物位检测及仪表
- 格式:doc
- 大小:57.50 KB
- 文档页数:7
常见的物位检测方法及物位计物位检测是指对容器、槽、管道等储存、输送物料的装置进行物位测量的技术方案。
物位检测在工业生产中具有重要的应用价值,可以用于液体、粉体、颗粒体的物位监测。
下面介绍几种常见的物位检测方法及物位计。
1.浮子式物位计:浮子式物位计是利用浮子浮沉的原理来测量液位的高低。
它的工作原理是根据浮子在浮物中的浮力变化来判断物位的高低。
当液位变化时,浮子也会随之上下浮动,通过连杆装置将浮子的位置变化转化为指示装置的运动,从而获得物位信息。
2.压力式物位计:压力式物位计利用液体的压力变化来测量物位的高低。
当液体位于容器中时,液体的重力作用会产生一定的压力,通过测量液体对容器底部的压力,从而得到物位的高度。
压力式物位计通常使用差压变送器来测量液体压力的变化。
3.毛细管测量法:毛细管测量法是利用毛细管现象来测量液体的高度。
当一根细长的管子插入液体中时,液体会上升到管子内部,管内液体的高度与液体的物位高度成正比。
通过测量管内液体的高度,可以得到物位的高低。
4.电容式物位计:电容式物位计利用液体与电介质之间的电容变化来测量物位的高低。
当液体的高度发生变化时,液体与电容传感器之间的电容也会发生变化,通过测量电容的差异,可以获得物位的高度。
5.超声波物位计:超声波物位计是利用超声波的传播速度和回波时间来测量物位的高度。
超声波发送器将超声波信号发射到液体表面,当超声波信号碰到液面时会发生反射,接收器接收到反射的超声波信号后,利用信号的传播时间来计算物位的高度。
6.雷达物位计:雷达物位计是利用雷达波的传播时间来测量物位的高度。
雷达物位计向液体表面发射雷达波信号,当雷达波信号碰到液面时会反射回来,接收器接收到反射的雷达波信号后,利用信号的传播时间来计算物位的高度。
以上是常见的几种物位检测方法及物位计。
每种方法都有其适用的场景和优缺点,选择适合的物位检测方法需要综合考虑物料的性质、储存容器的结构、工艺要求等因素。
检测原理浮标式浮球式变浮力式沉筒式基于沉筒的浮力随液位变化而变化的原理物位检测仪表的分物位检测仪表的种类直读式差压式接触式连通器原理利用液柱或物料堆积对某定点产生压力的原理玻璃管液位计玻璃板液位计压力式液位计差压式液位计恒浮力式电阻式液位计浮力式式基于浮标或浮球随液位的变化而产生位移的原理通过将物位的变化转换成电阻、电容、电感等电量的变基于超声波在气、液、固体中的衰减程度、穿透能力和辐射声阻抗各不相同的性质利用微波反射原理超声波式物位仪表雷达式物位仪表非接触式电气式电容式液位计电感式液位计通过将物位的变化转换成电阻、电容、电感等电量的变化来实现测量利用核辐射透过物料时,强度随物质层的厚度而变化的原理核辐射式物位仪表主要特点用途可连续测量敞口或密封容器中的液位、界位需远传显示、控制的场合表的分类结构简单,价格低廉,显示直观,但玻璃易损,读数不十分准确能远传现场就地指示用于敞口或封闭容器中,工业上多用差压变送器结构简单,价格低廉测量储罐的液位仪表轻巧、滞后小、能远传,但线路复杂、成本高用于高压腐蚀性介质的物位测量准确性高、惯性小、但成本高,使用和维护不便用于对测量精度要求高求高的场合不受温度、压力、蒸汽、气雾和粉末的限制;无测量盲区,测量误差小,分辨率高。
测量大型存储罐,易凝结、悬浊液、粘稠及具有腐蚀性的液体的液位仪表轻巧、滞后小、能远传,但线路复杂、成本高用于高压腐蚀性介质的物位测量能测各种物位,但成本高,使用和维护不便用于腐蚀性介质的物位测量。
3.液位检测及仪表在容器或工业设备中液体介质的高度叫液位;固体粉末或颗粒状物质的堆积高度叫料位;液体-液体或液体-固体的分界面叫界面。
液位、料位和界面的测量统称为物位测量。
液位,料位和界面的测量仪表分别称为液位计,料位计和界面计,统称为物位计。
3.1物位检测仪表的分类物位测量的目的在于正确地知道容器或工业设备中所储藏物质的容量或质量。
为了满足生产过程中各种条件和要求,测量物位的仪表种类很多。
而且随着科技的进步,还会不断产生新的检测方法和检测仪表。
按工作原理的不同,物位仪表主要有以下几种类型:(1)直读式物位仪表。
利用连通管原理制成。
这类仪表中主要有玻璃管液位计、玻璃板液位计等。
(2)浮力式物位仪表。
应用浮力原理制成。
液位测量仪表是对漂浮在液体上的浮子高度的测量或对浸没在液体中的浮子所受浮力的测量。
前者称为恒浮力法,后者称为变浮力法。
(3)差压式物位仪表。
它是利用物位的变化对某定点所产生的压力也发生变化的原理进行物位测量。
可以分为静压力式物位仪表和差压式物位仪表两种。
(4)电磁式物位仪表。
将物位的变化转换成电量的变化,通过测量这些电量的变化来测知物位。
(5)核辐射式物位仪表。
核辐射线透过物料时,其强度会随着介质层厚度而变化,利用这一特性实现物位的测量。
(6)声波式物位仪表。
物位的变化会引起声阻抗的变化,因此声波的遮断和声波反射距离也会不同,测出这些变化就可以测知物位。
(7)光学式物位仪表。
利用物位对光波的遮断和反射原理工作的物位仪表。
3.2 浮力式液位计浮力式液位计是利用浮力原理测量液位的,根据浮子所受浮力的不同又分为恒浮力式液位计和变浮力式液位计两种。
1.恒浮力式液位计恒浮力式液位计是利用被测介质对浮子的浮力不随液位的变化而变化的原理工作的。
根据恒浮力的原理,结合生产的不同需要,有浮球液位计,磁浮子液位计及浮子钢带液位计等。
浮球液位计有内浮式和外浮式之分。
内浮式是将浮球直接安装于容器内部,而外浮式是在容器外安装一个与容器连通的浮球室进行测量。
物位检测仪表的种类及原理
物位检测仪表的种类及原理
物位检测仪表广泛应用于各种工业场合,通过测量物料的高度来
计算物料的质量和体积,从而控制和管理物料的流动。
根据物料的性质、要求和安装条件,物位检测仪表可以分为多种类型。
1. 振荡器型物位检测仪表
振荡器型物位检测仪表是一种基于自振动原理工作的设备。
它采
用探头振动与物料振动的共振频率来检测物位。
当物料升高到探头高
度时,探头自身的振动频率会发生变化,从而触发报警或控制信号。
2. 高频电容型物位检测仪表
高频电容型物位检测仪表是一种基于电容变化原理工作的设备。
它通过发射高频电磁波到物料上,根据物料对电场的反应来判断物位
高度。
物料越高,电容值越大,从而实现物位检测与报警控制。
3. 声波型物位检测仪表
声波型物位检测仪表是一种基于声波反射原理工作的设备。
它通
过发射声波信号到物料上,根据声波反射时间来判断物位高度。
物料
越高,反射时间越长,从而实现物位检测与控制。
4. 微波型物位检测仪表
微波型物位检测仪表是一种基于微波信号反射原理工作的设备。
它通过发射微波信号到物料上,根据微波信号与物料的交互作用来判
断物位高度。
物料越高,反射强度越大,从而实现物位检测与控制。
以上是常见的物位检测仪表类型及其原理,根据实际需要和使用
条件进行选择和应用。
这些物位检测仪表广泛应用于工业自动化领域,为企业节省了大量的人力、物力和财力成本,提高了生产效率和产品
质量。
实验三、差压式流量变送器、差压式液位变送器的使用
(电容式差压变送器的认识和校验)
一、实验目的
熟悉电容式差压变送器的整体结构及各部分的作用,进一步理解电容式差压变送器的外特性特性。
掌握电容式差压变送器的调校方法、零点迁移方法及精度测试方法。
了解电容式差压变送器的安装及使用方法。
二、实验装置
(一)实验所需仪器、设备
序号名称数量精度
1、电容式差压变送器1台0. 2级
2、标准电阻箱2台0.02级
3、标准电流表1台0.02级
4、标准压力表1块0.05级
5、气动定值器1个1.0级
6、直流稳压电源1台1.0级
(二)实验装置连接图
1151DP型差压变送器校验接线图如图5所示。
图5 1151DP型差压变送器校验接线图
三、实验指导
(一)预备知识
1、1151DP型差压变送器的主要技术指标
型号:1151DP-5E12 基本误差:±0.2%
测量范围:0~31、1kpa~186、8kpa 线性误差:±0.1%
输出电流:4~20mA DC二线制变差
负载电阻:250欧阻尼时间常数:0.5S
工作电源
2、实验注意事项
(1)接线时,要注意电源极性。
在完成接线后,应检查接线是否正确,气路有无泄漏,并请指导教师确认无误后,方能通电。
(2)没通电,不加压;先卸压,再断电。
(3)一般仪表应通电预热泪15分钟后再进行校验。
3、实验须知
(1)在对1151DP型差压变送器进行调校前应先将阻尼电位器W4按逆时针方向旋到底,使阻尼关闭。
(2)在对变送器进行零点、量程调校前,应将迁移取消(即将放大板上的迁移插头插到无迁移的中间位置上,断开迁移电阻,)然后再进行零点、量程调整。
(3)1151DP变送器技术条件规定,正迁移量可达500%,负迁移量可达600%。
但是迁移后的被测压力不得超过该仪表所允许测量范围上限值的绝对值,也不能将量程压缩到该表所允许的最小量程。
(4)1151DP型电容差压变送器的电源信号端子位于电气壳体内的接线侧,接线时可将铭牌上标有“接线侧”的盖子打开,上部端子是电源信号端子,下部端子则为测试或指示表端子。
注意,不要把电源信号线接到测试端子,否则,就会烧坏内部二极管。
如果万一烧坏,为使变送器正常工作,可将两测试端子短接
(二)实验原理
电容式差压变送器是一种没有杠杆系统和整机负反馈环节的开环仪表,它采用差动电容作为检测无件整体结构无机械传动、调整装置,各项调整都是由电气元件调整来实现的。
实质上仍然是一种将输入差压信号△рi线性地转换成标准的 4~20mA直流电流信号输出的转换器。
结构上主要有三个部件:敏感部件(测量部件)、放大板和调校板。
对电容式差压变送器的调校。
(三)实验内容与步骤
1、按图校验接线图正确接线。
2、一般检查
(1)在校验前,应先观察仪表的结构,熟悉零点、量程、阻尼调节、正负迁移等的调整位置。
零点和量程电位器调整螺钉位于变送器电气壳体的铭牌后面,移开铭牌既可进行调校。
当顺时针转动调整螺钉,使变送器输出增大。
标记Z为调零螺钉,标记R为调量程螺钉,标记L为线性调整,标记D为阻尼调整。
(2)零点迁移插头位于放大器板元件侧。
当插件插在SZ侧,则可进行正迁移调整,当插件插在EZ侧,则可进行负迁移调整。
3、零点和量程的调整
关闭阻尼:将阻尼电位器W4 (标记D)按逆时针方向旋到底
取消迁移:将迁移插件插到元迁移的中间位置。
零点调整:打开变送器的负压室针阀,调整定值器,使输入压差信号△рi为零,调整零点电位器W2(标记Z),使输出电流为4MA(1V)。
满量程调整:关闭变送器的负压室针阀,调整定值器,使输入压差△рi为满量程值,调整量程电位器W3(标记R),使输出电流为20MA(5V)。
因为调整量程螺钉R(电位器W3)时会影响零点输出信号,调整零点螺钉Z(电位器W2)不仅改变了变送器的零点,同时也影响了变送器的满度输出(但量程范围不变),因此零点和满度要反复调整,直至都符合要求为止。
4、仪表精度校验
将输入差压信号△рi的测量范围平均分成五点(测量范围的0%、25%、50%、75%、100%),对仪表进行精度测试。
其相对应的输出电流值I0应分别为4、8、12、16、20MA(或者说、2、3、4、5V)。
测试方法为:用定值器缓慢加压力产生相应的输入差压信号△рi,防止发生过冲现象。
先依次读取正行程时对应的输出电流值I0正,并记录之;再缓慢减小压力,读取反行程时相对应的输出电流值I0反,并记录之。
计算出相应的基本误差和变差,与实验结果一起填入实验数据表。
如果基本误差和变差不符合要求,则要重新调整零点和量程,直到满足要求为止。
如果线性误差太大则应进行线性调整,具体步骤见第5项。
当零点、量程、线性都调整好后,仍要进行精度检验,最后画出差压变送器的输入(△рi)——输出(I0)特性曲线。
5、线性调整
通常变送器在出厂时已将线性度调整到了最佳状态,一般不在现场调整。
如果实际使用时,要求在某一特定的测量范围有良好的线性,例如:变送器工作在跨零的量程上(例如测量范围为—18kpa~+18kpa),使变送器的线性度降低。
这时可按下列步骤进行调整。
在调整好零点和量程后,输入压差△рi测量范围的50%,记下此时输出信号I0为实际值,并算出偏差值:
求出线性调整偏差值,即用6乘量程下降系数,再乘步骤/(1)中记下的偏差值。
输入满量程的压差信号△рi上,调整标有“L”的线性微调器。
若是正线性偏差值,则从满量程输出电流I0减去这个值,反之加上这个值。
例如:量程下降系数为4,量程50%点输出电流偏差值为-0.05A,则调整线性微调器,使满量程输出电流增加
(6×4×0.05)=1.2mA即可。
6、零点迁移调整及改变量程
建议将测量范围调整为20—60KPA
如果零点迁移量小于300%,则可直接调节零点螺钉电位器W2;如果迁移大于300%,则将迁移插件插至SZ(或EZ)侧。
调整气动定值器,使输入压差信号△рi为测量范转下限值△рi下,调整零点螺钉,使输出电流I0为4MA。
调整气动定值器,使△рi为测量范围上限值△рi上,调整量程调节螺钉(电位器W3),使输出电流I0为20MA。
然后,零点、满量程反复调整,直到合格为止。
(4)零点迁移、改量程调整好以后,再进行一次精度检验,方法同前,并画出变送器迁移后的输入——输出特性曲线。
7、阻尼调整
放大板上的电位器W4是阻尼调整电位器。
调整W4,可使阻尼时间常数在0.2~1.67s 之间变化。
通常阻尼的调整可在现场进行。
在使用时,按仪表输出的波动情况进行调整。
由于调整阻尼并不影响变送器的静态精度,所以最好选择最短的阻尼时间常数,以使仪表输出的波动尽快地稳定下来。
实验室的调整方法如下:输入一个阶跃负跳变差压信号,例如将输入压力由量程的最大值突然降至0,同时用秒表测定当输出电流由20MA下降到10MA时所需的时间,即为阻尼时间常数。
本变送器的阻尼时间常数在0.2s~1.67s之间连续可调。
调节时可用小螺丝刀插入阻碍尼调节孔内(D标记),顺时针方向旋转时,其阻尼时间将增大。
(四)填写仪表校验单
(五)数据处理
1、数据处理时应注意问题
2、误差计算公式
3、整理实验数据。
计算出基本误差、变差,记录下实测阻尼时间常数,确定精度等级,并填入仪表校验记录单。
4、分析变送器的静态误差,画出实测变送器输入(△рi) -输出(I0)静态特性曲线(包括下、反行程)并求出最大非线性误差。
四、实验训练题
1、填空题。
(1)1151DP型差压变送器的结构主要是由部件部件和部件构成。
因为是两线制变送器,需专用供电电源接线端子。
(2)在进行零点调整时,要使输出电流增加,则时针转动调整螺钉。
在阻尼调整时要使阻尼时间常数减小,则时针转动阻尼调整螺钉。
2、问答题。
(1)在实际使用(或调校)时,若错将测试接线端当作电源信号接线端使用了,则变送器可能会出现什么现象(可能会烧坏什么元件)?为使变送器正常工作,可采取什么补救措施?
(2)如果需将1151DP型电容式差压变送器的测量范围改为—20kPa~60kPa,请问仪表调校接线图应是怎样的?。