29巩固练习_简单的线性规划问题_提高
- 格式:pdf
- 大小:256.66 KB
- 文档页数:8
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在实际生活中,很多问题都可以归结为线性规划问题,例如资源分配、生产计划、运输调度等。
下面我们将通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法1、图解法对于只有两个决策变量的线性规划问题,可以使用图解法来求解。
其步骤如下:(1)画出约束条件所对应的可行域。
(2)画出目标函数的等值线。
(3)根据目标函数的优化方向,平移等值线,找出最优解所在的顶点。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10\\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件所对应的可行域:对于$x + 2y \leq 8$,当$x = 0$时,$y = 4$;当$y = 0$时,$x =8$,连接这两点得到直线$x +2y =8$,并取直线下方的区域。
3.3.2简单的线性规划问题(2)教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.课时分配本课时是简单的线性规划问题的第二课时,主要解决的是线性规划的应用问题.教学目标重点: 掌握约束条件、目标函数、可行解、可行域、最优解等基本概念.难点:理解实际问题的能力,渗透化归、数形结合的数学思想.知识点:图解法求线性目标函数的最大值、最小值.能力点:函数与方程、数形结合、等价转化、分类讨论的数学思想的运用.教育点:结合教学内容培养学生学习数学的兴趣和“用数学”的意识.自主探究点:培养学生观察、联想、作图和理解实际问题的能力.考试点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.易错易混点:线性规划问题和非线性规划问题的区分于解决.拓展点:非线性规划问题.教具准备实物投影机和粉笔课堂模式诱思探究一、复习引入简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.【设计意图】通过复习进一步熟悉解决简单线性规划问题的具体操作程序.二、探究新知请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求2z x y =+的最大值,使式中的x y 、满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组表示的平面区域如右图所示: 当0,0x y ==时,20z x y =+=, 点(0,0)在直线020l x y +=:上.作一组与直线0l 平行的直线2,l x y t t R +=∈:.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点(2,1)A -的直线所对应的t 最大.所以max 2213z =⨯-=.(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组所表示的平面区域如右图所示.从图示可知直线35x y t +=在经过不等式组所表示的公共区域内的点时,以经过点(2,1)--的直线所对应的t 最小,以经过点917(,)88的直线所对应的t 最大.所以min 3(2)5(1)11z =⨯-+⨯-=-, max 917351488z =⨯+⨯=. 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.三、运用新知【例1】某工厂生产甲、乙两种产品.已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360t 、B 种矿石不超过200t 、煤不超过300t ,甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt yt 、,利润总额为z 元,那么104300,54200,49360,0,0;x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩目标函数为6001000z x y =+.作出以上不等式组所表示的平面区域,即可行域. 作直线6001000=0l x y +:, 即直线5=0l x y +:3,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点M ,且与原点距离最大,此时6001000z x y =+取最大值.解方程组54200,49360,x y x y +=⎧⎨+=⎩得M 的坐标为3601000(,)2929. 答:应生产甲产品约12.4t ,乙产品34.4t ,能使利润总额达到最大.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.【例2】在上一节例4中(课本85页例4),若生产1车皮甲种肥料,产生的利润为10000元,若生产1车皮乙种肥料,产生的利润为5000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生:若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数0.5z x y =+,可行域如右图:把0.5z x y =+变形为22y x z =-+,得到斜率为2-,在y 轴上截距为2z ,随z 变化的一组平行直线.由图可以看出,当直线22y x z =-+经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点(2,2)M ,因此当2,2x y ==时,0.5z x y =+取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.四、课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设0t ,画出直线0l .(3)观察、分析,平移直线0l ,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.五、布置作业课本第93页习题3.3 B 组1、2、3.拓展作业:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.六、反思提升1. 让学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏的做法是明显的亮点.2.本节课的不足之处是由于整堂课课堂运算量较大,画图用时较多,后续的内容未能完成.七、板书设计。
1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的横截距D .该直线的纵截距的相反数解析:选B.把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距.2.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值为( ) A .-1 B .1 C .2 D .-2 答案:B3.若实数x 、y 满足⎩⎪⎨⎪⎧x +y -2≥0,x ≤4,y ≤5,则s =x +y 的最大值为________.解析:可行域如图所示,作直线y =-x ,当平移直线y =-x至点A 处时,s =x +y 取得最大值,即s max =4+5=9.答案:94.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x y ≥-2x .x ≤3(1)求不等式组表示的平面区域的面积;(2)若目标函数为z =x -2y ,求z 的最小值. 解:画出满足不等式组的可行域如图所示: (1)易求点A 、B 的坐标为:A (3,6),B (3,-6),所以三角形OAB 的面积为:S △OAB =12×12×3=18.(2)目标函数化为:y =12x -z 2,画直线y =12x 及其平行线,当此直线经过A 时,-z2的值最大,z 的值最小,易求A 点坐标为(3,6),所以,z 的最小值为3-2×6=-9. 一、选择题1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .(12,12)解析:选C.可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除A ,B ,D.2.(2010年高考浙江卷)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1D.715 解析:选A.画出可行域如图: 令z =x +y ,可变为y =-x +z ,作出目标函数线,平移目标函数线,显然过点A 时z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.在△ABC 中,三顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及其边界上运动,则m =y -x 的取值范围为( )A .[1,3]B .[-3,1]C .[-1,3]D .[-3,-1]解析:选C.直线m =y -x 的斜率k 1=1≥k AB =23,且k 1=1<k AC =4,∴直线经过C 时m 最小,为-1, 经过B 时m 最大,为3. 4.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0y -1≤0x +2y -2≥0表示的平面区域内运动,则z =x-y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]解析:选C.先画出满足约束条件的可行域,如图阴影部分, ∵z =x -y ,∴y =x -z .由图知截距-z 的范围为[-2,1],∴z 的范围为[-1,2].5.设动点坐标(x ,y )满足⎩⎨⎧?x -y +1??x +y -4?≥0,x ≥3,y ≥1.则x 2+y 2的最小值为( )A. 5B.10C.172 D .10解析:选D.画出不等式组所对应的平面区域,由图可知当x =3,y =1时,x 2+y 2的最小值为10.6.(2009年高考四川卷)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元解析:选D.设生产甲产品x 吨、乙产品y 吨,则获得的利润为z =5x +3y . 由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).二、填空题7.点P (x ,y )满足条件⎩⎨⎧0≤x ≤10≤y ≤1,y -x ≥12则P 点坐标为________时,z =4-2x +y取最大值________.解析:可行域如图所示,当y -2x 最大时,z 最大,此时直线y -2x =z 1,过点A (0,1),(z 1)max =1,故当点P 的坐标为(0,1)时z =4-2x +y 取得最大值5.答案:(0,1) 58.已知点P (x ,y )满足条件⎩⎪⎨⎪⎧x ≥0y ≤x2x +y +k ≤0(k 为常数),若x +3y 的最大值为8,则k =________.解析:作出可行域如图所示:作直线l 0∶x +3y =0,平移l 0知当l 0过点A 时,x +3y 最大,由于A 点坐标为(-k3,-k 3).∴-k3-k =8,从而k =-6. 答案:-69.(2010年高考陕西卷)铁矿石A 和B 的含铁率a ,,冶炼每万吨铁矿石的CO 2的排放量b某冶炼厂至少要生产22(万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买A 、B 两种铁矿石分别为x 万吨、y 万吨,购买铁矿石的费用为z 百万元,则z =3x +6y .由题意可得约束条件为⎩⎪⎨⎪⎧12x +710y ≥1.9,x +12y ≤2,x ≥0,y ≥0.作出可行域如图所示:由图可知,目标函数z =3x +6y 在点A (1,2)处取得最小值,z min =3×1+6×2=15 答案:15 三、解答题10.设z =2y -2x +4,式中x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1,求z 的最大值和最小值.解:作出不等式组⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1的可行域(如图所示).令t =2y -2x 则z =t +4.将t =2y -2x 变形得直线l ∶y =x +t2.则其与y =x 平行,平移直线l 时t 的值随直线l 的上移而增大,故当直线l 经过可行域上的点A 时,t 最大,z 最大;当直线l 经过可行域上的点B 时,t 最小,z 最小.∴z max =2×2-2×0+4=8, z min =2×1-2×1+4=4.11.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x -ay -1≥02x +y ≥0x ≤1(a ∈R ),目标函数z =x +3y 只有当⎩⎨⎧x =1y =0时取得最大值,求a 的取值范围.解:直线x -ay -1=0过定点(1,0),画出区域⎩⎪⎨⎪⎧2x +y ≥0,x ≤1,让直线x -ay -1=0绕着(1, 0)旋转得到不等式所表示的平面区域.平移直线x +3y =0,观察图象知必须使直线x -ay -1=0的斜率1a >0才满足要求,故a >0.12.某家具厂有方木料90 m 3 ,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2;生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元;出售一个书橱可获利润120元.(1)如果只安排生产方桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所获利润最大?解:由题意可画表格如下:(1)设只生产书桌x 张,可获利润z 元, 则⎩⎪⎨⎪⎧ 0.1x ≤902x ≤600x ∈N *?⎩⎪⎨⎪⎧x ≤900x ≤300x ∈N *?x ≤300,x ∈N *.目标函数为z =80x .所以当x =300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设只生产书橱y 个,可获利润z 元,则⎩⎪⎨⎪⎧ 0.2y ≤901·y ≤600y ∈N *?⎩⎪⎨⎪⎧y ≤450y ≤600y ∈N *?y ≤450,y ∈N *.目标函数为z =120y .所以当y =450时,z max =120×450=54000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0,x ∈N y ≥0,x ∈N ?⎩⎨⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,且x ∈N ,y ∈N .目标函数为z = 80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域 ,即可行域(图略). 作直线l ∶80x +120y =0,即直线l ∶2x +3y =0(图略).把直线l 向右上方平移,当直线经过可行域上的直线x +2y =900,2x +y =600的交点时,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =9002x +y =600解得交点的坐标为(100,400).所以当x =100,y =400时,z max =80×100+120×400=56000(元).因此,生产书桌100张,书橱400个,可使所获利润最大.。
简单的线性规划典型例题求不等式|x-1|+|y-1|≤2表示的平面区域的面积.某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:依据条件画出所表达的区域,再根据区域的特点求其面积.|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8画平面区域时作图要尽量准确,要注意边界.例2:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B0时,Ax0+By0+C当B0时,Ax0+By0+C03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B0时,Ax0+By0+C当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)0 二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C0(或0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
【巩固练习】 一、选择题1.若x y ,∈R ,且1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则+2z x y =的最小值等于( )A .2B .3C .5D .9 2.若实数x y ,满足不等式组33023010x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则+x y 的最大值为( )A .9 B.157 C .1 D.7153. 已知x y ,满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使()=0z x ay a +>取得最小值的最优解有无数个,则a 的值为( )A .-3 B.3 C .-1 D.14. 在ABC ∆中,三个顶点(2,4),(1,2)(1,0)A B C -,点(,)P x y 在ABC ∆内部及边界上运动,则z x y =-的最大值是( )A.1B.-3C.-1D.35. 如图,目标函数z ax y =-的可行域为四边形OACB (含边界),若24(,)35C 是该目标函数z ax y =-的最优解,则a 的取值范围是( )A.105(,)312-- B .123(,)510--C.312(,)105D. 123(,)510-6. 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、质量、可获利润和托运能力限制数据在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为( )体积(m2/箱) 质量(50kg/箱) 利润(102/箱)甲 5 2 20 乙 4 5 10托运能力2413A.4,1 二、填空题y xC24(,)35BOA7. 已知变量x y ,满足条件43,3525,1,x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,设2z x y =+,取点(3,2)可求8z =,取点(5,2)可求max 3z =,去点(0,0)可求得0z =,取点(3,2)叫做 ,取点(0,0)叫做 ;点(5,2)和点(1,1)均叫做 .8. 已知x y ,满足约束条件04,03,28,x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩则25z x y =+的最大值为 .9. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 . 10. 线性目标函数z x y =+,在线性约束条件30,20,.x y x y y a +-≤⎧⎪-≤⎨⎪≤⎩下取得最大值时的最优解只有一个,则实数a 的取值范围 .11. 若实数x y ,满足不等式组2240x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩,则23x y +的最小值是________.三、解答题12.已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D 的不等式组;(2)设点B ,C 两点在直线430x y a =--的异侧,求a 的取值范围.13. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.求该企业可获得最大利润.14.某公司准备进行两种组合投资,稳健型组合投资是由每份金融投资20万元,房地产投资30万元组成;进取型组合投资是由每份金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,那么这两种组合投资应注入多少份,才能使一年获利总额最多?15.设x y ,满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数=(00)z abx y a b >>+,的最大值为8,求+a b 的最小值.【答案与解析】1.【答案】 B【解析】 作出可行域如图所示,目标函数1122y x z =-+,则过B (1,1)时z 取最小值z min =32. 【答案】 A【解析】 作出可行域如图所示 令z =x +y ,则y =-x +z , ∴y =-x +z 过A(4,5)时, z 取最大值zmax =9. 3.【答案】D 【解析】如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D4.【答案】A【解析】解决本题的关键是应明确ABC 的区域即为可行域,z x y =-为目标函数;5.【答案】B【解析】∵C 点是目标函数的最优解,∴AC BC k a k <<,解得123510a -<<- 6.【答案】A【解析】设托运货物甲x 箱,托运货物乙y 箱,由题意,得5424,2513,,x y x y x y N +≤⎧⎪+<⎨⎪∈⎩利润为2010,z x y =+由线性规划知识解得4,1x y ==时利润最大. 7.【答案】可行解;非可行解;最优解 8.【答案】19【解析】易作出04,03,28,x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩对应的可行域,当直线255z y x =-+经过(2,3)时,z 取得最大值max 19z =9. 【答案】2200【解析】设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件20101000408x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,求线性目标函数z =400x +300y 的最小值. x + y = 5x – y + 5 = 0Oyxx=3解得当42x y =⎧⎨=⎩时,z min =2 200.10.【答案】(],2-∞;【解析】解决此类问题,首先画出可行域,依据目标函数的几何意义和可行域的几何形状,即可确定满足的条件.11.【答案】4【解析】 不等式组2240x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩,所表示的平面区域为三角形区域,令z =2x +3y ,则将其视为一组平行线,3z为直线在y 轴上的截距. 于是根据线性目标函数的几何意义,当直线z =2x +3y 经过直线x +y =2与直线2x -y =4的交点(2,0)时,3z最小,即z 最小,此时z =4. 12.【解析】(1)直线AB 、AC 、BC 的方程分别为7x -5y -23=0,x+7y -11=0,4x+y+10=0 原点(0,0)在区域D 内,表示区域D 的不等式组:75230,7110,4100.x y x y x y --≤⎧⎪+-≤⎨⎪++≥⎩(2)将B 、C 的坐标代入4x -3y -a ,根据题意有(14-a)(-18-a)<0, 得a 的取值范围是-18<a <14.13.【解析】 设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料B 原料 甲产品x 吨 3x2x 乙产品y 吨3y则有:⎪⎪⎩⎪⎪⎨⎧≤+≤+>>183213300y x y x y x ,目标函数y x z 35+=作出可行域后求出可行域边界上各端点的坐标,经验证知: 当x =3,y =4时可获得最大利润为27万元.14.【解析】设稳健型投资x 份,进取型投资y 份,利润总额为z (×10万元),则目标函数为( 1.5)z x y =+(×10万元),(3,4)(0,6)O(313,0) 913线性约束条件为:204016030301800,0x yx yx y+≤⎧⎪+≤⎨⎪≥≥⎩,即2860,0x yx yx y+≤⎧⎪+≤⎨⎪≥≥⎩作出可行域(图略),解方程组286x yx y+=⎧⎨+=⎩,得交点(4,2)M作直线 1.50x y+=,平移l,当l过点M时,z取最大值:max (43)10z=+⨯万元=70万元.15.【答案】4【解析】约束条件表示的平面区域为如图所示的阴影部分.当直线z=abx+y(a>0,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点(1,4)时,目标函数z=abx +y(a>0,b>0)取得最大值8,即8=ab+4,ab=4,∴24a b ab+≥.。
简单的线性规划问题例1:求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:例2:若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1x +y ≥0x -y -2≤0,求目标函数z =x -2y 的最大值[解析] 先作出可行域如图.作直线x-2y=0在可行域内平移,当x-2y-z=0在y轴上的截距最小时z值最大.当移至A(1,-1)时,z max=1-2×(-1)=3,1.在平面直角坐标系中,若点(3t-2,t)在直线x-2y+4=0的下方,则t的取值范围是( C)A.(-∞,2) B.(2,+∞) C.(-2,+∞) D.(0,2) [解析]∵点O(0,0)使x-2y+4>0成立,且点O在直线下方,故点(3t -2,t )在直线x -2y +4=0的下方⇔3t -2-2t +4>0,∴t >-2.[点评] 可用B 值判断法来求解,若B>0,令d =B (Ax 0+By 0+C ),则d >0⇔点P (x 0,y 0)在直线Ax +By +C =0的上方;d <0⇔点P (x 0,y 0)在直线Ax +By +C =0的下方.2.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y的最大值为( C )A .-2B .4C .6D .8 [解析]3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -y +1≥0,y ≥1,则z =2x -y 的最大值为( C )A.-1 B.0 C.3 D.4[解析]作出可行域如图,作直线l0:2x-y=0,平移l0当平移到经过点A(2,1)时,z max=3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x -y 的最大值为( D )A .-4 B .0 C.43D .4[解析]该线性约束条件所代表的平面区域如图,易解得A (1,3),B (1,53),C (2,2),由z =3x -y 得y =3x -z ,由图可知当x =2,y =2时,z 取得最大值,即z 最大=3×2-2=4.故选D.5.已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2,y -x ≥0,x ≥0.目标函数z =ax +y只在点(1,1)处取最小值,则有( D ) A .a >1 B .a >-1 C .a <1D .a <-1[解析] 作出可行域如图阴影部分所示.由z =ax +y ,得y =-ax +z .只在点(1,1)处z 取得最小值,则斜率-a >1,故a <-1,故选D.6.已知约束条件⎩⎪⎨⎪⎧x -3y +4≥0,x +2y -1≥0,3x +y -8≤0,若目标函数z =x +ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为( C )A .0<a <13B .a ≥13C .a >13D .0<a <12[解析] 作出可行域如图,∵目标函数z =x +ay 恰好在点A (2,2)处取得最大值,故-1a>-3,∴a >13.★7.若2x +4y <4,则点(x ,y )必在( D )A .直线x +y -2=0的左下方B .直线x +y -2=0的右上方C .直线x +2y -2=0的右上方D .直线x +2y -2=0的左下方 [解析] ∵2x +4y ≥22x +2y ,由条件2x +4y <4知, 22x +2y <4,∴x +2y <2,即x +2y -2<0,故选D. ★8.设O 为坐标原点,点M 的坐标为(2,1),若点N (x ,y )满足不等式组⎩⎪⎨⎪⎧x -4y +3≤0,2x +y -12≤0,x ≥1,则使OM →·ON →取得最大值的点N 的个数是( D )A .1 B .2 C .3D .无数个[分析] 点N (x ,y )在不等式表示的平面区域之内,U =OM →·ON →为x ,y 的一次表达式,则问题即是当点N 在平面区域内变化时,求U 取到最大值时,点N 的个数.[解析] 如图所示,可行域为图中阴影部分,而OM →·ON →=2x +y ,所以目标函数为z =2x +y ,作出直线l :2x +y =0,显然它与直线2x +y -12=0平行,平移直线l 到直线2x +y-12=0的位置时目标函数取得最大值,故2x +y -12=0上每一点都能使目标函数取得最大值,故选D.9.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤3,x +2y -2≥0,所表示的平面区域为S ,若A 、B为区域S 内的两个动点,则|AB |的最大值为(B)A .25 B.13 C .3 D. 5[解析] 在直角坐标平面内画出题中的不等式组表示的平面区域,结合图形观察不难得知,位于该平面区域内的两个动点中,其间的距离最远的两个点是(0,3)与(2,0),因此|AB |的最大值是13,选B.10.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .-1 B .1 C.32D .2[解析] 本题考查了不等式组所表示的平面区域及数形结合思想解决问题的能力.由约束条件作出其可行域,如图由图可知当直线x =m 过点P 时,m 取得最大值,由⎩⎪⎨⎪⎧y =2x ,x +y -3=0,得,⎩⎪⎨⎪⎧x =1,y =2,∴P (1,2),此时x =m =1.[点评] 对于可行域中含有参数的情形,不妨先取特殊值来帮助分析思路.★11.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z=ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为(A) A.256 B.83 C.113D .4[解析] 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b2=1,∴2a +3b =(2a +3b )·(a 3+b 2)=136+b a +a b ≥136+2=256,故选A.12.设不等式组⎩⎪⎨⎪⎧x -y +2≤0,x ≥0,y ≤4.表示的平面区域为D ,若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( D )A .(0,1) B .(1,2) C .[2,4] D .[2,+∞)[解析] 作出可行区域,如图,由题可知点(2,a 2)应在点(2,4)的上方或与其重合,故a 2≥4,∴a ≥2或a ≤-2,又a >0且a ≠1,∴a ≥2.★13.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,所表示的平面区域的面积为( B ) A. 2 B.32 C.322D .2[解析] 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,的图形如图.解得:A (0,1) D (0,-1) B (-1,-2) C (12,-12)S △ABC =12×|AD |×|x C -x B |=12×2×(12+1)=32,故选B.★14.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 值为(A) A. 3 B.32C. 2 D .4[解析]由题可知,当x=0时,z=kx+y=y,因此要使目标函数z=kx+y(k>0)取得最大值,则相应直线经过题中的平面区域内的点时,相应直线在y轴上的截距最大.由目标函数z=kx+y(k>0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx+y=0的倾斜角为120°,于是有-k=tan120°=-3,k=3,选A.★15.在直角坐标系xOy中,已知△AOB的三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即坐标均为整数的点)的总数为(B )A .95 B .91C .88D .75 [解析]由2x +3y =30知,y =0时,0≤x ≤15,有16个;y =1时,0≤x ≤13;y =2时,0≤x ≤12; y =3时,0≤x ≤10;y =4时,0≤x ≤9; y =5时,0≤x ≤7;y =6时,0≤x ≤6; y =7时,0≤x ≤4;y =8时,0≤x ≤3; y =9时,0≤x ≤1,y =10时,x =0.∴共有16+14+13+11+10+8+7+5+4+2+1=91个.16.已知不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,x ≤a ,表示的平面区域S 的面积为4,点P (x ,y )∈S ,则z =2x +y 的最大值为___6_____.[解析]由题意知⎩⎪⎨⎪⎧12×2a×a =4,a >0,∴a =2,易得z =2x +y 的最大值为6.★17.若由不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0,(n >0)确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m =__-33.[解析] 根据题意,三角形的外接圆圆心在x 轴上, ∴OA 为外接圆的直径,∴直线x =my +n 与x -3y =0垂直, ∴1m ×13=-1,即m =-33.18.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则目标函数z =4x+y 的最大值为_11_____[解析]如图,满足条件的可行域为三角形区域(图中阴影部分),故z=4x+y在P(2,3)处取得最大值,最大值为11.19.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:a b(万吨)c(百万元)A 50%1 322(万吨),则购买铁矿石的最少费用为___15_____(百万元).[解析] 设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取得最小值,最小值为:z min =3×1+6×2=15.1百吨需要资金2百万元,需场地2百平方米,可获利润3百万元;投资生产B 产品时,每生产1百米需要资金3百万元,需场地1百平方米,可获利润2百万元.现该单位有可使用资金14百万元,场地9百平方米,如果利用这些资金和场地用来生产A 、B 两种产品,那么分别生产A 、B 两种产品各多少时,可获得最大利润?最大利润是多少?[解析] 设生产A 产品x 百吨,生产B 产品y 百米,共获得利润S 百万元,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0,目标函数为S =3x +2y .作出可行域如图,由⎩⎪⎨⎪⎧2x +y =9,2x +3y =14,解得直线2x +y =9和2x +3y =14的交点为A ⎝ ⎛⎭⎪⎫134,52,平移直线y =-32x +S2,当它经过点A ⎝ ⎛⎭⎪⎫134,52时,直线y =-32x +S 2在y 轴上截距S 2最大,S 也最大.此时,S =3×134+2×52=14.75.因此,生产A 产品3.25百吨,生产B 产品2.5百米,可获得最大利润,最大利润为1475万元★21.北京某商厦计划同时出售新款空调和洗衣机,由于这两种产品的市场需求量大,供不应求,因此该商厦要根据实际情况(如成本、工资)确定产品的月供应量,以使得总利润达到最大,通过调查,得到这两种产品的有关数据如下表:试问:怎样确定两种产品的月供应量,才能使总利润达到最大,最大利润刘多少?正解:设空调、洗衣机的月供应量分别为x 、y ,总利润是p ,那么满足条件: .9600,942223023960)2(3)23(31:8226386)22()3()2()23(2220:)2()5(30230:)1()4(86)3(0,0)2(110105)1(3002030元的最大值是时即当此时当且仅当解之得得由得由p y x y x y x p y x y x p n m n m n m yx y n m x n m y x n y x m p y x y x yx p y x y x y x ⎩⎨⎧==⎩⎨⎧=+=+≤≤∴+++=∴⎩⎨⎧==⎩⎨⎧=+=+∴+=++++++=≤+≤≤+≤⎪⎪⎩⎪⎪⎨⎧+=≥≥≤+≤+10.某公司准备进行两种组合投资,稳健型组合投资每份由金融投资20万元,房地产投资30万元组成;进取型组合投资每份由金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,那么这两种组合投资各应注入多少份,才能使一年获利总额最多?[解析] 设稳健型投资x 份,进取型投资y 份,利润总额为z (单位:10万元,则目标函数为z =x +1.5y (单位:10万元),线性约束条件为:⎩⎪⎨⎪⎧20x +40y ≤160,30x +30y ≤180,x ≥0,y ≥0x ∈N ,y ∈N,即⎩⎪⎨⎪⎧x +2y ≤8,x +y ≤6,x ≥0,y ≥0x ∈N ,y ∈N,作出可行域如图,解方程组⎩⎪⎨⎪⎧x +2y =8,x +y =6,得交点M (4,2),作直线l 0:x +1.5y =0,平移l 0,当平移后的直线过点M 时,z 取最大值:z max =(4+3)×10万元=70万元.答:稳健型投资4份,进取型投资2份,才能使一年获利总额最多.(理)(2012·辽宁文,9)设变量x ,y 满足⎩⎪⎨⎪⎧ x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55 [答案] D[解析] 本题考查线性规划的知识.作出可行域如图所示:令z =2x +3y ,则y =-23x +13z . 要使z 取得最大值,需直线y =-23x +13z 在y 轴上的截距最大,移动l 0:y =-23x 当l 0过点C (5,15)时,z 取最大值z max =55.解线性规划问题,准确作出可行域是关键,同时还要注意目标函数z =2x +3y 与z =2x -3y 最优解是不同的.13.(文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3t ,B 原料2t ;生产每吨乙产品要用A 原料1t ,B 原料3t ,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13t,B原料不超过18t.那么该企业可获得最大利润是( )A .12万元B .20万元C .25万元D .27万元[答案] D [解析] 设生产甲、乙两种产品分别为x t ,y t ,由题意得⎩⎪⎨⎪⎧ 3x +y ≤13,2x +3y ≤18,x ≥0,y ≥0,获利润ω=5x +3y ,画出可行域如图,由⎩⎪⎨⎪⎧ 3x +y =13,2x +3y =18,解得A (3,4).∵-3<-53<-23, ∴当直线5x +3y =ω经过A 点时,ωmax =27.(理)(2011·四川文,10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10t 的甲型卡车和7辆载重量为6t 的乙型卡车,某天需送往A 地至少72t 的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=( ) A.4650元B.4700元C .4900元D .5000元[答案] C [解析] 设该公司派甲型卡车x 辆,乙型卡车y 辆,由题意得⎩⎪⎨⎪⎧10x +6y ≥72,2x +y ≤19,x +y ≤12,0≤x ≤8,x ∈N 0≤y ≤7,y ∈N 利润z =450x +350y ,可行域如图所示.解⎩⎪⎨⎪⎧ 2x +y =19,x +y =12,得A (7,5).当直线350y +450x =z 过A (7,5)时z 取最大值,∴z max =450×7+350×5=4900(元).故选C..(理)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分别表示生产甲、乙产品的数量,在(1)的条件下,求x,y为何值时,z=xP甲+yP乙最大,最大值是多少?[解析] (1)依题意得⎩⎪⎨⎪⎧ P 甲-P 乙=0.251-P 甲=P 乙-0.05, 解得⎩⎪⎨⎪⎧ P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4.(2)依题意得x 、y 应满足的约束条件为⎩⎪⎨⎪⎧ 4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧ x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.16.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5min ,生产一个骑兵需7min ,生产一个伞兵需4min ,已知总生产时间不超过10h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?[解析] (1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎪⎨⎪⎧ 5x +7y +4100-x -y ≤600,100-x -y ≥0,x ≥0,y ≥0,x ∈Z ,y ∈Z .整理得⎩⎪⎨⎪⎧ x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ∈Z ,y ∈Z .目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.2.已知a ,b ∈R +,a +b =1,M =2a +2b ,则M 的整数部分是( ) A .1 B .2 C .3 D .4[答案] B[解析] ∵a ,b ∈R +,a +b =1,∴0<a <1,设t =2a ,则t ∈(1,2),M =2a +2b =2a +21-a =t +2t≥22,等号在t =2时成立,又t =1或2时,M =3,∴22≤M <3,故选B.3.(2011·湖北高考)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20,表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个[答案] B[解析] 直线2x +y -10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点只有1个,选B.4.(2011·黄山期末)设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9][答案] C[解析] 作出不等式表示的平面区域如图,由⎩⎪⎨⎪⎧x +2y -19=0,x -y +8=0,得A (1,9),由⎩⎪⎨⎪⎧x +2y -19=0,2x +y -14=0,得B (3,8),当函数y =a x 过点A 时,a =9,过点B 时,a =2,∴要使y =a x 的图象经过区域M ,应有2≤a ≤9.5.(2012·河南洛阳市模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥3x ,x +ay ≤7,其中a >1,若目标函数z =x +y 的最大值为4,则a的值为________.[答案] 2 [解析]作出不等式组表示的平面区域如图中阴影部分所示.∵y =-x +z ,∴欲使z 最大,只需使直线y =-x +z 的纵截距最大,∵a >1,∴直线x +ay =7的斜率大于-1,故当直线y =-x +z 经过直线y =3x 与直线x +ay =7的交点(71+3a ,211+3a )时,目标函数z 取得最大值,最大值为281+3a .由题意得281+3a=4,解得a =2.6.(2012·太原部分重点中学联考)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y -1≥0,2x -y -6≤0,x +y -k -2≥0,且x 2+y 2的最小值为m ,当9≤m ≤25时,实数k 的取值范围是( )A .(17-2,5)B .[17-2,5]C .(17-2,5]D .(0,5][答案] B [解析]不等式组表示的可行域如图中的阴影部分,x 2+y 2的最小值m 即为|OA |2,联立⎩⎪⎨⎪⎧x -y -1=0x +y -k -2=0,得A (k +32,k +12).由题知9≤(k +32)2+(k +12)2≤25,解得17-2≤k ≤5.作出不等式组表示的平面区域如图中阴影部分.作出直线2x +y =0,平移该直线,当平移到经过平面区域内的点(3,0)时,相应的直线在x 轴上的截距最大,此时z =2x +y 取得最大值,最大值是6,故选C.8.某人有楼房一幢,室内面积共计180m 2,拟分隔成两类房间作为旅游客房.大房间每间面积18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他隔出大房间和小房间各多少间,能获得最大收益?[解析] 设隔出大房间x 间,小房间y 间时收益为z 元, 则x ,y 满足⎩⎪⎨⎪⎧18x +15y ≤180,1000x +600y ≤8000,x ≥0,y ≥0,x ,y ∈Z ,且z =200x +150y .约束条件可化简为: ⎩⎪⎨⎪⎧6x +5y ≤60,5x +3y ≤40,x ≥0,y ≥0,x ,y ∈Z .可行域为如图所示的阴影部分(含边界)作直线l :200x +150y =0,即直线l :4x +3y =0把直线l 向右上方平移至l 1的位置时,直线经过点B ,且与原点的距离最大,此时z =200x +150y 取得最大值.解方程组⎩⎪⎨⎪⎧6x +5y =60,5x +3y =40,得到B (207,607).由于点B 的坐标不是整数,而最优解(x ,y )中的x ,y 必须都是整数,所以,可行域内的点B (207,607)不是最优解,通过检验,当经过的整点是(0,12)和(3,8)时,z取最大值1800元.于是,隔出小房间12间,或大房间3间、小房间8间,可以获得最大收益.[点评] 当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.(注:可编辑下载,若有不当之处,请指正,谢谢!)。