第8章人工智能与专家系统92
- 格式:ppt
- 大小:4.62 MB
- 文档页数:92
人工智能专家系统课程教案教学内容:本章主要介绍专家系统的定义、结构、特点和类型,分析了基于规则的专家系统、基于框架的专家系统和基于模型的专家系统,归纳了协同式和分布式等新型专家系统,并结合实例介绍了专家系统的设计方法和开发工具。
教学重点:专家系统的特点、专家系统的类型、专家系统的设计等。
教学难点:专家系统的设计。
教学方法:课堂教学为主。
注意结合学生前面所学的人工智能原理、知识的表示等内容,及时提问加深学生对基本原理和概念以及专家系统开发设计等的理解。
利用网络课程中的相关内容,协助对抽象概念的理解。
教学要求:重点掌握专家系统的基本概念和设计,掌握基于规则、基于模型、基于框架的专家系统,了解新型专家系统的一些概念和类型,一般了解专家系统的开发工具以及评价方法。
1专家系统概述教学内容:本小节讨论专家系统的一些基本概念,介绍专家系统的定义、结构、特点和类型。
本小节内容是本章的一个重点,是深入学习讨论专家系统的基础。
教学重点:专家系统的定义、专家系统的结构、专家系统的一般特点、各类专家系统的任务和特点。
教学难点:专家系统的结构与建造步骤。
教学方法:主要通过课堂教学,讲解各种基本概念和系统结构,归纳专家系统的一般特点,分析各类专家系统的任务、特点并进行举例教学要求:重点掌握专家系统的定义与基本结构,掌握专家系统的特点,了解专家系统的类型1.1专家系统的特点1、定义专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题。
简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
2、专家系统特点启发性:专家系统能运用专家的知识与经验进行推理、判断和决策。
透明性:专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了解推理过程,提高对专家系统的信赖感。
灵活性:专家系统能不断地增长知识,修改原有知识,不断更新。
3、专家系统的优点具体地说,包括下列八个方面:(1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。
人工智能技术与专家系统及其发展和应用现状
一、人工智能技术
人工智能是指以计算机程序解决科学问题的一种技术。
它不仅可以利用计算机的数据处理能力、能力以及决策能力,还可以通过数学和计算来模拟人类大脑的思维过程。
它的最终目标是让计算机模拟出人类的思维,使机器具有与人类一样的智能功能,能以人工的方式来处理各种问题。
二、专家系统
专家系统是一种人工智能的应用,它是指使用计算机软件来模拟人类专家的能力,以解决科学和实际应用问题的系统。
它具有智能化的思维模式,可以使用大量数据和计算过程,模拟出专家的思维过程和知识体系,以解决相关问题。
专家系统的特点在于它可以模拟传统的专家知识,并通过计算能力和智能化的处理方法来解决实际问题。
它不仅能够节省时间和精力,还能够提供更准确、更可靠的结果,有助于人们做出科学的决策。
随着科技的进步,人工智能技术和专家系统正发展的迅猛。
人工智能与专家系统外文文献译文和原文AI研究仍在继续,但与MIS和DDS等计算机应用相比,研究热情的减弱使人工智能的研究相对落后。
然而,在研究方面的不断努力一定会推动计算机向人工智能化方向发展。
2.AI领域AI现在已经以知识系统的形式应用于商业领域,既利用人类知识来解决问题。
专家系统是最流行的基于知识的系统,他是应用计算机程序以启发方式替代专家知识。
Heuritic术语来自希腊eureka,意思是“探索”。
因此,启发方式是一种良好猜想的规则。
启发式方法并不能保证其结果如同DSS系统中传统的算法那样绝对化。
但是启发式方法提供的结果非常具体,以至于能适应于大部分情况启发式方法允许专家系统能像专家那样工作,建议用户如何解决问题。
因为专家系统被当作顾问,所以,应用专家系统就可以被称为咨询。
除了专家系统外,AI还包括以下领域:神经网络系统、感知系统、学习系统、机器人、AI硬件、自然语言处理。
注意这些领域有交叉,交叉部分也就意味着这个领域可以从另一个领域中收益。
3.专家系统的吸引力专家系统的概念是建立在专家知识能够存储在计算机中并能被其他人应用这一假设的基础上的。
专家系统作为一种决策支持系统提供了独无二的能力。
首先,专家系统为管理者提供了超出其能力的决策机会。
比如,一家新的银行投资公司可以应用先进的专家系统帮助他们进行选择、决策。
其次,专家系统在得到一个解决方案的同时给出一步步的推理。
在很多情况下,推理本身比决策的结果重要的多。
4.专家系统模型专家系统模型主要由4个部分组成:用户界面使得用户能与专家系统对话;推理引擎提供了解释知识库的能力;专家和工程师利用开发引擎建立专家系统。
1.用户界面用户界面能够方便管理者向专家系统中输入命令、信息,并接受专家系统的输出。
命令中有具体化的参数设置,引导专家系统的推理过程。
信息以参数形式赋予某些变量。
(1)专家系统输入现在流行的界面格式是图形化用户界面格式,这种界面与Window有些相同的特征。
第8章专家系统信息处理方法8.1引言近三十年来人工智能(Artificial Intelligence,AI)获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果。
作为人工智能一个重要分支的专家系统(Expert System,ES)[1]是在20世纪60年代初期产生和发展起来的一门新兴的应用科学,而且正随着计算机技术的不断发展而日臻完善和成熟。
1982年美国斯坦福大学教授费根鲍姆给出了专家系统的定义:“专家系统是一种智能的计算机程序,这种程序使用知识与推理过程,求解那些需要杰出人物的专门知识才能求解的复杂问题。
”一般认为,专家系统就是应用于某一专门领域,由知识工程师通过知识获取手段,将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式,存放在知识库中,然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能像专家一样解决困难的和复杂的实际问题的计算机(软件)系统。
专家系统有三个特点,即:启发性,能运用专家的知识和经验进行推理和判断;透明性,能解决本身的推理过程,能回答用户提出的问题;灵活性,能不断地增长知识,修改原有的知识。
8.2专家系统的产生与发展专家系统按其发展过程大致可分为三个阶段[2~4]:初创期(1971年前),成熟期(1972—1977年),发展期(1978年至今)。
2.1初创期人工智能早期工作都是学术性的,其程序都是用来开发游戏的。
尽管这些努力产生了如国际象棋、跳棋等有趣的游戏[5],但其真实目的在于计算机编码加入人的推理能力,以达到更好的理解。
在这阶段的另一个重要领域是计算逻辑。
1957年诞生了第一个自动定理证明程序,称为逻辑理论家。
20世纪60年代初,人工智能研究者便集中精力开发通用的方法和技术,通过研究一般的方法来改变知识的表示和搜索,并且使用它们来建立专用程序。
到了60年代中期,知识在智能行为中的地位受到了研究者的重视,这就为以专门知识为核心求解具体问题的基于知识的专家系统的产生奠定了思想基础。
天津财经大学TIANJIN UNIVERSITY OF FINANCIALAND ECONOMY论文题目人工智能系统之专家系统学生姓名秦健应学生学号201011148所在班级计算机学科学与技术1002班院系名称理工学院信息科学与技术系总论人工智能又称机器智能,是计算机科学中的一门边缘科学。
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。
专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。
起源与发展20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。
但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。
1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral ,用其可以推断化学分子的结构。
20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。
第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。
但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。
第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。