平均指标和变异指标 (2)
- 格式:ppt
- 大小:136.50 KB
- 文档页数:15
《统计学原理》简答题答案第一章总论1.统计一词有几种含义?它们之间的关系?答:三种。
统计工作、统计资料、统计学。
(1)统计工作:即统计实践活动,是指从事统计业务的机关、单位利用科学的统计方法,搜集、整理分析和提供有关客观现象的数据资料、研究数据的内在特征,并预测事物的发展方向等一系列工作过程的总称。
(2)统计资料:是统计实践过程的取得的各项数据资料以及和它相联系的其他资料的总称。
(3)统计学:统计工作和统计资料的关系是统计活动即过程和统计成果的关系,统计工作和统计学的关系是统计实践和统计理论的关系2.社会经济统计的特点有哪些?答:社会经济统计是社会现象的一种调查分析活动,它具有以下特点:a)数量性 b)总体性 c)变异性 d)社会性3.什么是统计总体、统计单位、标志、变异、变量和变量值?并举例说明。
答:(1)统计总体,简称总体,是指客观存在的在同一性质基础上结合起来的许多个别事物的整体。
例如,研究某班学生的情况时,该班全体学生就是一个统计总体。
(2)统计单位,是指构成统计总体的个别事物。
例如,以我国全部普通高等院校为总体,每一个普通高等院校就是总体单位。
(3)标志,是指总体单位所共同具有的某种属性或特征。
例如,工人作为总体单位,他们都具备性别、工种、文化程度、工会、工资等属性或特征。
(4)变异是变动的标志,具体表现在各个单位的差异,包括量(数值)的变异和质(性质、属性)的变异。
如:性别表现为男、女,这是属性变异;年龄表现为18岁、25岁、28岁等这是数值上的变异。
(5)变量,就是可变的数量标志。
例如,商业企业的职工人数、商品流转额、流动资金占用额等数量标志,在各个商业企业的具体表现都是不尽相同的,是一个变动的量,这些变动的数量标志就称作变量。
(6)变量值,就是变量的具体表现,也就是变动的数量标志的具体表现。
例如,企业的职工人数是一个变量,甲企业职工人数100人,乙企业职工人数150人,丙企业职工人数200人等等,100人、150人、200人都是职工人数这个变量的变量值(标志值)。
统计学基础平均指标和变异指标平均指标和变异指标是统计学中常用的两种指标,用于描述数据分布的中心趋势和离散程度。
在统计分析中,这两个指标的应用非常广泛。
1.平均指标:平均指标是用来表示数据分布的中心位置的指标,常见的平均指标有平均数、中位数和众数。
-平均数:平均数是指一组数据之和除以数据个数,表示了数据的平均水平。
平均数的计算方法是将所有数据相加,然后除以数据个数。
例如,对于一组数据:2,3,5,7,10,平均数的计算方式为(2+3+5+7+10)/5=5.4-中位数:中位数是将数据按照大小顺序排列后位于中间位置的数值,它划分了数据的中间位置。
如果数据个数为奇数,则中位数为排序后的中间值;如果数据个数为偶数,则中位数为排序后中间两个值的平均值。
中位数对于数据的极端值不敏感,适用于数据有异常值的情况,能够更好地表示数据的中心位置。
例如,对于一组奇数个数据:1,3,5,7,9,中位数为5;对于一组偶数个数据:2,4,6,8,中位数为(4+6)/2=5-众数:众数是一组数据中出现次数最多的数值,表示了数据中的高频值。
一个数据集可以有一个或多个众数。
如果一个数据集没有重复值,那么它没有众数。
例如,对于一组数据:1,2,3,4,4,4,5,众数为42.变异指标:变异指标是用来度量数据分布的离散程度,可以用来描述数据的稳定性和可变性。
常见的变异指标有极差、方差和标准差。
-极差:极差是一组数据的最大值和最小值之间的差异,表示了数据的全距。
极差越大,数据的离散程度越大;极差越小,数据的离散程度越小。
例如,对于一组数据:2,3,5,7,10,极差为(10-2)=8-方差:方差是一组数据与其平均数之间偏离程度的平均值的统计量,表示了数据分布的离散程度。
方差的计算公式是每个数值与平均数之差的平方之和除以数据个数。
例如,对于一组数据:2,3,5,7,10,平均数为5.4,方差的计算方式为[(2-5.4)^2+(3-5.4)^2+(5-5.4)^2+(7-5.4)^2+(10-5.4)^2]/5≈7.04-标准差:标准差是方差的平方根,是一个衡量数据分布离散程度的指标。
第五章平均指标与变异指标教学目的与要求:本章主要介绍了经济统计中广泛应用的一种综合指标,即平均指标。
并在此基础上,详细论述了反映总体特征的另一指标,即标志变异指标。
通过本章的学习和应用能力的训练,重点要求是:1、深刻理解平均指标和变异指标的基本理论和分析方法2、掌握计算平均指标的各种方法及运用原则3、对平均指标进行分析,阐述影响平均指标大小的原因4、明确平均指标与变异指标的区别与联系5、掌握变异指标的计算方法,并能运用标志变异指标说明平均数的代表性基本理论和分析方法。
重点掌握:1、平均制表的分析方法。
2、变异指标的计算意义。
教学方式:用多媒体课件讲练结合。
课时安排:理论4学时,实训2学时第一节平均指标的概念和作用一、平均指标的概念1、定义平均指标又称平均数,它是统计分析中最常用的统计指标之一。
它反映了社会经济现象中某一总体各单位某一数量在一定时间、地点条件下所达到的一般水平,或者反映某一总体、某一指标在不同时间上发展的一般水平。
2、特点第一,同质性,即总体内各单位的性质是相同的。
第二,抽象性,即总体内各同质单位虽然存在数量差异,但在计算平均数时并不考虑这种差异,即把这种差异平均掉了。
第三,代表性,即尽管各总体单位的标志值大小不一,但我们可以用平均数这一指标值来代表所有标志值。
二、平均指标的作用1、可以用来比较同类现象在不同地区、部门、单位(即不同总体)发展的一般水平,用以说明经济发展的高低和工作质量的好坏。
2、可以用来对统一总体某一现象在不同时期上进行比较,以反映该现象的发展趋势或规律。
如对同一地区人均年收入逐年进行比较来反映该地区居民生活水平的发展趋势或规律。
1、可以作为论断事物的一种数量标准。
2、可以用来分析现象之间的依存关系。
3、可以估算和推算其他有关数字三、平均指标的种类平均指标按其性质可分为静态平均数和动态平均数。
静态平均数反映的是同质总体内各单位某一数量标志在一定时间地点条件的一般水平,动态平均数反映的是某一总体某一指标值在不同时间上的一般水平。
绝对指标是反映在⼀定时空条件下的社会经济现象总规模或绝对⽔平的统计指标。
按反映的时间状态不同,绝对指标可以分为时期指标和时点指标。
相对指标是社会经济现象的两个有联系的指标之⽐。
它能反映现象总体在时间、空间、结构、⽐例以及发展状况等⽅⾯的对⽐关系。
相对指标是绝对指标(总量指标)的派⽣指标,它把对⽐的总量指标的绝对⽔平及其差异进⾏抽象化。
根据对⽐指标的性质差异和相对指标说明问题的特点,可以将相对指标划分为如下⼏种具体形式:结构相对指标、强度相对指标、⽐较相对指标、⽐例相对指标、计划完成相对指标、动态相对指标。
平均指标是指⽤来测定静态分布数列中各单位的标志值集中趋势的指标。
平均指标主要有以下⼏种。
算术平均数(x)是指分布数列中各单位标志值通过⼀定⽅式汇总再与全部单位总数对⽐的指标。
调和平均数(XH)是分布数列中各单位标志值倒数的算术平均数的倒数。
⼏何平均数是指分布数列中n个标志值的连乘积的n次⽅根。
中位数是指分布数列中总体各单位标志值按⼤⼩顺序排列,处在中点位次的标志值。
众数是分布数列中出现频率的标志值。
变异指标主要是指标准差。
标准差,亦称均⽅差,是指分布数列中各单位标志值与其平均数的离差的平⽅的算术平均数的平⽅根。
练习题一、判断题1、按人口平均的粮食产量是一个平均数。
2、算术平均数的大小,只受总体各单位标志值大小的影响。
()3、在特定条件下,加权算术平均数等于简单算术平均数。
()4、众数是总体中出现最多的次数。
()5、权数对算术平均数的影响作用只表现为各组出现次数的多少,与各组次数占总次数的比重无关。
()6、标志变异指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均指标的代表性就越小。
()7、中位数和众数都属于平均数,因此他们数值的大小受到总体内各单位标志值大小的影响。
()8、对任何两个性质相同的变量数列,比较其平均数的代表性,都可以采用标准差指标。
()9、比较两总体平均数的代表性,标准差系数越大,说明平均数的代表性越好。
()10、工人劳动生产率是一个平均数。
()二、单选题1、计算平均指标最常用的方法和最基本的形式是()A中位数 B众数 C调和平均数 D算术平均数2、计算平均指标的基本要求是所要计算的平均指标的总体单位应该是()A大量的 B同质的 C有差异的 D不同总体的3、在标志变异指标中,由总体中最大变量值和最小变量值之差决定的是()A标准差系数 B标准差 C平均差 D全距(极差)4、为了用标准差比较分析两个同类总体平均指标的代表性,其基本的前提条件是()A 两个总体的标准差应相等B 两个总体的平均数应相等C 两个总体的单位数应相等D 两个总体的离差之和应相等5、已知两个同类型企业职工平均工资的标准差分别为4.3和4.7,则两个企业职工平均工资的代表性是()A 甲大于乙B 乙大于甲C 一样的D 无法判断6、甲乙两数列的平均数分别为100和14.5,它们的标准差为12.8和3.7,则()A甲数列平均数的代表性高于乙数列B乙数列平均数的代表性高于甲数列C两数列平均数的代表性相同 D两数列平均数的代表性无法比较7、对于不同水平的总体不能直接用标准差来比较其变动度,这时需分别计算各自的()来比较。
A标准差系数 B平均数 C全距D均方差8、平均数指标反映了同质总体的()。