题和挑战。
首先,军用机械装备多样性和复杂性较高,不同型号的装备存在差异,如何设计一个通用的智能故障诊断与处理系统仍然是一个难题。
其次,数据采集与处理过程中,面临大量的实时数据的处理和分析,需要高效的算法和计算能力。
另外,装备的运行环境复杂,包括高温、高湿、高海拔等恶劣条件,如何能够在这些极端环境下保证智能故障诊断与处理系统的正常运行也是一个挑战。
针对上述问题和挑战,未来的发展方向可以从以下几个方面进行研究。
首先,加强数据采集与处理技术的研究,开发更加高效、可靠的传感器和数据采集装置,提高装备运行数据的采集和处理能力。
其次,加强故障诊断算法的研究,使用机器学习、深度学习等先进的人工智能算法,提高故障诊断的准确率和速度。
最后,加强智能决策和控制技术的研究,通过与装备的联网和自动执行能力,实现智能故障处理的自主化和智能化。
人工智能在故障诊断领域的应用现状与发展趋势随着人工智能技术的日益成熟和应用范围的不断扩大,它正在各个领域发挥着重要的作用,其中之一就是在故障诊断领域的应用。
故障诊断是指通过分析和辨识出产生故障的原因和位置,进而解决问题和恢复正常运行的过程。
传统故障诊断依赖于人工经验和专业知识,但由于人工的限制,难免会存在主观性和不确定性。
而人工智能的出现,则为故障诊断带来了新的可能性。
目前,人工智能技术在故障诊断领域已取得了一些令人瞩目的成果。
首先,基于机器学习的方法已成为故障诊断的重要手段之一。
通过训练大量的故障数据,机器学习算法可以自动学习故障的特征和模式,从而实现对故障的准确诊断。
例如,在工业生产领域,借助机器学习技术,可以通过监测机器运行时的数据,识别出潜在故障的预警信号,提前进行维护和修复,从而避免了未预期的停机时间和生产损失。
其次,人工智能技术在故障诊断中的应用还可以与专家系统相结合,形成一种智能化的故障诊断系统。
专家系统是一种基于知识和经验的计算机程序,它可以模拟专家的思维方式和决策过程,提供准确的诊断和解决方案。
通过将人工智能技术与专家系统相融合,可以使系统具备更高的诊断准确性和智能化水平。
例如,在医疗领域,人工智能技术可以通过分析患者的病历和临床数据,辅助医生进行诊断和治疗方案的选择,提高医疗水平和效率。
此外,人工智能还有望为故障诊断提供更为全面和深入的解决方案。
在传统的故障诊断中,常常只能得出故障的大致范围和原因,而具体的故障点和具体的修复方法往往需要人工去进一步分析和判断。
而人工智能技术可以通过分析海量的数据和建立复杂的模型,帮助工程师准确定位故障点和提供详细的修复方案。
如今,人工智能技术在图像识别、自然语言处理等方面已有重要的突破,未来将更好地应用于故障诊断领域,进一步提升诊断效果和减少故障处理成本。
然而,虽然人工智能在故障诊断领域的应用前景广阔,但仍然面临一些挑战。
首先,故障诊断需要大量的高质量数据,但有时这些数据很难获取或者难以共享。
机械设备故障诊断与监测的常用方法及其发展趋势机械设备在工业生产中起着至关重要的作用,然而随着设备的使用时间延长,故障问题也逐渐凸显出来。
对机械设备的故障诊断与监测显得尤为重要。
本文将对机械设备故障诊断与监测的常用方法及其发展趋势进行探讨,旨在为相关行业人士提供参考和借鉴。
一、常用方法1. 振动分析法振动分析是一种通过监测和分析机械设备振动信号来判断设备工作状态的方法。
通过检测设备的振动频率、振幅和相位等参数,可以判断设备是否存在故障,并且可以提前预警可能的故障问题。
振动分析法在机械设备故障诊断中具有较为广泛的应用,尤其适用于轴承、齿轮和传动系统等部件的故障诊断。
5. 数据监测法数据监测法是一种通过监测设备运行时产生的数据信号来判断设备工作状态的方法。
通过分析设备的电流、电压、温度和压力等数据,可以实时监测设备的工作状态,从而及时发现并诊断设备存在的故障问题。
数据监测法在机械设备故障诊断中同样具有重要的应用价值,尤其适用于数控设备、电气设备和自动化设备等设备的故障诊断。
二、发展趋势1. 智能化技术的应用随着人工智能、大数据和物联网技术的不断发展,智能化技术在机械设备故障诊断与监测领域的应用越来越广泛。
智能化技术可以实现设备的自动监测和诊断,大大降低人工干预的成本,提高故障诊断的准确性和效率。
未来,智能化技术将成为机械设备故障诊断与监测的发展趋势之一。
2. 多模态信号融合分析多模态信号融合分析是指将振动信号、声音信号、热像信号、油液信号和数据信号等多种信号进行融合分析,从而实现对设备工作状态的全方位监测和诊断。
多模态信号融合分析可以综合各种信号的优势,提高故障诊断的准确性和可靠性,对于复杂设备的故障诊断具有重要的意义。
3. 在线监测技术的发展随着传感器技术、无线通信技术和云计算技术的不断成熟,使得在线监测技术在机械设备故障诊断与监测领域得到广泛应用。
在线监测技术可以实时监测设备的工作状态,及时发现故障问题,减少停机维修时间,提高设备的可靠性和可用性,对于提升设备运行效率具有重要的意义。
机械设备智能诊断故障的现状及发展趋势
发表时间:2018-09-07T09:52:56.393Z 来源:《河南电力》2018年5期作者:植嘉明
[导读] 随着科技的快速发展,如今的机械设备越来越精密,造价也越来越高
植嘉明
(身份证号码:44068319881228XXXX 广东佛山 528000)
摘要:随着科技的快速发展,如今的机械设备越来越精密,造价也越来越高,而如果机械设备在使用过程中出现故障就会对企业的生产和工作人员的人身安全构成威胁。
机械设备故障检测诊断技术是在设备运行状态下能够实时检测并诊断设备是否存在故障隐患的部位,做到及时发现及时解决,从而避免人员伤亡以及经济损失,是当前国内外研究的热点技术。
关键词:机械设备;智能诊断故障;现状;发展趋势
引言
随着时代的发展,工业企业对机器设备的要求也越来越多,机械设备的发展方向多样,诸如大功率、智能化、大型化、复杂化、自动化是现在机械设备发展的几个大的方向。
在现在的工业生产中,机械设备的重要性不容忽视,尤其是在自动化和复杂化高度发展的今天,一条流水线上的机械设备如果坏了一个零部件,最终导致的可能是一条产业链的机械设备的瘫痪,可谓牵一发而动全身。
这些故障导致的可能不仅仅是经济上的损失,严重的还会造成人员伤亡。
因此,机械设备需要定时的、准确的、可靠的故障诊断方法来及时避免不必要的损失。
1.机械设备的诊断技术发展情况
机械设备是对各种工作进行完成的重要工具,机械设备的诊断技术是掌握设备运行过程中的异常状态与故障之间的关系,从而预测未来的技术,当前关于机械设备的诊断技术的研究越来越多,主要是对设备的运行状态进行监测,当机械在正常运行的时候具有一个状态,设备产生故障的时候再进行运行,又会产生另一种状态,针对这两种状态要进行分析和对比,从而找出机械设备的故障所在。
机械设备故障诊断技术是利用对机械设备运行过程中的状态信号进行处理,结合诊断对象的历史状态,来识别机械设备及其零部件的实时技术状态的技术形式,根据所得到的结果,还能对未来机械设备的发展趋势进行预测。
总体来讲,机械设备的诊断技术的发展经过了四个阶段的发展:
第一,在十九世纪,机械已经出现在工业生产中,发达国家的工业革命使得机械化生产开始普及,当时机械设备诊断技术不高,当机械设备出现问题的时候不能及时发现,等到故障十分明显的时候才能被察觉,一般是采取事后维修的方式对故障进行处理。
第二,从上世纪二十年大到五十年代,机械设备的复杂程度有了很大的提高,因此机械设备出现故障的可能性增大,对此,很多企业在机械设备使用过程中设置了定期维修的模式,在这个时期内,机械故障诊断技术已经开始萌芽。
第三,上世纪六十年代到七十年代时期,计算机技术、数据处理技术、通信技术等先进的技术得到快速发展,这些技术在机械领域的应用,使得机械设备的维修变得更加方便、及时,很多维修人员可以按照科学的方式对机械设备的状态进行掌握,并且及时对故障进行维修。
第四,上世纪八十年代开始,人工智能技术以及专家系统、神经网络技术的研究和应用,使得机械设备的维修又进入都一个全新的时代,在机械设备的使用过程中,诊断技术的智能化水平不断提高,使得机械设备的诊断变得更加智能化、自动化,而且提高了设备故障的诊断效率和维修效率。
2.基于人工神经网络的诊断方法
该方法于20世纪80现代末90年代初才正式投入使用,由于人工神经网络的诊断方法涵盖很多高端的数理逻辑处理方法,拓扑结构的鲁棒性、并行和处理复杂模式的功能等。
这些功能和方法可以用于大型机械的庞大多发和并发故障的诊断,还可以用于多故障、多过程和一些突发性的机械故障的诊断。
这种诊断方法现阶段主要应用于以下三个方面:1、将神经网络作为分类器,并从模式识别的角度出发进行机械故障的诊断;2、把神經网络作为动态预测模型,并从预测的角度出发去进行机械故障的诊断;3、以神经网络为基础从知识的角度去建立具有神经网络的专家诊断系统。
但是该诊断法具有些许弊端,以至于它不能在诊断时独立使用,而要与其他的方法并用。
它的弊端体现在,由于建立神经网络需要大量的训练,如果训练的样本较少,那么构建的系统就会缺乏科学性,这样就要加长它的训练时间的长度就会提高成本。
因此国内外很多专家学者都在探究新新方法来改进这一诊断方法来增加它的科学性。
3.机械设备故障智能诊断技术的未来发展趋势
机械设备故障诊断技术在当今社会发展建设中受用程度较大,所以在今后还会被广泛应用,随着技术的发展,人工智能将在机械设备故障检测中以一种新的力量出现,推动其将人工神经网络在机械设备故障诊断技术中的研究,未来该项技术的发展会处于一种上升趋势日益改进。
3.1提高精度,检测接缝处故障
在进行机械设备故障检测时,精度的要求是基础,在处理信号时,高精度化主要是提高检测结果的准确度,高精度化可以通过小波理论对设备进行检测,例如比较复杂的机械设备传达出来的信号往往不能通过人耳识别检测,利用精密的仪器进行检测,小波理论的分析方法会处理此类信号所反映出来的问题,提高信号准确度。
除了小波理论,还有分形几何,这种方式打破原来依靠整数维数的传统几何方法,在处理瞬间变化的不平稳信号上具有很强优势。
如果想更加全面的获取信号所带来的故障信息,还可以采用全息谱分析方法,这种方法最明显的优势就是处理振动信号带来的故障信息,它将幅、频、相相结合,更加系统地将振动信号处理全面。
发动机的振动会引起接缝处的零件配合故障,可以在发动机内暗藏一处传感器,这个传感器主要是检测发动机的温度及各部件间隙之间的配合,然后将诊断出故障问题出现在哪里。
3.2智能程度加强,增强技术可靠性
机械设备故障诊断技术的智能程度的加强将会提高诊断结果的准确性,智能化的应用就是将建立故障诊断专家系统,对故障设备进行精细的处理研究,然后分析出结果,智能化的投入也能大幅度减少工作量,在工作中不断充实信息库的知识,使得专家系统能够更好的
诊断设备故障。
这种专家诊断系统逐渐智能规范,大大缩短了设备故障诊断的实际周期,增强技术的可靠性。
3.3技术化程度加深,网络化成为可能
网络化在现代社会广泛应用于各个领域,所以机械设备故障诊断技术对于网络化的应用也是必不可少的,计算机的普及与发展不仅使得机械设备故障诊断技术的网络化成为可能,而且更加使该项技术程度化加深,借助网络这一平台,实现资源技术的安全共享,此外,检测设备不仅需要诊断出准确可靠的结果,还要把结果以数据等形式传达出来,所以网络化的强大结合是机械设备故障诊断技术的一大重要突破,不断拉动现代化进程,提升诊断的质量,朝着智能化发展。
4.结束语
为促进机械设备故障的智能诊断,各项技术也在朝着多方面发展,计算机网络技术的应用在检测设备运行和分析故障原因都有进步意义,机械设备故障智能诊断技术在现代化生产中作用很大,随着科学技术水平的不断提高,机械设备故障智能诊断技术也得到了较大的发展,在今后的发展中,这种机械设备故障诊断技术还应不断改进,在理论上不断创新,使得这种技术成为人类社会进步的强大推动,对于现代化生产起到了保障作用,同时也推动了经济的持续运转,使其以一种强大的力量推动社会进程。
参考文献:
[1]杨超,李亦滔.机械设备故障智能诊断技术的现状与发展[J].华东交通大学学报,2011,05:23-28.
[2]邹芳.机械设备故障诊断技术的现状及趋势[J].时代农机,2016,02:8-10.
[3]刘睿.机械设备故障智能诊断技术探究[J].内蒙古科技与经济,2015,18:86+89.
作者简介:
植嘉明,440683************,男,汉,本科,专业:机械电子工程,从事机械设计工程。