电磁学复习题答案
- 格式:doc
- 大小:682.50 KB
- 文档页数:6
物理复习 :电磁学部分 (附解)一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 . [ ]2. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206aQ επ. (C) 203a Q επ. (D) 20a Q επ. [ ] 3. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0. [ ]4. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq .(B) 04επq (C) 03επq. (D) 06εq [ ] 5. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ] 6. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功[ ]7. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为 (A) a q 04επ. (B) a q 08επ. q E O r (D) E ∝1/r 2(C) a q 04επ-. (D) aq 08επ-. [ ] 8. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a、b 、c 、d 处都是负电荷. []9. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 10. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C .(B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C . [ ]11. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]12. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: (A) 204r Q E επ=,rQ U 04επ=. (B) 0=E ,104r Q U επ=. (C) 0=E ,rQ U 04επ=. 13.两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大. b a(C) 两球电容值相等. (D) 大小关系无法确定. [ ](D) 0=E ,204r Q U επ=. [ ] 14. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. [ ]15. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ]16. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1= B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2.(D) B 1 = B 2 /4. [ ] 17. 边长为l 的正方形线圈中通有电流I ,此线圈在A点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 18. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]19. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ. [ ] C q20. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A)I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ] 21. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ ]22. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ. [ ]23. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R I π20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ. [ ] 24. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]二、填空25. 真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0=__________________,电势U 0= __________________.(选无穷远处电势为零)26. 如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为________________;从d点移到无穷远处的过程中,电场力作功为____________. 4I a27. 一均匀静电场,电场强度()j i E 600400+= V ²m -1,则点a (3,2)和点b (1,0)之间的电势差U ab =__________________. (点的坐标x ,y 以米计)28.如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,电场力所作的功A =______________.29. 空气平行板电容器的两极板面积均为S ,两板相距很近,电荷在平板上的分布可以认为是均匀的.设两极板分别带有电荷±Q ,则两板间相互吸引力为____________________.30.一半径为R 的均匀带电细圆环,带有电荷Q ,水平放置.在圆环轴线的上方离圆心R 处,有一质量为m 、带电荷为q 的小球.当小球从静止下落到圆心位置时,它的速度为 v = _______________________. 31.一质点带有电荷q =8.0³10-10 C ,以速度v =3.0³105 m ²s -1在半径为R =6.00³10-3m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π³10-7 H ²m -1)32. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大小为B =________,方向_______________.33. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R 1处磁感强度大小为________________. (2) 在r > R 3处磁感强度大小为________________. 34. 两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是____________,运动轨迹半径之比是______________.35.如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的 作用力的大小为____________,方向_________________.B答案一、选择题1. C2. C3. D4. D5. B6. C7. D8. C9. B10. D 11. B 12. D 13. C 14. C 15. B 16. C 17. A 18. D 19. D20. D 21. B 22. C 23. D 24. B二、填空题25 0λ / (2ε0)26. 0qQ / (4πε0R )27. -2³103 V28. ⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε29. Q 2 / (2ε0S )30. 2/1021122⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-π-R m Qq gR ε31. 6.67³10-7 T7.20³10-7 A ²m 232. μ0i沿轴线方向朝右 33. )2/(210R rI πμ34. 1∶2 35.B I R 2 沿y 轴正向。
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
习题3—1 班级 姓名 学号 批阅日期 月 日 库仑定律、电场1、下列几个说法中哪一个是正确的?A 、电场中某点场强的方向就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由0/q F E =定出,其中0q 为试验电荷的电量,可正可负,F为试验电荷所受的电场力;D 、以上说法都不正确。
[ C ]2、有一带正电荷的金属球,其附近某点的场强为E,若在该点放一带正电的点电荷Q ,测得所受电场力为f ,则E大小为 [ C ]A 、Q f E / = ;B 、Q f E /<; C 、q f E / > 。
3、如图所示,两电量分别为q 1=q 2=4.0×10-7C 的点电荷,相距为 0.4m 。
求距q 1为 0.3m ,距q 2为0.5m 处P 点的电场强度, 求P 点处的q 3=1.0×10-7C 电荷的受力。
{441.15210 4.86410()Ei j SI =-⨯+⨯;331.15210 4.86410()F i j SI --=-⨯+⨯}解:41132010442333020791244==4.010j , 4403040311521008641044050403401091001250090125115210486410q qjE r r .qq E r (.i .j ).i .j ,r ..i j .jE E E .()....i .jπεπεπεπε-=⨯==-+=-⨯+⨯-=+=⨯⨯⨯++=-⨯+⨯ 3F q E ==331.15210 4.86410i j ---⨯+⨯习题3—2 班级 姓名 学号 批阅日期 月 日4、长为L=15.0cm 直线A 、B 上,均匀分布着电荷线密度λ=40×10-9C/m 的正电荷,求导线的延长线上与导线B 端相距d=5.0cm 的P 点的场强。
期末复习一、填空题1.电荷q均匀分布在半径为r的圆环上,圆环绕圆环的旋转轴线以角速度ω转动,圆环磁矩=ωqr2/2。
轴线上一点A与圆心相距x,则A点磁场强度=ωqr2(r2+x2)−3/2/(4π)。
2.一电子在0.002T的磁场里沿螺旋线运动,半径为5.0mm,螺距20mm。
则电子速度的大小为2.08×106m/s,与磁场的夹角为arctan(π/2)或57.5°。
3.利用霍尔效应可判断半导体载流子的正负性。
4.空心螺绕环的自感为L0,加入铁芯后自感为L1,在铁芯上锯开一个断口后自感为L2,则这三个自感的大小关系为L0<L2<L1。
5.磁化强度为常数M的细条形永久磁铁长l,横截面积A,则N、S极间的磁力=μ0A2M2/(4πl2)。
6.两线圈串联,顺接时总电感为1.0H,保持位置不变,逆接时总电感为0.4H,则互感=0.15H。
7.RLC电路的固有频率f0=[2π(LC) 1/2]−1。
当f0不变时,在临界阻尼(欠阻尼、过阻尼和临界阻尼三选一)情形下,RLC暂态电路能最快地趋于平衡。
8.简谐交流电的描述方法有函数描述、矢量描述和复数描述,其中函数描述是忠实表述。
9.一材料电导率为5S/m,相对介电常数为1,电场强度为250sin(1010t)V,则传导电流密度和位移电流密度分别为1250sin(1010t)A/m2和22.2 sin(1010t) A/m2。
10.太阳光正入射到半径相同的球面和圆盘面上,均发生全反射,若球面所受光压为P,则圆盘面所受光压为2P。
二、判断题1.(×) 与电场线可起始于电荷类似,磁感应线可起始于电流。
2.(×) 由毕-萨定律推导高斯定理时,需要利用B∝1/r2的性质。
3.(√) 洛伦兹力对带电粒子不作功。
4.(√) 缓变磁场中带电粒子的回旋磁矩守恒。
5.(√) 均匀磁场中通以稳恒电流的一任意线圈由ABC和ADC两段不同材料组成,则二者所受磁场作用力大小相同。
Prλ2λ1R 1 R 21.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E ρ。
现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1。
(B) x 轴上0<x <1。
(C) x 轴上x <0。
(D) y 轴上y >0。
(E) y 轴上y <0。
[ C ]2.个未带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B)dq04επ(C)R q 04επ- (D) )11(40Rd q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ(C) ()20212R r -π+ελλ(D) 20210122R R ελελπ+π [ A ]4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。
设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ]5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04επ (B) a q08επ(C) a q 04επ- (D) aq08επ- [ D ]yxO +Q P(1,0)R O d +q+a aO -σ +σO-a +ax U (A)O -a +a xUO -a +a x U (C)O -a +ax U (D)aa+qPM6.图所示,CDEF 为一矩形,边长分别为l 和2l 。
大学物理(电磁学)综合复习资料一.选择题:l.(本题3分)真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图应是(设场强方向向右为正、向左为负)[ ]2.(本题3分)在静电场中,下列说法中哪一个是正确的?(A)带正电荷的导体,其电势一定是正值.(B)等势面上各点的场强一定相等.(C)场强为零处,电势也一定为零.(D)场强相等处,电势梯度矢量一定相等.[ ]3.(本题3分)电量之比为1:3:5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,AB与BC比值为(A)5.(B)l/5.(C )5. (D )5/1 [ ] 4.(本题3分)取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变, L 上各点的B不变. (B )回路L 内的∑I 不变, L 上各点的B改变.(C )回路L 内的∑I 改变, L 上各点的B不变.(D )回路L 内的∑I 改变, L 上各点的B改变.[ ] 5.(本题3分)对位移电流,有下述四种说法,请指出哪一种说法正确. (A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律. (D )位移电流的磁效应不服从安培环路定理. 6.(本题3分)将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则 (A )0/q F 比P 点处原先的场强数值大. (B )0/q F 比P 点处原先的场强数值小. (C )0/q F 等于原先P 点处场强的数值.(D )0/q F 与P 点处场强数值关系无法确定. [ ]7.(本题3分)图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(A)半径为R的均匀带电球面.(B)半径为R的均匀带电球体.(C)半径为R的、电荷体密度为Arρ(A为常数)的非均匀带=电球体.(D)半径为R的、电荷体密度为rρ(A为常数)的非均匀=A/带电球体.[ ]8.(本题3分)电荷面密度为σ-的两块“无限大”均匀带电的平行平板,+和σ放在与平面相垂直的X轴上的+a和-a位置上,如图所示.设坐标原点O处电势为零,则在-a<x<+a区域的电势分布曲线为[ ]9.(本题3分)静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所作的功. 10.(本题3分)在图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b )图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰.(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰.(C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰.(D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰. [ ]11.(本题3分)电位移矢量的时间变化率dt dD /的单位是 (A )库仑/米2. (B )库仑/秒.(C )安培/米2. (D )安培²米2. [ ] L2.(本题3分)有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零,则原点O 处电场强度和电势均为零的组态是 [ ]13.(本题3分)如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A <0且为有限常量. (B ) A >0且为有限常量. (C ) A =∞. (D ) A =0. [ ]14.(本题3分)一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A )0,0==M F. (B )0,0≠=M F.(C )0,0=≠M F.(D )0,0≠≠M F.[ ]15.(本题3分)当一个带电导体达到静电平衡时: (A )表面上电荷密度较大处电势较高.(B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零. [ ]16.(本题3分)如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向(A )向外转90O . (B )向里转90O . (C )保持图示位置不动. (D )旋转180O .(E )不能确定. [ ]17.(本题3分)如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A ),0=⋅⎰Ll d B且环路上任意一点 B =0.(B ),0=⋅⎰Ll d B且环路上任意一点0≠B .(C ),0≠⋅⎰Ll d B且环路上任意一点 0≠B .(D ),0≠⋅⎰Ll d B且环路上任意一点B=常量.[ ]I18.(本题3分)附图中,M、P、O为由软磁材料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O右端出现N极.(D)P的右端出现N极.[ ]二.填空题:1.(本题3分)如图所示,在边长为a的正方形平面的中垂线上,距中心O点a12处,有一电量为q的正点电荷,则通过该平面的电场强度通量为.2.(本题3分)电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势U=3.(本题3分)在静电场中,场强沿任意闭合路径的线积分等于零,即0=⋅⎰Ll d E,这表明静电场中的电力线 .4.(本题3分)空气的击穿电场强度为m V /1026⨯,直径为0.10m 的导体球在空气中时的最大带电量为 . (22120/1085.8m N C ⋅⨯=-ε) 5.(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = . 6.(本题3分)一“无限长”均匀带电的空心圆柱体,内半径为a ,外半径为b ,电荷体密度为ρ.若作一半径为r (a <r <b ),长度为L 的同轴圆柱形高斯柱面,则其中包含的电量q = . 7.(本题3分)一静止的质子,在静电场中通过电势差为100V 的区域被加速,则此质子的末速度是 . (leV =1.6³10-19J ,质子质量m P =1.67³l0-27kg ) 8.(本题3分)两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差电容器1极板上的电量 .(填增大、减小、不变) 9.(本题3分)磁场中任一点放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的 和线圈的 的比值. 10.(本题3分)在点电荷系的电场中,任一点的电场强度等于 ,这称为场强叠加原理. 11.(本题3分)一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):=)(r E)(R r <,=)(r E)(R r >. 12.(本题3分)在静电场中,电势不变的区域,场强必定为 .三.计算题: l .(本题10分)一空气平行板电容器,两极板面积均为 S ,板间距离为 d ( d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为 t (< d )的金属片.试求: (l )电容C 等于多少?(2)金属片放在两极板间的位置对电容值有无影响?2.(本题10分)计算如图所示的平面载流线圈在P 点产生的磁感应强度,设线圈中的电流强度为I .3.(本题10分)图中所示为水平面内的两条平行长直裸导线LM 与L ’M ’,其间距离为l 其左端与电动势为0 的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .4.(本题10分)两电容器的电容之比为2:1:21 C C(l )把它们串联后接到电压一定的电源上充电,它们的电能之比是多少?(2)如果是并联充电,电能之比是多少?(3)在上述两种情形下电容器系统的总电能之比又是多少? 5.(本题10分)在一平面内有三根平行的载流直长导线,已知导线1和导线2中的电流I 1=I 2且方向相同,两者相距 3³10-2m ,并且在导线1和导线2之间距导线1为10-2m 处B =0,求第三根导线放置的位置与所通电流I 3之间的关系.6.(本题10分)一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L )]([12R R L ->>,两圆柱之间充满相对介电常数为r ε的各向同性均匀电介质.设内外圆柱单位长度上带电量(即电荷线密度)分别为λ和λ-,求:(l )电容器的电容; (2)电容器储存的能量. 7.(本题10分)从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系.已知电子和质子的电量为-e 和e ,电子质量为m e ,氢原子的圆轨道半径为r ,电子作平面轨道运动,试求电子轨道运动的磁矩m p的数值?它在圆心处所产生磁感应强度的数值B 0为多少? 8.(本题10分)一无限长直导线通有电流t e I I 30-=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(l )矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.四.证明题:(共10分) 1.(本题10分)一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:ab h N L ln 220πμ=大学物理(电磁学)参考答案 一.选择题:1.(D ) 2.(D ) 3.(D ) 4.(B ) 5.(A )6.(A ) 7.(B ) 8.(C ) 9.(C ) 10.(C ) 11.(C )12.(D ) 13.(D ) 14.(B ) 15.(D ) 16.(C ) 17.(B ) 18.(B )二.填空题:(共27分) 1.(本题3分) )6/(0εq 2.(本题3分))22(813210q q q R++πε3.(本题3分) 不可能闭合 4.(本题3分) 5.6³10-7C 5.(本题3分))2/(r I π )2/(r I H πμμ= 6.(本题3分))(22a r L -ρπ 7(本题3分)1.38³105m 8.(本题3分)增大 增大 9.(本题3分)最大磁力矩 磁矩10.(本题3分)点电荷系中每一个点电荷在该点单独产生的电场强度的矢量和 11.(本题3分)r rR 302εσ12.(本题3分)零三.计算题: 1.(本题10分)解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为0'=E 则两极板间的电势差为 d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.2.(本题10分)解:如图,CD 、AF 在P 点产生的 B =0 EF D E BC AB B B B B B+++= )sin (sin 4120ββπμ-=a IB AB ,方向⊗其中0sin ,2/1)2/(sin 12===ββa a aIB AB 240μ=∴,同理:aIB BC 240μ=,方向⊗.同样 aIB B EF DE 280μ==,方向⊙.a IaI a I B 8224242000μμμ=-=∴3.解:(1)导线ab 运动起来时,切割磁感应线,产生动生电动势。
题8-12图8-12 两个无限大的平行平面都均匀带电.电荷的面密度分别为1σ和2σ.解: 如题8-12图示.两带电平面均匀带电.电荷面密度分别为1σ与2σ.两面间. n E)(21210σσε-= 1σ面外. n E)(21210σσε+-= 2σ面外. n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体.如题8-13图所示.试求:两球心O 与O '点的场强.并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合.见题8-13图(a).(1) ρ+球在O 点产生电场010=E.ρ-球在O 点产生电场dπ4π3430320r E ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r'.相对O 点位矢为r (如题8-13(b)图)则 03ερrEPO=. 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C .两电荷距离d=0.2cm.把这电偶极子放在1.0×105N ·C -1.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C.2q =3.0×10-8C.相距1r =42cm.要把它们之间的距离变为2r =25cm.需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示.在A .B 两点处放有电量分别为+q ,-q 的点电荷.AB 间距离为2R .现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性.AB 和CD 段电荷在O 点产生的场强互相抵消.取θd d R l =则θλd d R q =产生O 点Ed 如图.由于对称性.O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势.以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg.电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ.在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1.超过这个数值时空气要发生火花放电.今有一高压平行板电容器.极板间距离为d =0.5cm.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= .求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q .半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q .半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说.(1)相向的两面上.电荷的面密度总是大小相等而符号相反;(2)相背的两面上. 证: 如题8-21图所示.设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ.2σ.3σ.4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时.有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P .则其场强为零.并且它是由四个均匀带电平面产生的场强叠加而成的.即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等.符号相同.8-22 三个平行金属板A .B 和C 的面积都是200cm 2.A 和B 相距4.0mm.A 与C 相距2.0 mm .B .C 都接地.如题8-22图所示.如果使A 板带正电3.0×10-7C.略去边缘效应.问B 板和C 板上的感应电荷各是多少?以地的电势为零.则A 板的电势是多少?解: 如题8-22图示.令A 板左侧面电荷面密度为1σ.右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =.即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳.现给内球壳带电+q .(1)(2)先把外球壳接地.然后断开接地线重新绝缘.*(3)再使内球壳接地.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +.且均匀分布.其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时.外表面电荷q +入地.外表面不带电.内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-.外壳外表面带电量为+-q q ' (电荷守恒).此时内球壳电势为零.且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远.并用导线与地相联.在与球心相距为R d 3=处有一点电荷+q .试求:金属球上的感应电荷的电量.解: 如题8-24图所示.设金属球感应电荷为q '.则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球.小球1.2带有等量同号电荷.相距甚远.其间的库仑力为0F .试求: (1)用带绝缘柄的不带电小球3先后分别接触1.2后移去.小球1.2之间的库仑力; (2)小球3依次交替接触小球1.2很多次后移去.小球1.2 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后.小球3和小球1均带电2q q =',小球3再与小球2接触后.小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后.每个小球带电量均为32q .∴ 小球1、2间的作用力00294π432322F r qq F==ε *8-26 如题8-26图所示.一平行板电容器两极板面积都是S.相距为d .分别维持电势A U =U .B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间.片的面积也是S.片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ.2σ.3σ.4σ,5σ,6σ如图所示.由静电平衡条件.电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电.所以2U U C ≠.若C 片不带电.显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳.介质相对介电常数为r ε.金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sdrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示.在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示.充满电介质部分场强为2E .真空部分场强为1E.自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D .22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面.长度均为l .半径分别为1R 和2R (2R >1R ).且l >>2R -1R .两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时.求:(1)在半径r 处(1R <r <2R =.厚度为dr.长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时.Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r .A 和B 原来都不带电.现在A 的中心放一点电荷1q .在B 的中心放一点电荷2q .如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力.2q 有无加速度;(2)去掉金属壳B .求1q 作用在2q 上的库仑力.此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律.即2210π41r q q F ε=但2q 处于金属球壳中心.它受合力..为零.没有加速度. (2)去掉金属壳B .1q 作用在2q 上的库仑力仍是2210π41r q q F ε=.但此时2q 受合力不为零.有加速度.题8-30图 题8-31图8-31 如题8-31图所示.1C =0.25μF.2C =0.15μF.3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”.把它们串联起来后等值电容是多少?如果两端加上1000 V .是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U .而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿.然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源.再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示.设联接后两电容器带电分别为1q ,2q题8-33图 则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球.外套有一同心的导体球壳.壳的内、外半径分别为2R =4.0cm 和3R =5.0cm.当内球带电荷Q =3.0×10-8C .求:(1)整个电场储存的能量;(2)如果将导体壳接地.计算储存的能量;(3)此电容器的电容值.解: 如图.内球带电Q .外球壳内表面带电Q -.外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时.只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
高三物理电磁学练习题及答案一、选择题1. 带电粒子在磁场中受力的大小与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 粒子所受磁场的大小D. 粒子所受磁场的方向2. 一个导线以匀速矩形轨道绕一个垂直于轨道面的固定轴旋转。
导线的两端接有电源,通过导线的电流大小和方向在转过一个周期后是:A. 大小不变,方向也不变B. 大小不变,方向相反C. 大小相反,方向不变D. 大小相反,方向相反3. 两个平行的长直导线之间通过电流会发生什么现象?A. 两导线之间会产生吸引力B. 两导线之间会产生斥力C. 两导线之间会发生磁场D. 两导线之间电流大小会发生变化4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为I,导线所在的平面与磁场之间夹角为θ。
则导线所受力的大小为:A. IθB. Iθ/2C. Iθ^2D. Iθ^2/25. 在变化磁场中一个回路内的感应电动势的大小与以下哪个因素无关?A. 磁场的变化速率B. 回路面积的大小C. 回路的形状D. 磁场的方向二、填空题1. 两根平行导线之间的距离为0.2 m,通过第一根导线的电流为2 A,第二根导线与第一根导线的角度为30°,则在第二根导线上的磁感应强度为_____ T。
2. 一根长直导线通过电流3 A,产生的磁场的磁感应强度为____ T。
3. 一个圆形回路的半径为0.2 m,它所在的平面与一个磁场垂直,磁感应强度为0.5 T,磁场持续变化,则回路内感应电动势的大小为_____ V。
4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为4 A,导线所在的平面与磁场之间夹角为60°。
则导线所受力的大小为_____ N。
三、计算题1. 一条长直导线通过电流I,产生的磁场与另一根平行导线距离为d,并在两导线之间产生一个力作用。
当其中一根导线的电流大小为2I时,两导线之间的力变为原来的几倍?2. 一个包围面积为0.2 m^2的圆形回路,其平面与磁场成60°角,磁感应强度为0.4 T,磁场变化的速率为5 T/s,计算回路中感应电动势的大小。
一、填空题(每小题3分)1、如图一边长为a 的等边三角形两顶点A ,B 上分别放电量为+q 的两点电荷,问顶点C 处的电场强度大小为2043aq πε 。
2、如图边长为L 的等边三角形的三个顶点,若在A 、B 、C 三个顶点处分别放置带电量为q 的正点电荷,则A 、B 、C 三点电荷在等边三角形三条中线交点上产生的合场强的大小为 0 。
3、两无限大的带电平面,其电荷密度均为+σ,则两带电平面之间的场强为 0 。
4、均匀带电(电荷面密度为σ)无限大均匀带电平板,距平板距离为r 处一点平p 处的电场强度大小为 02εσ 。
5、一无限大均匀带电平面,电荷面密度为σ,则带电平面外任一点的电场强度的大小为 02εσ 。
6、两无限大的带电平面,其电荷密度分别为+σ,-σ,则两带电平面之间的场强为 0εσ 。
7、均匀带电圆环带电量q ,圆环半径为R ,则圆环中心点处的电场强度大小为 0 。
8、ABCD 是边长为L 的正方形的四个顶点,若在A 、B 、C 、D 四个顶点处分别放置带电量为q 的正点电荷,则A 、B 、C 、D 四点电荷在正方形对角线交点上产生的合场强的大小为 0 。
9、静电场力做功的特点:静电场力做功与路径 无关 (填“有关”或“无关” )10、如图所示,一点电荷q +位于立方体的中心,则通过abcd 面的E 的电通量φ大小为 06εq 。
11、静电平衡导体的表面电荷面密度为α,则表面处的电场强度E =0εα 。
12、半径为R 的球壳均匀带电荷q ,电场中球面处的电势为 Rq04πε 。
13、半径为R 的球面均匀带电荷q ,在真空中球心处的电势为 R q04πε 。
14、设点电荷q 的电场中的某一点距电荷q 的距离为处r 的电场强度的大小为 204r qπε ,该点的电势为 r q 04πε 。
15、通过磁场中某一曲面的磁场线叫做通过此曲面的磁通量,则通过任意闭合曲面的磁通量为 0 。
16、真空中,半径为R 的圆形载流导线的电流为I ,则在圆心处的磁感应强度大小为R I 20μ 。
(真磁导率为0μ)17、如图所示,电流元l Id 在A 处产生的磁感应强度大小为204sin r Idl πθμ 。
18.通有电流I 半径为R 圆形导线,放在均匀磁场B 中,磁场与导线平面垂直,则磁场作用在圆形导线上的最大力矩为 IB R 2π 。
19、一通有电流I 的无限长载流导线,距导线垂直距离R 处的一点P 处的磁感应强度B 大小为 RI πμ20 。
20、一无限长通电螺线管,单位长度上线圈的匝数为n ,通有电流为I ,则螺线管内部磁感应强度大小为 nI 0μ 。
21、一个直径为D 的线圈有N 匝,载有电流I ,将它置于磁感强度为B 的匀强磁场中,作用于线圈的最大力矩M= 4/2IB D N π 。
22、一面积为S 正方形线圈由外皮绝缘的细导线绕成,共有N 匝,放在磁感应强度为B 的外磁场中,当导线通有电流I 的电流时,线圈磁矩M 的最大值等于 NIBS 。
23.一个电容为c 带电量为q 平行板电容器,其静电场的能量为 cq 22。
24、一带电量为q +运动电荷以速度v 在磁场B 中运动,v 和B 不平行,电荷质量为m ,则该运动电荷运动的周期T = qBm π2 。
25.一运动速度为71.010/m s ⨯的电子,垂直进入33.010B T -=⨯的均匀磁场中,该电子在磁场中作匀速圆周运动的半径为___eBmv ____m 。
26、对于任一电流元l Id 处于磁场B 中,可知该电流元受到的安培力为 B l Id ⨯ 。
27、一段41圆弧导线,通有电流I ,圆的半径为R ,放在均匀磁场B 中,磁场与导线平面垂直,磁场作用在导线上的力 BIR 。
28、一段半圆形导线,通有电流I ,圆的半径为R ,放在均匀磁场B 中,磁场与导线平面垂直,磁场作用在半圆形导线上的力 2BIR 。
29、如图,半径为a 的1/4圆弧形载流导线cd 置于均匀磁场中,则该导线所受安培力的大小为 BIa 。
30、如图,一折线形载流导线cd 置于均匀磁场中,则该导线所受安培力的大小为 BIa 。
二、单项选择题(每小题3分)1、两点电荷在相距3㎝时,静电力为F ,若让它们相距6㎝,它们之间的静电力为( D ) A、2F B 、F 2 C 、F D 、4F 2、真空中两平行放置的无限大带电平面,面电荷密度均为σ,则在两平面间的电场强度大小为( B )A 、02σεB 、0C 、0σεD 、02σε 3、两个无限大均匀带电平板,电荷面密度分别为δ、δ-,如图所示,则两个平板间的电场强度的大小是( D )。
A. 0B. 02/εδC. 0/2εδD. 0/εδ4、在真空中有相距很近的两带电平板,两板面积均为S ,带电量均为q +,相距为d ,若忽略边缘效应,则其中一板受到另一板作用的电场力的大小为( C )。
A 、 2024d q πεB 、 S q 02εC 、 S q 022εD 、 2022dq πε 5、在真空中有两根无限长带电直线,电荷线密度为λ,带电量均为q +,相距为d ,则其中一根直线受到另一根直线上电荷作用的电场力的大小为( B )。
A 、 d q 04πελB 、 d q 02πελC 、 204d q πελD 、 202dq πελ 6、两根无限长的均匀的带电直线相互平行,相距为a ,线电荷密度分别为+λ和-λ,则每单位长度的带电直线受的作用力为( A )。
A .a 022πελB .a 02πελC .a024πελ D .a 04πελ7、两根无限长的均匀的带电直线相互平行,相距为a 2,线电荷密度分别为+λ和-λ,则每单位长度的带电直线受的作用力为( C )。
A 、a 022πελB 、a 02πελC 、a 024πελ D 、a 04πελ 8、两无限长均匀带电直线相互平行,电荷线密度分别为λ+和λ-,则每单位长度带电直线受的力F 与线密度λ的关系是:( D )A 、F λ∝B 、 1F λ∝C 、 21F λ∝D 、 2F λ∝9、两无限长均匀带电直线相互平行,电荷线密度分别为λ+和2λ-,则每单位长度带电直线受的力F 与线密度λ的关系是:( D )A 、λ∝FB 、 λ1∝FC 、 21λ∝FD 、 2λ∝F 10、某电场的电场线分布情况如图,一负电荷从M 点移到N 点,则下列说法中哪一个是正确的:( C )A 、电场强度E M <E NB 、电势V M <V NC 、电势能W M <W ND 、电场力的功A >011、下列说法正确的是( C )A 、静电场中,电场力做功与路径有关。
B 、在某点电荷附近的任一点,如果没有在该点放置试验电荷,则该点的场强为零。
C 、静电场中,电场力做功与路径无关。
D 、有两个带电量不相等的点电荷,它们相互作用时,电量大的电荷受力大,电量小的电荷受力小。
12、球形电容器是由半径分别为1R 和2R (21R R )的两个同心的金属球壳所组成的,设内球带电1Q ,外球带电2Q ,则外球壳上的电势1R U 为( B ) A. 20210144R Q R Q πεπε+ B. 10214R Q Q πε+ C. 20214R Q Q πε+ D. 2024R Q πε 13.点电荷q 位于边长为a 的正立方体的中心,通过此立方体的每一面的电通量为( D )。
A . 0εqB . 02εqC . 03εq D. 06εq 14、球形电容器是由半径分别为1R 和2R (21R R )的两个同心的金属球壳所组成的,设内球带电+q ,外球带电-q ,则球壳的电容C 为( D ) A. 21104R R R -πε B. 21204R R R -πε C. 2121041R R R R -πε D. 212104R R R R -πε 15、真空中有两根相互平行长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,电流方向相同,位于两导线之间中间一点的磁感应强度B 的大小为( C )。
A . r I πμ40B . rI πμ20 C. 0 D . r I πμ0 16. 真空中有两根相互平行长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,电流方向一个向上另一个向下,位于两导线中间一点的磁感应强度B 的大小为( C )。
A .r I πμ40B .rI πμ20 C .r I πμ02 D .r I πμ0 17、真空中有两根长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,两根导线彼此垂直,电流方向一个向上另一个向右,位于两导线之间中间一点的磁感应强度B 的大小为( B )。
A . rI πμ40 B.r I πμ02 C .r I πμ220 D .rI πμ42018、真空中有两条互相垂直的长直导线,彼此相距为r ,通过的电流都是I ,则两导线之间中间一点的磁感应强度的大小为( C )A 、0I r μπB 、02I rμπ C 、0I r π D 、0 19、电流强度为I ,半径为R 的圆环形电流在环心处产生的磁感应强度大小为( B )A 、02I μπB 、02I R μC 、02IR μπD 、02I Rμπ 20、真空中有两个同心的通电圆线圈,其半径分别为1R 和2R ,在其中分别通以逆时针方向的电流1I 和2I ,则圆心处的磁感应强度的大小为( B )A 、01021222I I R R μμππ+B 、01021222I I R R μμ+C 、01021222I I R R μμ-D 、01021222I I R R μμππ- 21.以一定速度v 运动的带电粒子垂直进入匀强磁场B 中最一般的运动形式是( A )。
A. 圆周运动 B . 直线运动 C . 椭圆运动 D . 螺旋运动22.以一定速度运动v 的带电粒子进入匀强磁场B 中最一般的运动形式是( D )。
A 、圆周运动B 、直线运动C 、椭圆运动D 、螺旋运动23、霍耳元件测量磁场是将霍耳元件做成的探测棒插入待测磁场中,使已知的电流I 通过霍耳元件,由毫伏表读出霍耳电势差U 和已知的霍耳系数H A ,可根据下面的哪个公式确定磁感强度B 的大小( B )(d 为导体板的厚度)。
A. dB I A U H = B. d IB A U H = C. Id B A U H = D. IBd A U H = 24、设圆柱形截面的半径为R ,恒定电流I 沿轴线方向流动,当电流均匀分布在圆柱截面上,离开轴线的距离为R/2时的磁感应强度B ( B )。
A. R I πμ80 B. R I πμ40 C. R I πμ20 D. RI πμ0 25、真空中有通电导线截面,载有的电流1I 、2I 、3I 如图所示,沿一闭合环路L 的磁感应强度的线积分⎰⋅L l d B =0μ( B )。