浙江财经大学高等数学考研真题2015-2020
- 格式:pdf
- 大小:3.39 MB
- 文档页数:23
浙江财经大学线性代数习题详解1-2习题解答习题1.11.试判断下列试验是否为随机试验:(1)在恒力的作用下一质点作匀加速运动;(2)在5个同样的球(标号1,2,3,4,5,)中,任意取一个,观察所取球的标号;(3)在分析天平上称量一小包白糖,并记录称量结果.解(1)不是随机试验,因为这样的试验只有唯一的结果.(2)是随机试验,因为取球可在相同条件下进行,每次取球有5个可能的结果:1,2,3,4,5,且取球之前不能确定取出几号球.(3)是随机试验,因为称量可在相同条件下进行,每次称量的结果用x 表示,则有(,)x m m εε∈-+,其中m 为小包白糖的重量,ε为称量结果的误差限.易见每次称量会有无穷多个可能结果,在称量之前不能确定哪个结果会发生.2.写出下列试验的样本空间.(1)将一枚硬币连掷三次;(2)观察在时间 [0 ,t ] 内进入某一商店的顾客人数;(3)将一颗骰子掷若干次,直至掷出的点数之和超过2为止;(4)在单位圆内任取一点,记录它的坐标.解(1)Ω={(正正正),(正正反),(正反正),(反正正),(正反反),(反正反),(反反正),(反反反)};(2)Ω={0,1,2,3,……};(3)Ω={(3,4),(5,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1, 1,1), (1,1,2),(1,1,3),(1,1,4),(1,1,5),(1,1,6)}.(4)在单位圆内任取一点,这一点的坐标设为(x ,y ),则x ,y 应满足条件221.x y +≤故此试验的样本空间为{}22(,)| 1.x y x y Ω=+≤3.将一颗骰子连掷两次,观察其掷出的点数.令A =“两次掷出的点数相同” ,B =“点数之和为10” ,C =“最小点数为4” .试分别指出事件A 、B 、C 以及A B 、ABC 、A C - 、C A - 、B C 各自含有的样本点.解A ={(1,1) ,(2,2) ,(3,3) ,(4,4) ,(5,5) ,(6,6)} ;B ={(4,6) ,(5,5) ,(6,4)};C ={(4,4) ,(4,5) ,(4,6) ,(5,4) ,(6,4)};{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(4,6),(6,4)}A B = ; ABC =?AC ={(1,1),(2,2),(3,3),(5,5),(6,6)}; C A -={(4,5),(4,6),(5,4),(6,4)};{(5,5)}.BC =4.在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,… .记事件k A(k = 1 ,2 ,…)表示“接到的呼唤次数小于k ” ,试用k A 间的运算表示下列事件:(1)呼唤次数大于2 ;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差大于2 .解 (1) 3A ;(2) 115A A -;(3) 611A A .5.试用事件A 、B 、C 及其运算关系式表示下列事件:(1)A 发生而B 不发生;(2)A 不发生但B 、C 至少有一个发生;(3)A 、B 、C 中只有一个发生;(4) A 、B 、C 中至多有一个发生;(5)A 、B 、C 中至少有两个发生;(6)A 、B 、C 不同时发生.解(1)AB ;(2)()A B C ;(3) ABC ABC A BC ; (4) AB A C BC ;(5)AB BC AC ; (6) ABC6.在某大学金融学院的学生中任选一名学生.若事件A 表示被选学生是女生,事件B 表示该生是大学二年级学生,事件C 表示该生是运动员.(1)叙述ABC 的意义.(2)在什么条件下ABC C =成立?(3)在什么条件下A B ?成立?解(1)该生是二年级女生,但非运动员.(2)全学院运动员都是二年级女生.(3)全系男生都在二年级 7.化简下列各事件:(1)()A B A - ;(2)()A B B - ;(3)()A B A - ;(4)()A B B - (5)()()()A B A B A A .. 解.(1) ()A B A A -= ; (2) ()A B B AB -= ; (3) ()A B A A B -=- ; (4) ()A B B -=Φ;(5) ()()()()A B A B A B A A B AB == .习题1.21.已知事件A 、B 、A B 的概率分别为0.4,0.3,0.6.求()P AB 解由公式()()()()P A B P A P B P AB =+- 及题设条件得()0.40.30.60.1P AB =+-=又 ()()()()0.40.10.3P AB P A B P A P AB =-=-=-= 2.设1()()()4P A P B P C ===,()0P AB =,1()()16P AC P BC ==,求(1)A 、B 、C 中至少有一个发生的概率;(2)A 、B 、C 都不发生的概率。
数理统计练习题三(1)、已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。
现随机地挑选一人,求此人恰好是色盲者的概率。
设A :表示此人是男性; B :表示此人是色盲。
则所求的概率为()()(|)()(|)P B P A P B A P A P B A =+0.50.050.50.00250.02625=⨯+⨯=答:此人恰好是色盲的概率为0.02625。
三(2)、已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。
若随机地挑选一人,发现此人不是色盲,问此人是男性的概率。
设A :表示此人是男性; B :表示此人是色盲。
则所求的概率为()(|)()(|)(|)()1()P A P B A P A P B A P A B P B P B ==-()(|)1[()(|)()(|)]P A P B A P A P B A P A P B A =-+ 0.50.950.487810.02625⨯=≈-答:此人是男人的概率为0.4878。
。
三(3)、一袋中装有10个球,其中3个白球,7个红球。
现从中采用不放回方式摸球两次,每次一个,求第二次取得白球的概率。
解 设i A 表示表示第i 次取得白球,i =1,2。
则所求事件的概率为2121121()()(|)()(|)P A P A P A A P A P A A =+3273931091093010=⨯+⨯== 答:第二次取得白球的概率为3/10。
三(4)、一袋中装有10个球,其中3个白球,7个红球。
现从中采用不放回方式摸球两次,每次一个,若第二次取得白球,则第一次也是白球的概率。
解 设i A 表示表示第i 次取得白球,i =1,2 。
则所求事件的概率为12121122121121()()(|)(|) = ()()(|)()(|)P A A P A P A A P A A P A P A P A A P A P A A =+3221093910⨯==答:第二次摸得白球,第一次取得也是白球的概率为2/9。
浙江财经学院2011~2012学年第一学期 《 线性代数 》课程期中考试试卷 ( A 试卷)适用专业、班级:一.填空题 (每题3分)1 .若1112132122233132331a a a D a a a a a a ==则 1111121312121222331313233423423423a a a a D a a a a a a a a -=-=-12)3(4333231232221131211-=-⨯a a a a a a a a a 2. 由数码1,2,,1,2n n n + 构成的一个排列2,1,21,2,1,n n n n -+ 的逆序数是 (2n-1)+(2n-3)+…+1=n 23.11 n n i i x a aa x aD A a a x===∑ 则1)(0000001111--=--=n a x ax a x a a a x a a a a x a a a (其中11i i A D a 是中元素的代数余子式1,2,i n = )4. 若方程组123123230020x x x x x x x x x λλ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则λ=-1或4 0)4)(1(1121111=-+=--λλλλ5 ()()()3 1,1,0,1,3,1,5,3,t ααα==-=12若向量组线性相关,则t =1 035131011=-t()()()3 1,2,1,1,2,0,,0, 2t ααα=-=126. 若向量组=0,-4,5,-2的秩为,则t=37.若向量组123,,ααα与向量组12ββ,等价,则向量组123, , ααα线性 相关8.若 m n ⨯矩阵A 的n 个列向量线性无关,则r(A)= n9 3,,ααα12设是某四元非齐次线性方程组的三个解向量,方程组的系数矩阵为A ,()()122330123T αααα+=+=T r(A)=3,1,0,1,,,,,,则该方程组的全部解为T T c c )0,1,1,1()23,21,0,21()(23121--+=-++αααα10.设矩阵34()ij A a ⨯=,()2r A =且则它在初等变换下的等价标准形为⎪⎪⎭⎫⎝⎛000000100001⎪⎪⎪⎭⎫ ⎝⎛--↓⎪⎪⎪⎭⎫ ⎝⎛---00030011020120151402021t t二.计算行列式(每题6分)22404135 D=31232051-----71305100461211203840553002112-----=-----= 2707135102-=----==n 111222D a an nn a++=+ a n nn a a n n a n n a n n ++++++++=2222)1(2)1(2)1( 12)1(00001112)1(2221112)1(-⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=++⎥⎦⎤⎢⎣⎡++=n a a n n aa a n n a n n n a a n n122110000100000001nn n xx x xa a a a a x----=-+n D nn n n n n n n n n nn n n nn n n n n nn n n n n a x a x a x a x a x a x a x a x a x x a a x a x a D x a x a D x a a xD x a xD a D x ++++++=++++++=++++=++=++=+=--+-=----------------+-12322111232221133221221211112)(][)1()1()1(nn n n n nn n n n n a x a x a x a x xx x x x a xx x a x x x a x xx a +++++=---++----++---+----=----+-+122112112221100000010001)1)((1000000010001)1(1000000010000)1(1000000010001)1(三.确定向量间线性关系(每题8分)1.设向量组()()()()1231,4,0,2, 2,7,1,3, 0,1,1,, =3,10,b,4a αααβ===- 问(1)当, b a 取何值时,β不能由123,,ααα线性表示。
精品文档!2019年攻读浙江财经大学硕士学位研究生入学考试试题科目代码:861科目名称:管理运筹学答案请写答题纸上一、(15分)某专业要从以下10名学生中确定6名优秀学生为创新班培养对象,并使平均绩点为最大。
已知10名学生的代号及相应的绩点如表所示,并且学生选择上要满足下列限制条件:(1)在Stu5、Stu6、Stu7、Stu8 中最多选择3 个;(2)Stul和Stu2至少选择1个;(3)Stu3和Stu8至多选择1个;(4)选择了Stul,就必须选择Stu7,反之亦然;(5)选择了Stu3或Stu4就不能选择Stu5,反过来也一样。
试建立这个问题的数学规划模型(只建模型不求解)。
二、(15分)将下列线性规划问题化为标准形式,写岀相应的矩阵表达式, 并给出相应的技术系数矩阵A、资源向量b、价格系数向量C、决策变量向量X。
maxZ=8xi+9x2-4x3+2x4” X1+2X2+X3+7X4>83XI-2X2+4X3+2X4<12Y 2XI+X2-2X3+3X4= 262X1 -5X2+3X3+X4<-10〜X1>O,X2<O,X3正负不限,X4±0三、(20分)已知下列线性规划问题,完成下题:maxZ=3x 1+4x2~-X I+2X2<8X J+2X2< 12v 2X1+X2< 162XI-5X2<10Xl,X2>01.用图解法求解以上线性规划问题(7分);2.写出其对偶问题(6分);3.利用互补松弛定理求解对偶问题的最优解和最优值(7分)。
四、(30分)某工厂计划生产甲、乙、丙三种产品,分别经过设备A、B两道工序。
已知生产单位产品甲需要A、B各工序的时间分别为2小时、2小时;生产单位产品乙需要A、B各工序的时间分别为3小时、2小时;生产单位产品丙需要A、B各工序的时间分别为2小时、3小时;设备A、B每周可用工时分别为42小时、30小时、产品甲、乙、丙的单位收益分别为3万元、4万元、2万元。