1996年考研数学二试题及答案
- 格式:doc
- 大小:1.17 MB
- 文档页数:16
1996年普通高等数学招生全国统一考试(全国Ⅱ)理科数学参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题,第1-10题第小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集I N =,集合{}|2,A x x n n N ==∈,{}|4,B x x n n N ==∈,则A .I AB =B .I A B =C .I A B =D .I A B =2.当1a >时,在同一坐标系中,函数x y a -=与logy x =的图像是3.若22sin cos x x >,则x 的取值范围是A .322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C .22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D .322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭4.复数4A.1+ B.1-+ C.1- D.1--5.如果直线,l m 与平面,,αβγ满足:l βγ= ,l ∥α,m α⊂和m γ⊥,那么必有A .a γ⊥且l m ⊥B .αγ⊥且m ∥βC .m ∥β且l m ⊥D .α∥β且αγ⊥ 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是-1B .最大值是1,最小值是12-C .最大值是2,最小值是-2D .最大值是2,最小值是-17.椭圆33cos ,15sin ,x y ϕϕ=+⎧⎨=-+⎩的两个焦点的坐标是A .(3,5)-,(3,3)--B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1)-,(1,1)--8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα- D .22πα--9.将边长为a 的正方形A B C D 沿对角线A C 折起,使得B D a =,则三棱锥D A B C -的体积为A .36aB .312aC12D.31210.等比数列{}n a 的首项11a =-,前n 项和为n S ,若1053132S S =,则lim n n S →∞等于A .23B .23-C .2D .2-11.椭圆的极坐标方程为32cos ρθ=-,则它的短轴上的两个顶点的极坐标是A .(3,0),(1,)πB.)2π,3)2πC .(2,)3π,5(2,)3π D.arctan2,2arctan2π-12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26013.设双曲线22221(0)x y a b ab-=<<的半焦距为c ,直线l 过(,0)a ,(0,)b 两点,已知原点到直线l4,则双曲线的离心率为A .2 B. CD.314.母线长为1,的圆锥体积最大时,其侧面展开图圆心角ϕ等于A.3B.3C. D315.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5-第Ⅱ卷(非选择题共85分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.16.已知圆22670x y x +-+=与抛物线22(0)y px p =>的准线相切,则p = . 17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.tan 20tan 4020tan 40++的值是 .19.如图,正方形A B C D 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线A D 与B F 所成角的余弦值是 .ABDCFE三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)解不等式1log (1)1a x ->.21.(本小题满分11分)已知△ABC 的三个内角A 、B 、C 满足:2A C B +=,11cos cos cos ACB+=-,求cos2A C -的值.22.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (1)求证:1BE EB =;(2)若111AA A B =,求平面1A EC 与平面111A B C 所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(1)的完整证明,交解答(2).(右下图)(1)证明:在截面1A EC 内,过E 作1EG A C ⊥,G 是垂足. ①∵∴E G ⊥侧面1AC ,取A C 的中点F ,连结B F ,F G ,由A B B C =得BF AC ⊥, ②∵∴B F ⊥侧面1AC ,得B F ∥F G ,B F 、F G 确定一个平面,交侧面1AC 于F G . ③∵ ∴B E ∥F G ,四边形B E G F 是平行四边形,B E F G =, ④∵ ∴F G ∥1A A ,△1AA C ∽△F G C ,⑤∵ ∴111122F G A A B B ==,即112B E B B =,故1BE EB =23.(本小题满分12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人A 1ACB1C 1EA 1 A CB B 1C 1EF G均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)? (粮食单产=总产量耕地面积,人均粮食占有量=总产量总人口数24.(本小题满分12分)已知1l 、2l 是过点(0)P 的两条互相垂直的直线,且1l 、2l 与双曲线221y x -=各有两个交点,分别为1A 、1B 和2A 、2B . (1)求1l 的斜率1k 的取值范围;(2)若1122|||A B A B =,求1l 、2l 的方程.25.(本小题满分12分)已知a 、b 、c 是实数,函数2()f x ax bx c =++,()g x ax b =+,当11x -≤≤时,|()|1f x ≤.(1)证明:||1c ≤;(2)证明:当11x -≤≤时,|()|2g x ≤;(3)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13.14.15.16.三、解答题 17.1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B (5)A (6)D (7)B (8)A (9)D (10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32(18)3(19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a x x——2分由此得xa 11>-.因为1-a <0,所以x <0,∴.011<<-x a——5分 (Ⅱ)当0<a <1⎪⎪⎩⎪⎪⎨⎧<->-.11,011a x x由①得,x >1或x <0,由②得,,110a x -<<∴ax -<<111 ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知B =60°,A +C =120°. ——2分 ∵,2260cos 2-=-∴22cos 1cos 1-=+CA将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos2cos2C A C A C A C A -++-=-+ ——6分将21)cos(,2160cos 2cos-=+==+C A C A代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-C A C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分,0)32cos22)(22cos2(=+---C A C A∵,032cos22≠+-C A ∴.022cos2=--C A 从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A C A 则,可得α+= 60A ,α-=60C——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+CAααααs23c211s23c211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα ——7分依题设条件有Bcos 243cos cos 2-=-αα,∵21cos =B ∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1, ——2分②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC , ——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D .∵1EB ∥11112121,CC BB EB CC ==,∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°,∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A ——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°,∴∠CA 1C 1=45°,即所求二面角为45° ——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯PM P x M ——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x——7分∵]22.1)01.01(1.11[10103+⨯-⨯)]01.001.01(22.11.11[1022101103+⨯+⨯+⨯-⨯=C C]1045.122.11.11[103⨯-⨯≈1.4≈ —— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 (24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④ 同理有)13(4,0122222-=∆≠-k k又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k ——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+=2212121)1()13)(1(4--+=kk k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k kk k --+⨯=--+解得21±=k取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l .——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得│c │=│f (0)│≤1,即│c │≤1. ——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数,∴g (-1)≤g (x )≤g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2, g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2; ——5分 当a <0时,g (x )=ax +b 在[-1,1]上是减函数,∴g (-1)≥g (x )≥g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2,由此得│g (x )│≤2; ——7分 当a =0时,g (x )=b ,f (x )=bx +c .∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2.综上得│g (x )│≤2. ——8分证法二:由4)1()1(22--+=x x x ,可得b ax x g +=)()2121(])21()21[(22--++--+=x x b x x a])21()21([])21()21([22c x b x a c x b x a +-+--++++=),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f即│g (x )│≤2. ——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1. ——10分 因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab 即由① 得a =2.所以 f (x )=2x 2-1. ——12分。
1996数学二考研真题及答案理工数学二试题详解及评析一、填空题(1)设y=某+e某2',则y|某=0=.23【答】1.3某223某1【详解】y=某+e1+e2,21'所以y|=.某=03(2)∫(某d某=.【答】2.【详解】∫(某d某=∫11(某+22'1某2d某11)=∫2+∫d某=0+2=2(3)微分方程y+2y+5y=0的通解为.【答】y=e某''(C1co2某+C2in2某).2【详解】特征方程λ+2λ+5=0的解为λ=1±2i,所以通解为y=e 某(C1co2某+C2in2某)31inln1+=.某某(4)lim某inln1+某→∞【答】2.【详解】方法一:令=t,则由洛必达法则知某原式=liminln(1+3t)inln(1+t)t→0t=lim31t→0coln(1+3t)1+3tcoln(1+t)1+t=lim31t→01+3t1+t=2方法二:直接利用三角函数和差化积公式.原式=1+3ln1+ln1+113lim某→∞2某in+某2co某2ln+2=lim某1某→∞2某in+12=lim某→∞2某in某+1 =2(5)由曲线y=某+1某,某=2及y=2所围图形的面积S=【答】ln212.【详解】S=∫2某+11某2d某=122某+ln某2某2|11=ln22二、选择题(1)设当某→0时,e某(a某2+b某+1)是比某2高阶的无穷小,则(A)a=2,b=1.(B)a=1,b=1(C)a=12,b=1(D)a=1,b=1【答】应选(A)【详解】方法一:由于某→0时,e某=1+某+1某2+o(某22)】【则由lim某→0e(a某+b某+1)某22某→0某=0=lim(1b)某+a某2+o(某2)22某必有1b=0,解得a=方法二:因lim某→0a=02,b=1.2e某2a某b,=lim某→02某e某(a某2+b某+1)某2某→0某→0又lim2某=0,lime2a某b=1b必有b=1,从而(某)e某2a某be某2a原式=lim=lim=12a=0,某→0某→02某2所以a=1.22(2)设函数f(某)在区间(δ,δ)内有定义,若当某∈(δ,δ)时,恒有f(某)≤某,则某=0必是f(某)(A)间断点.(B)连续而不可导的点(C)可导的点,且f'(0)=0(D)可导的点,f'(0)≠0【】【答】应选(C).【详解】由定义lim某→0f(某)f(0)f(某)f(某)=lim=lim2某=0,某→0某→0某某某由题设必有f(0)=0因此f'(0)=0(3)设f(某)处处可导,则(A)当limf(某)=∞,必有limf某→∞'(某)=∞,(B)当limf某→∞'f(某)=∞,(某)=∞,,必有某lim→∞'某→+∞(C)当limf(某)=+∞,必有limf某→+∞(某)=+∞,(D)当limf某→+∞'f(某)=+∞,(某)=+∞,,必有某lim→+∞【】【答】应选(D).【详解】方法一:利用举反例排除不正确选项.令f(某)=某,则limf'、(C)均不正确.(某)=±∞,但f'(某)=1,可见(A)因而只有(D)是正确选项.方法二:若limf某→+∞'(某)=+∞,则存在M>0及某0>0,当某>某0时,f'(某)>M于是当某>某0时,有f(某)f(某0)=f从而有'(ξ)(某某0)>M(某某0)f(某)>f(某0)+M(某某0)→+∞(某→+∞)(4)在区间(∞,+∞)内,方程某+某co某=0(A)无实根.(B)有且仅有一个实根(C)有且仅有两个实根(D)有无穷多个实根【】【答】应选(C)【详解】令f(某)=某+某co某,由于f(某)=f(某),故f(某)为偶函数,因此只需考虑f(某)=0在(0,+∞)内的实根情况.当某≥0时,f(某)=某+某co某,4121412141213114f(某)=某+某2+in某42'可见,当某∈0,ππ'时,在f某>0,f某()()0,内单调增加,且f(0)=1,f22π>1,2因此f(某)=0在0,当某≥π上有唯一实根;2π2时,f(某)>0,故在(0,+∞)上f(某)仅存在唯一实根根据f(某)关于y轴对称的性质,f(某)=0在(∞,+∞)上有且仅有两个实根.(5)设f(某),g(某)在区间[a,b]上连续,且g(某)<f(某)<m,(m 为常数),由曲线y=g(某),y=f(某),某=a及某=b所围成平面图形绕直线y=m旋转而成的旋转体积为(A)(B)(C)(D)∫∫∫babπ2mf(某)+g(某)f(某)g(某)d某,π2mf(某)g(某)f(某)g(某)d某,πmf(某)+g(某)f(某)g(某)d某,πmf(某)g(某)f(某)g(某)d某,【】abab∫a【答】应选(B)【详解】因为dV=πmg(某)()22π(mf(某))d某V=∫πmg(某)d某∫aπmf(某)d某a=∫π2mf(某)g(某)f(某)g(某)d 某a所以正确选项应为(B)三、计算bb2b2∫ln0.【详解】方法一:原式=∫ln2e=+∫ln2ln2某0=+lne某+2=+ln22((|ln20方法二:令e某=int,则d某=cotdt,intπππcot1dt=π2dtπ2intdtint6int6π原式=π62=ln(cct+cott)π6=ln2+22(方法三:原式==t,则t21=+=1dt2201t1t=(2)求+ln2+2(d某∫1+in某【详解】方法一:原式=1in某1某tan=+C∫co2tco某某d某=∫原式=∫22某某某co+in1+tanec2某d1+tan22=2∫=+C2某某1+tan1tan+22方法二:某=tf(u2)du∫d2y0(3)设,其中f(u)具有二阶导数,且f(u)≠0,求2.22d某y=f(t)【详阶】因为d某=f(t2)dtdy=4tf(t2)f'(t2),dt所以dydy==4tf'(t2),d某dtdyddy1==2d某dtd某dt(4)求函数f(某)=2'22''2+fttft42()()ft21某在某=0点处带拉格朗日型余项的n阶泰勒展开式.1+某【详解】f(某)在在某=0点处带拉格朗日型余项的n阶泰勒展开式为:f(某)=f(0)+f'(0)某+1''1n1n+1f(0)某2+"+f()(0)某n+f()(θ某)某n+1n!2!n+1!其中0<θ<1.可见,关键是求出f(某)在在某=0点的k阶导数f(k)(0),k=0,1,2,",n+1由于f(某)=21,1+某(1)2k!k=1,2,",n+1kf()(某)=)k+1((1+某)所以f(某)=12某+2某+"+(1)2某+(1)2nnn+12某n+1(1+θ某)n+2(0<θ<1)(5)求微分方程y+y=某的通解.【详解】对应的齐次方程的特征方程为:λ+λ=0解得λ=0,λ=1故齐次方程的通解为y=C1+C2e设非齐次方程的特解为:某a某+b某+c,代入原方程,得a=某''22(2),b=1,c=2,3因此,原方程得通解为y=某3某2+2某+C1+C2e某3(6)设有一正椭圆柱体,其底面得长、短分别为2a,2b,用过此柱体底面得短轴与底面成α角π<<0α,求此楔形体的体积V.的平面截此柱体,得一楔形体(如图)2【详解】方法一:底面椭圆的方程为:某2y2+=1,以垂直于y轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边为a2b2令一直角边长为α,故截面面积为a2y2S(y)=12tanα2b楔形体积为V=2∫方法二:ba2y22a2btanα12tanαdy=2b3某2y2底面椭圆的方程为2+2=1,以垂直于某轴平行平面截此楔形体所得的截面为矩形,ab其一边长为2y=2令一边长为某tanα,故截面面积S(某)=2α楔形体的体积V=∫a2a2b2αd某=tanα3四、计算不定积分【详解】方法一:arctan某∫某21+某2arctan某arctan某arctan某=∫某21+某2∫某2∫1+某2==arctan某112+∫某arctan()某某1+某22arctan某111212 +∫2d某某arctan()某2某1+某22arctan某11某22(arctan某)+ln=+C某221+某2方法二:令某=tant,则原式=2cctt1)dt=(∫=2arctan某)+C=12某2,某<13五、设函数f(某)=某,1≤某≤212某16,某>2(1)写出f(某)的反函数g(某)的表达式;(2)g(某)是否有间断点、不可导点,若有,指出这些点.【详解】(1)由题设,f(某)的反函数为某<1g(某)=1≤某≤8某+16,某>812(2)由于函数f(某)在(∞,+∞)内单调增加且连续,故反函数g(某)在在(∞,+∞)内单调增加且连续,没有间断点.由于f'(0)=0,且f(0)=0,故某=0是g(某)的不可导点,f(1)=1和f(2)=8是g(某)的两个可能的不可导点,由于f'(10)=4,f'(1+0)=3,所以某=1是f(某)的不可导点,因此g(某)在f(1)=1处不可导;又f2(1+0)=f'(20)=12,故f(某)在某=2处可导,因此g(某)在某=f(2)=8处可导.六、设函数y=y(某)由方程2y2y+2某y某=1所确定,试求y=y(某)的驻点,并判别322它是否为极值点.【详解】对原方程两边求导,得3y2y'2yy'+某y'+y某=0,令y=0,得y=某,代入原方程,有2某某1=0从而解得唯一的驻点某=1.在(某)式两边对某求导得3y2y+某y+2(3y1)y+2y1=0,2'''2'32()因此y''|(1,1)=>02故驻点某=1是y=y(某)的极小点.七、设f(某)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f存在ξ∈(a,b)和η∈(a,b),使f【详解】方法一(用反证法)若不存在ξ∈(a,b),使f'(a)f'(b)>0,证明:(ξ)=0及f''(η)=0.(ξ)=0,则在区间(a,b)内恒有f(某)>0或f(某)<0,不妨设f(某)>0(对f(某)<0,类似可证),则f(某)f(b)f(b)=lim=lim某→b某→b某bf(某)f(a)f'(a)=lim+=lim+某→a某→a某a'f(某)≤0,某bf(某)≥0某a从而f'(a)f'(b)≤0,这与已知条件矛盾,即在(a,b)内至少存在一点ξ,使f(ξ)=0(ξ)=f(b)及罗尔定理,知存在η1∈(a,ξ)和η2∈(ξ,b),使再由f(a)=ff'(η1)=f'(η2)=0.'又在区间[η1,η2]上,对f方法二:不妨设f'(某)应用罗尔定理,知存在η∈(η1,η2)(a,b),使f''(η)=0.,即(a)>0,f'(b)>0(对f'(a)<0,f'(b)<0时类似可证)lim+某→af(某)f(某)>0,lim>0,某→b某b某a由极限的保号性,存在某1∈(a,a+δ1)和某2∈(bδ2,b)使得f(某1)>0及f(某2)<0,其中δ1,δ2为充分小的正数,显然某1<某2在区间[某1,某2]上应用介值定理知,存在ξ∈(某1,某2)(a,b)使f以下证明类似方法一.八、设f(某)为连续函数,'y+ay=f(某)的解f(某),其中a是正常数;(1)求初值问题=0y|某=0ka某(2)若f(某)≤k(k为常数),证明:当某≥0时,有y(某)≤(1e).a(ξ)=0【详解】(1)原方程的通解为y(某)=ea某f(某)ea某d某+C=ea某F(某)+C,∫其中F(某)是f(某)e的任一原函数a某由y(0)=0,得C=F(0)故y(某)=ea某a某atF某F0=eftedt,()()()∫0at某或者在原方程的两端同乘以e,得y'ea某+ayea某=f(某)ea某从而ye所以ye(a某')=f(某)e某0a某a某=∫f(t)eatdt,a某或y(某)=e(2)∫f(t)e某atdt,f(某)≤ea某∫f(t)eatdt≤kea某∫eatdt 某某ka某a某e(e1)ak=(1ea某)(某≥0)a≤。
1996年普通高等数学招生全国统一考试(全国Ⅱ)文科数学参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题,第1-10题第小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7I =,集合{}1,3,5,7A =,{}3,5B =,则A .I AB =B .I A B =C .I A B =D .I A B =2.当1a >时,在同一坐标系中,函数xy a -=与logy x =的图像是3.若22sin cos x x >,则x 的取值范围是A .322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C .22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D .322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭44等于A .1B .1-C .1D .1-5.6名同学排成一排,其中甲、乙两必须排在一起的不同排法有A .720种B .360种C .240种D .120种6.已知α是第三象限角,24sin 25α=-,则tan 2α= A .43B .34 C .34- D .43-7.如果直线,l m 与平面,,αβγ满足:l βγ= ,l ∥α,m α⊂和m γ⊥,那么必有A .a γ⊥且l m ⊥B .αγ⊥且m ∥βC .m ∥β且l m ⊥D .α∥β且αγ⊥8.当22x ππ-≤≤时,函数()sin f x x x =的A .最大值是1,最小值是-1B .最大值是1,最小值是12-C .最大值是2,最小值是-2D .最大值是2,最小值是-18.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2π B .2π-C .22πα- D .22πα--9.中心在原点,准线方程为4x =±,离心率为12的椭圆方程是 A .22143x y += B .22134x y += C .2214x y += D .2214y x += 10.圆锥母线长为1,侧面展开图圆心角为240°,该圆锥的体积A B .881π C D .1081π11.椭圆222515091890x x y y -+++=的两个焦点坐标是A .(3,5)-,(3,3)--B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1)-,(1,1)--12.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .36aB .312aCD13.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26014.设双曲线22221(0)x y a b a b-=<<的半焦距为c ,直线l 过(,0)a ,(0,)b 两点,已知原点到直线l,则双曲线的离心率为 A .2BCD15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5-第Ⅱ卷(非选择题共85分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.16.已知点(2,3)-与抛物线22(0)y px p =>的焦点的距离是5,则p = .17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.tan 20tan 4020tan 40+的值是 . 19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是 .三、解答题:本大题共6小题,共69分,解答应写出文字说明,证明过程或演算步骤.ABDCF EA 1AC BB 1C 1E F20.(本小题满分11分)解不等式log (1)1a x a +->.21.(本小题满分12分)设等比数列{}n a 的前n 项和为n S .若3692S S S +=,求数列的公比q . 22.(本小题满分11分)已知△ABC 的三个内角A、B 、C 满足:2A C B +=,11cos cos cos A C B+=-,求cos 2A C -的值. 23.(本小题满分12分)【注意:本题的要求是,参照标①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(1)证明的全过程,并解答(2).】如图,在正三棱柱111ABC A B C -中,13AA AB a ==,E ,F 分别是1BB ,1CC 上的点,且BE a =,2CF a =.(1)求证:面AEF ⊥面ACF ; (2)求三棱锥1A AEF -的体积.(1)证明:在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.①∵BE a =,2CF a =,BE ∥CF ,延长FE 与CB 延长线交于D ,连结AD .∴△DBE ∽△DCF ∴DB BEDE CF= ② ∴DB AB =.③ ∴DA AC ⊥④ ∴FA AD ⊥⑤ ∴面AEF ⊥面ACF .24.(本小题满分12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?A 1AC BB 1C 1E FD(粮食单产=总产量耕地面积,人均粮食占有量=总产量总人口数25.(本小题满分12分)已知1l 、2l 是过点(P 的两条互相垂直的直线,且1l 、2l 与双曲线221y x -=各有两个交点,分别为1A 、1B 和2A 、2B . (1)求1l 的斜率1k 的取值范围;(2)若1A 恰 是双曲线的一个顶点,求22||A B 的值.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16.三、解答题 17.1996年普通高等学校招生全国统一考试数学试题(文史类)参考解答及评分标准说明:一.答指出了每题要考查主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准相应的评分细则.二.对计算题,当考生的解答某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答较错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得累加数. 四.只给整数分数,选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算,第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B (5)C (6)D (7)A (8)D (9)A (10)C (11)B (12)D (13)C (14)A (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)4 (17)32 (18)3 (19)42 三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力,满分11分. 解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.1,01a a x a x 解得 x >2a -1. (Ⅱ)当0<a <1时,原不等式等价于不等式组:⎩⎨⎧<-+>-+.101a a x a x 解得 a -1<x <2a -1综上,当a >1时,不等式的解集为{x |x >2a -1};当0<a <1时,不等式的解集为{x |a -1<x <2a -1}.(21)本小题主要考查等比数列的基础知识,逻辑推理能力和运算能力.满分12分.解:若q =1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.但a 1≠0,即得S 3+S 6≠2S 9,与题设矛盾,q ≠1.又依题意S 3+S 6=2S 9可得qq a q q a q q a --=--+--1)1(21)1(1)1(916131整理得q 3(2q 6-q 3-1)=0. 由q ≠0得方程 2q 6-q 3-1=0.(2q 3+1)(q 3-1)=0, ∵ q ≠1,q 3-1≠0,∴ 2q 3+1=0∴ q =-243(22)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算能力.满分12分. 解法一:由题设条件知B =60º,A +C =120º.∵ -︒60cos 2=-22∴ C A cos 1cos 1+=-22 将上式化为 cos A +cos C =-22 cos A cos C利用和差化积及积化和差公式,上式可化为2cos2C A +cos 2CA -=-2[cos(A +C)+cos(A -C)] 将cos 2)(C A +=cos60º=21,cos(A +C )= 21代入上式得cos 2)(C A -=22-2cos(A -C)cos(A -C)=2cos 22)(C A --1代入上式并整理得42cos 22)(C A -+2cos 2)(C A --32=0,(2cos2C A --2)(22cos 2CA -+3)=0. ∵ 22cos 2C A -+3≠0,∴ 2cos 2C A --2=0,∴ cos 2C A -=22.解法二:由题设条件知 B=60º,A +C =120º.设α=2C A - 则2C A -=2α,可得A=60º+α,C=60º-α 所以)60cos(1)60cos(1cos 1cos 1o o αα-++=+C A =ααsin 23cos 211-+ααsin 23cos 211+=ααα22sin 43cos 41cos -=43cos cos 2-αα依题得B cos 243cos cos 2-=-α,∵ cos B =21,∴ 2243cos cos 2-=-αα. 整理得42cos 2α+2cos α-32=0, (2cos α-2)(22cos α+3)=0,∵ 22cos α+3≠0,∴ 2cos α-2=0从而得cos 222=-C A . (23)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力运算能力.满分12分.(Ⅰ)②∵BE :CF =1:2 ∴ DC =2BD ,∴ DB =BC ,③∵△ABD 是等腰三角形,且∠ABD =120º,∴∠BAD =30º,∴∠CAD =90º, ④∵FC ⊥面ACD , ∴CA 是F A 在面ACD 上射影,且CA ⊥AD , ⑤∵F A ∩AC =A ,DA ⊥面ACF ,DA ⊂面ADF ⑥∴面ADF ⊥面ACF . (Ⅱ)解: ∵ F AA E AEF A V V 11--=.在面A 1B 1C 1内作B 1G ⊥A 1C 1,垂足为G .B 1G=23a 面A 1B 1C 1⊥面A 1 C ∵ B 1G ⊥面A 1 C ,∵ E ∈B B 1,而B B 1∥面A 1 C ,∴ 三棱柱E -AA 1F 的高为23a F AA S 1∆=AA 1·2AC =232a ∴43311a V V F AA E AEF A ==-- (24)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公项,又设该地区现有人口为p 人,粮食单产为M 吨/公顷.依题意得不等式()()()()%10110%111010%2214104+⨯⨯≥+⨯-⨯+⨯PM P xM化简得x ≤103×[1-22.1)01.01(1.110+⨯].∵ ()⎥⎦⎤⎢⎣⎡+⨯-⨯22.101.011.1110103=103×[1-22.11.1×(1+110C ×0.01+210C ×0.012+…)] ≈103×[1-22.11.1×1.1045]≈4.1 9分∴ x ≤4(公顷)答:按规则该地区耕地平均每年至多只能减少4公顷.(25)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:依题设:l 1、l 2都存在,因为l 1过点P ()02,-且与双曲线有两个交点,故方程组 y =k 1(x +2)(k 1≠0),y 2-x 2=1 ①有两个不同的解,在方程组①中消去y ,整理得(21k -1)x 2+2221k x +221k -1=0 ② 若(21k -1)=0,则方程①只有一个解,则l 1与以曲线只有一个交点,与题设矛盾. 故(21k -1) ≠0,即|k 1|≠1.方程②的判别式为 △ 1=(2221k )2-4(21k -1)(221k -1)=4(321k -1)设l 2的斜率k 2,因为l 2过点P ()02,-且与双曲线有两个交点,故方程组 y =k 2(x +2)(k 2≠0),y 2-x 2=1 ③有两个不同的解,在方程组③中消去y ,整理得(22k -1)x 2+2222k x +222k -1=0 ④ 同理有(22k -1) ≠0,△2=4(322k -1) 又因为l 1⊥l 2,所以有k 1·k 2=-1 于是,l 1、l 2与双曲线各有两个交点,等价于 321k -1>0, 322k -1>0, k 1·k 2=-1, |k 1|≠1. 解得3||331<<k , |k 1| ≠1.∴ k 1∈(-3,-1) ∪(-1,-33)∪(33,1)∪(1,3) (Ⅱ)双曲线y 2-x 2=1的顶点(0,1)、(0,-1).取A 1(0,1)时,有 k 1(0+2)=1,解得k 1=22.从而k 2=11k -=-2. 将k 2=-2代入方程④得 x 2+42x +3=0 ⑤记l 2与双曲线的两交点为A 2(x 1,y 1)、B 2(x 2,y 2),则|A2B2|2=(x1-x2)2+(y1-y2)2=3(x1-x2)2=3[(x1+x2)2-4x1x2].由⑤知x1+x2=-42x1x2=3∴| A2 B2|2=60,| A2 B2|=215当取A1(0,-1)时,由双曲线y2-x2=1关于x轴的对称性,知| A2 B2|=215所以l1过双曲线的一个顶点时,|A2 B2|=215。
1996年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设2lim()8xx x a x a→∞+=-,则a = ln2 .(2) 设一平面经过原点及点)2,3,6(-,且与平面824=+-z y x 垂直,则此平面方程为2x +2y –3z = 0 .(3) 微分方程''2'2xy y y e -+=的通解为)1sin cos (21++=x c x c e y x(4) 函数)ln(22 +zy x u +=)在A (1,0,1)处沿点A 指向点B (3,-2,2)方向的方向导数为12.(5) 设A 是4 ⨯3矩阵,且A 的秩r(A)=2,而B = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-301020201,则r(AB) = 2 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 已知2)()(y x ydydx ay x +++ 为某函数的全微分,则a 等于 (D)(A) –1. (B) 0 . (C) 1 . (D) 2.(2) 设()x f 有二阶连续导数, 且(0)0f '=,0()lim 1x f x x→''=,则 (B)(A) )0(f 是()x f 的极大值 (B) )0(f 是()x f 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) )0(f 不是()x f 的极值, (0,(0))f 也不是曲线y =()x f 的拐点.(3) 设0n a >(1,2,)n = ,且∑∞=1n n a 收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑ (A)(A) 绝对收敛 (B) 条件收敛 (C ) 发散 (D) 敛散性与λ有关.(4) 设()x f 有连续的导数,(0)0f =,)0('f ≠0,F ()x =,)()(202dt t f t x x-⎰且当0→x 时,)('x F 与k x 同阶无穷小,则k 等于 (C)(A) 1. (B )2. (C) 3. (D) 4.(5) 四阶行列式 4433221100000000a b a b b a b a 的值等于 (D)(A) 4321a a a a -4321b b b b (B) 4321a a a a +4321b b b b (C)(2121b b a a -)(4343b b a a -) (D) (3232b b a a -)(4141b b a a -) 三、(本题共2小题,每小题5分,满分10分) (1) 求心形线)cos 1(θ+=a r 的全长,其中0>a .解:()sin r a θθ'=-,……2分22()ds r r d θ'=+22(1cos )(sin )2|cos |2a d a d θθθθθ=++-=……3分 利用对称性,所求心形线的全长0022cos 8sin822s a d a a ππθθθ===⎰. ……5分(2) 设101=x ,n n x x +=+61(n=1,2,…),试证数列{}n x 极限存在,并求此极限.证:由110x =及216164x x =+==,知12x x >.假设对某正整数k 有1k k x x +>,则有11266k k k k x x x x +++=+>+=,故由归纳法知,对一切正整数n ,都有1n n x x +>.即{}n x 为单调减少数列. ……3分又由16n n x x +=+,显见0(1,2,)n x n >= ,即{}n x 有下界. 根据极限存在准则,知lim n n x →∞存在.……4分令lim n n x a →∞=,对16n n x x +=+两边取极限,得6a a =+从而260a a --=.因此32a a ==-或.因为0(1,2,)n x n >= ,所以0a ≥.舍去2a =-,故极限值3a =. ……5分四、(本题共2小题,每小题6分,满分12分)(1) 计算曲面积分⎰⎰++Szdxdy dydz z x )(2,其中S 为有向曲面22y x z +=,(10≤≤z ),其法向量与z 轴正向的夹角为锐角.解一: 以1S 表示法向量指向z 轴负向的有向平面221(1)z x y =+≤,D 为1S 在XOY平面上的投影区域,则1(2)()S Dx z dxdy zdxdy dxdy π++=-=-⎰⎰⎰⎰.……2分记Ω表示由S 和1S 所围的空间区域,则由高斯公式知1(2)(21)S S x z dxdy zdxdy dv +Ω++=-+⎰⎰⎰⎰⎰212421113000336()6242r r r d rdr dz r r dr ππθππ⎡⎤=-=--=--=-⎢⎥⎣⎦⎰⎰⎰⎰. ……5分 因此13(2)()22S x z dxdy zdxdy πππ++=---=-⎰⎰. ……6分解二: 以,yz xy D D 表示S 在,YOZ XOY 平面平面上的投影区域,则(2)Sx z dxdy zdxdy ++⎰⎰2222(2)()(2)()yzyzxyD D D z y z dydz z y z dydz x y dxdy =--+--++⎰⎰⎰⎰⎰⎰2224()yzxyD D z y dydz x y dxdy =--++⎰⎰⎰⎰……2分其中3111222214(1)3yzyD z y dydz dy z y dz y dy--=-=-⎰⎰⎰4204431sin cos 334224y t tdt πππ==⋅⋅⋅=⎰;21222()2xyD x y dxdy d r rdr ππθ+=⋅=⎰⎰⎰⎰,……5分所以1(2) 4.222S x z dxdy zdxdy πππ++=-+=-⎰⎰. ……6分(2) 设变换⎩⎨⎧+=-=ay x v y x u 2 可把方程0622222=∂∂-∂∂∂+∂∂y z y x z x x 简化为02=∂∂∂v u z,求常数a .解:,2z z z z z z a x u v y u v∂∂∂∂∂∂=+=-+∂∂∂∂∂∂.……1分 22222222z z z z x u u v v ∂∂∂∂=++∂∂∂∂∂,2222222(-2)zz z z a a x yu u v v ∂∂∂∂=-++∂∂∂∂∂∂, 2222222244z z z z a a y u u v v ∂∂∂∂=-+∂∂∂∂∂. ……4分将上述结果代入原方程,经整理后得2222(105)(6)0z z a a a u v v∂∂+++-=∂∂∂. 依题意知a 应满足260,1050a a a +-=+≠且,解之得3a =.……6分五、(本题满分7分) 求级数∑∞=-222)1(1n nn 的和.解:设22()(||1)1nn x S x x n ∞==<-∑,……1分则2111()()211n n S x x n n ∞==--+∑,其中122111111n n n n n n x x x x x n n n ∞∞∞-=====--∑∑∑. 23111(0)1n nn n x x x n x n ∞∞===≠+∑∑.……3分设11()n n g x x n∞==∑,则11111()(||1)1n n n n g x x x x n x ∞∞-=='⎛⎫'===< ⎪-⎝⎭∑∑. 于是00()()(0)()ln(1)(||1)1x x dtg x g x g g t dt x x t'=-===--<-⎰⎰.从而21()[ln(1)][ln(1)]222x x S x x x x x =-------221ln(1)(||10)42x x x x x x+-=+-<≠且.……5分 因此221153ln 2(1)2284nn s n ∞=⎛⎫==- ⎪-⎝⎭∑. ……7分六、(本题满分7分)设对任意0>x ,曲线)(x f y =上点))(,(x f x 处的切线在y 轴上的截距等于⎰xdt t f x0)(1,求)(x f 的一般表达式. 解:曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-. ……1分 令0X =,得截距()()Y f x xf x '=-.……3分由题意,知01()()()xf t dt f x xf x x '=-⎰. 即0()[()()]x f t dt x f x xf x '=-⎰.上式对x 求导,化简得()()0xf x f x ''+=, ……5分即('())0d xf x dx=,积分得1'()x f x C =. 因此12()ln f x C x C =+(其中12,C C 为任意常数).……7分七、(本题满分8分)设)(x f 在[]1,0上具有二阶导数,且满足条件a x f ≤)(,b x f ≤)('',其中b a ,都是非负常数,c 是()0,1内的任意一点.证明22)('b a c f +≤.证:2()()()()()(),(*)2!f x c f x f c f c x c ξ''-'=+-+其中(),01c x c ξθθ=+-<<. ……2分在(*)式中令0x =,则有211()(0)(0)()()(0),01;2!f c f f c f c c c ξξ''-'=+-+<<<在(*)式中令1x =,则有222()(1)(1)()()(1),01;2!f c f f c f c c c ξξ''-'=+-+<<<上述两式相减得22211(1)(0)()()(1)()2!f f f c f c f c ξξ'''''⎡⎤-=+--⎣⎦. ……5分 于是22211|()|(1)(0)()(1)()2!f c f f f c f c ξξ'''''⎡⎤=----⎣⎦ 222111(1)|(0)||()|(1)|()|2!2!f f f c f c ξξ''''≤++-+22[(1)]2ba a c c ≤++-+. ……7分又因22(0,1),(1)1c c c ∈-+≤,故|()|22bf c a '≤+. ……8分八、(本题满分6分)设T A I ξξ=-,其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明: (1) A A =2的充要条件是1=ξξT ;(2) 当1=ξξT 时,A 是不可逆矩阵. 证:(1) 2()()2T T T T T A I I I ξξξξξξξξξξ=--=-+(2)(2)T T T T I I ξξξξξξξξ=--=--.A A =2即(2)T T T I I ξξξξξξ--=-,亦即()T T I ξξξξ-=O ,因为ξ是非零列向量,0T ξξ≠,故A A =2的充要条件是10T ξξ-=,即1T ξξ=.……3分 (2) 用反证法:当1T ξξ=时A A =2.若A 可逆,则有121A A A A --=,从而A I =.这与T A I I ξξ=-≠矛盾,故A 是不可逆矩阵.……6分九、(本题满分8分)已知二次型32312132132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2. (1) 求参数c 及此二次型对应矩阵的特征值; (2) 指出方程123(,)4f x x x =表示何种二次曲面.解:(1) 此二次型对应矩阵为A =51315333c -⎛⎫ ⎪-- ⎪ ⎪-⎝⎭, ……1分因()2r A =,故513||153033A c-=--=-,解得3c =.容易验证此时A 的秩的确是2. ……3分这时,||(4)(9)I A λλλλ-=--,故所求特征值为0,4,9λλλ===.……6分 (2) 由上述特征值可知,123(,,)1f x x x =表示椭圆柱面. ……8分十、填空题 (本题共2小题,每小题3分,满分6分)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是37.(2) 设,ξη是两个相互独立且均服从正态分布2))2N 的随机变量,则随机变量||ξη- 的数学期望(||)E ξη-=2π.十一、(本题满分6分)设,ξη是相互独立且服从同一分布的随机变量,已知ξ的分布律为1(),1,2,33P i i ξ===. 又设max{,},min{,}X Y ξηξη==.(1) 写出二维随机变量(,)X Y 发分布律;(2) 求随机变量X 的数学期望.解:(1)Y X1 2 3 11 / 9 0 02 2 / 9 1 / 9 032 / 92 / 91 / 9……4分(2) 13522()1239999E X =⋅+⋅+⋅=……6分 注:写对分布律中的1个数得1分,2~4个得2分,5~7个得3分,8~9个得4分.数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题共2小题,每小题5分,满分10分) (1) 计算积分dxdy y x D⎰⎰+22,其中D=(){}x y x x y y x 2,0,22≤+≤≤ .解:原式2cos 40d r rdr πθθ=⋅⎰⎰3408cos 3d πθθ=⎰……3分 42340088110(1sin )sin sin sin 23339d ππθθθθ⎡⎤=-=-=⎢⎥⎣⎦⎰……5分(2) 【 同数学一 第三、(1)题 】 (3) 【 同数学一 第三、(2)题 】四 ~ 七、【 同数学一 第四 ~ 七题 】 八、(本题共2小题,每小题6分,满分12分)(1) 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系.解:110011100111100001010011100010⎛⎫⎛⎫⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭……3分解得基础解系为12(1,0,1,0,1),(1,1,0,0,0)ξξ=--=-. ……6分(2) 【 同数学一 第八题 】九、(本题满分8分)【 同数学一 第九题 】数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 设322)(x e x y -+=, 则==|'x y 1/3.(2)=-+⎰-1122)1(dx x x 2 .(3) 052=+'+''y y y 的通解为)2sin 2cos (21x c x c e y x +=-. (4) =+-+∞→)]11ln(sin )31ln([sin lim xx x x 2 .(5) 由曲线1y x x =+,2x =及2y =所围图形的面积S =1ln 22-. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设当0→x 时,)1(2++-bx ax e x 是比2x 高阶的无穷小,则 (A )(A) 121==b a , (B) 11==b a , (C) 121=-=b a , (D) 11=-=b a ,. (2) 设函数()f x 在区间),(δδ-内有定义,若当),(δδ-∈x 时,恒有2()f x x ≤,则0x = 必是()f x 的 (C )(A) 间断点(B) 连续而不可导的点 (C) 可导的点,且(0)0f '=.(D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 (D )(A) 当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞.(B) 当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞.(C) 当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞.(D) 当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞.(4) 在区间),(∞-∞内,方程 0cos 2141=-+x x x(C )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有二个实根 (D) 有无穷多个实根 (5) 设()()f x g x 、在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,()y f x =,x a =及x b =所围成图形绕直线y m =旋转而成的旋转体体积为 (B )(A)⎰-+-badx x g x f x g x f m .)]()()][()(2[π(B)⎰---ba dx x g x f x g x f m .)]()()][()(2[π (C)⎰-+-b adx x g x f x g x f m .)]()()][()([π (D)⎰---badx x g x f x g x f m .)]()()][()([π三、(本题共6小题,每小题5分,满分30分) (1) 计算⎰--2ln 021dx e x解一:原式2ln 2ln 22220111x x xxee dx ee e --=-=--+-⎰⎰……3分 ln 22033ln(1)ln(23)x x e e --=-=++.……5分解二:令sin xet -=,则cos sin tdx dt t-=, 原式2222666cos 1sin sin sin t dt dt tdt t t ππππππ==-⎰⎰⎰……3分 2633ln(csc cot )ln(23)t t ππ=-+=+-. ……5分(2) 求⎰+x dxsin 1解一:原式21sin cos x dx x-=⎛⎜⎠ ……2分 1tan cos x C x=-+.……5分解二:原式222sec 2(cos sin )(1tan )222x dxdx x x x ==++⎛⎛⎜⎜⎜⎜⎜⎠⎠ ……3分2(1tan )222(1tan )1tan 22x d C x x+-==+++⎛⎜⎜⎜⎠.……5分(3) 设2022()[()]tx f u duy f t ⎧=⎪⎨⎪=⎩⎰,其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .解:222(),4()(),dx dy f t tf t f t dt dt'==所以22224()()4()()dydy tf t f t dt tf t dx dx f t dt''===. ……2分 22222214[()2()]()d y d dy f t t f t dx dx dt dx f t dt '''+⎛⎫== ⎪⎝⎭. ……5分 (4) 求函数()f x =xx+-11在0x =点处带拉格朗日型余项的n 阶泰勒展开式.解:2()11f x x=-+,()1(1)2!()(1,2,,1)(1)k k k k f x k n x +-⋅==++ . ……3分 所以12122()122(1)2(1)(1)n n n n n x f x x x x ξ+++=-+++-+-+ (ξ在0与x 之间).……5分 (5) 求微分方程2'''x y y =+的通解.解一:对应的齐次方程的特征方程为20λλ+=,解之得0,1λλ==-,故齐次方程的通解为12xy C C e -=+.……2分设非齐次方程的特解为2()x ax bx C ++,代入原方程得1,1,23a b c ==-=. 因此,原方程的通解为3212123x y x x x C C e -=-+++. ……5分 解二:令p y '=,代入原方程得2p p x '+=,……2分故()()220022xxxxx x p ex e dx C e x exe e C --=+=-++⎰.再积分得到20(22)xy x x c e dx -=-++⎰3212123x x x x C C e -=-+++. ……5分 解三:原方程为2()y y x ''+=,两边积分得3013y y x C '+=+. ……3分30213x x y e x C e dx C -⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦⎛⎜⎠()320213663x x x x x x e x e x e xe e C e C -⎡⎤=-+-++⎢⎥⎣⎦3212123x x x x C C e -=-+++. ……5分 (6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴且与底面成α解(20πα<<)的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.解一:底面椭圆的方程为22221x y a +=,以垂直于y 轴的平行平面截此楔形体所得的截面为直角三角形,其一直角边长为221y a b -,另一直角边长为221y a bα-,故截面面积222()1tan 2a y S y b α⎛⎫=- ⎪⎝⎭,……3分 楔形体的体积为22220221tan tan 23ba y a bV dy b αα⎛⎫=-=⎪⎝⎭⎰. ……5分解二:底面椭圆的方程为22221x y +=,以垂直于x 轴的平行平面截此楔形体所得的截面为矩形,其一边长为22221x y b a=-tan x α,故截面面积22()21x S x bx aα=-,……3分楔形体的体积为32222222002221tan 1tan 33ab x a x a b V dx b a a ααα⎡⎤⎛⎫-⎢⎥=-=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎰. ……5分 四、(本题满分8分) 计算不定积分⎰+.)1(22dx x x arctgx解一:原式22arctan arctan 1x x dx dx x x =-+⎛⎛⎜⎜⎠⎠……2分 22arctan 1(arctan )(1)2x dx x x x x =-+-+⎛⎜⎠ ……4分 2222arctan 1111()(arctan )212x d x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎛⎜⎠ ……6分 222arctan 11(arctan )ln 221x x x C x x=--+++. ……8分解二:令tan x t =,则原式2(csc 1)t t dt -⎰=……2分 2cos 1cot sin 2t t t dt t t =-+-⎰……4分21cot ln |sin |2t t t t C =-+-+……6分 22arctan 1(arctan )21x x C x x =-+++.……8分五、(本题满分8分)设函数⎪⎩⎪⎨⎧>-≤≤--<-=.2,1612,21,,1,21)(32x x x x x x x f(1) 写出()f x 的反函数()g x 的表达式;(2) 问()g x 是否有间断点与不可导点,若有,指出这些点.解:(1) 由题设,()f x 的反函数为3112()1816812x x g x x x x x ⎧--<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩. ……4分(2) ()g x 在(,)-∞+∞内处处连续,没有间断点.……5分 ()g x 的不可导点是01x x ==-及.……8分 (注:多写一个不可导点8x =扣1分)六、(本题满分8分)设函数()y y x =由方程1222223=-+-x xy y y 所确定. 试求()y y x =的驻点,并判 别它们是否为极值点.解:对原方程两边求导可得2320()y y yy xy y x '''-++-=*……2分令0y '=,得y x =.将此代入原方程有32210x x --=.从而解得唯一的驻点1x =. ……5分()*式两边求导,得22(32)2(31)210y y x y y y y ''''-++-+-=.因此(1,1)1|02y ''=>,故驻点1x =是()y y x =的极小值点. ……8分七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,'()'()0.f a f b >证明存在(,)a b ξ∈和),(b a ∈η,使()0f ξ=及0)(''=ηf .证一:先用反证法证明存在(,)a b ξ∈,使()0f ξ=. 若不存在(,)a b ξ∈,使()0f ξ=,则在区间(,)a b 内恒有()0f x >或()0f x <. 不妨设()0f x >(对()0f x <,类似可证),则()()()()lim lim 0x b x b f x f b f x f b x b x b--→→-'==≤--, ……3分 ()()()()lim lim 0x a x a f x f a f x f a x ax a ++→→-'==≥--.从而()()0f a f b ''≤,这与已知条件矛盾. 这即证得存在(,)a b ξ∈,使得()0f ξ=. ……5分再由()()()f a f f b ξ==及罗尔定理,知存在12(,)(,)a b ηξηξ∈∈和,使得12()()0f f ηη''==. 又在区间12[,]ηη上对()f x '应用罗尔定理知,存在12(,)(,)a b ηηη∈⊂,使()0f η''=.……8分证二:不妨设()0,()0f a f b ''>>(对()0,()0f a f b ''<<类似可证),即()lim 0x a f x x b +→>-,()lim 0x b f x x b-→>-. 故存在11(,)x a a δ∈+和22(,)x b b δ∈-,使1()0f x >及2()0f x <,其中12,δδ为充分小的正数. 显然12x x <,在区间12[,]x x 上应用介值定理知,存在一点12(,)(,)x x a b ξ∈⊂,使得()0f ξ=. ……5分 以下同证一. 八、(本题满分8分) 设()f x 为连续函数.(1) 求初值问题0'()0|x y ay f x y -+=⎧⎪⎨=⎪⎩的解()y y x =,其中a 是正常数; (2) 若()f x k ≤(k 为常数),证明:当0≥x 时,有()(1).ax k y x e a-≤-证一:(1) 原方程的通解为()[()][()]axax ax y x ef x e dx C e F x C --=+=+⎰, ……2分其中()F x 是()axf x e 的任一原函数.由(0)0y =得(0)C F =-,故()[()(0)]()xax ax at y x e F x F e f t e dt --=-=⎰.……4分 (2) 0()()xaxat y x ef t e dt -≤⎰……6分 0xaxat kee dt -≤⎰(1)(1),0ax ax ax k k e e e x a a--≤-=-≥. ……8分证二:在原方程的两端同乘以ax e ,得()ax ax ax y e aye f x e '+=.从而()()ax axye f x e '=,……2分 所以0()xaxat yef t e dt =⎰或0()xaxat y ef t e dt -=⎰.……4分(2)同证一数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设方程yy x =确定y 是x 的函数,则dy =(1ln )dxx y +.(2) 设⎰+=c x dx x xf arcsin )(,则=⎰)(x f dx 231(1)3x C -. (3) 设(00,y x )是抛物线c bx ax y ++=2上的一点,若在该点的切线过原点,则系数,,a b c应满足的关系是200(),c a ax c b ≥=或任意.(4) 设 123222212311111231111n n n n n n n a a a a A a a a a a a a a ----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,123n x x X x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1111B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,其中(;,1,2,,)i j a a i j i j n ≠≠= ,则线性方程组B X A T=的解是(1,0,,0)T X =(5) 设由来自正态总体X ~)9.0,(2μN 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间是 ( 4.412 , 5.588 ) 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 累次积分dr r r r f d ⎰⎰20cos 0)sin ,cos (πθθθθ可以写成 (D)(A) dx y x f dy y y ⎰⎰-102),(. (B)dx y x f dy y ⎰⎰-1102),(. (C)dy y x f dx ⎰⎰101),(. (D)dy y x f dx x x ⎰⎰-12),(.(2) 下述各选项正确的是 (A)(A) 若21nn u∞=∑和21nn v∞=∑都收敛,则21()nn n uv ∞=+∑收敛(B) 若1n nn u v∞=∑收敛,则21nn u∞=∑和21nn v∞=∑都收敛(C) 若级数1n n u ∞=∑发散,则1n u n≥ (D) 若级数1nn u∞=∑收敛,且n n u v ≥(1,2,)n = ,则级数1nn v∞=∑也收敛(3) 设n 阶矩阵A 非奇异),2(≥n A *是矩阵A 的伴随矩阵,则 (C)(A) (A *)*=A A n 1- (B) (A *)*=A A n 1+(C) (A *)*=A An 2-(D) (A *)*=A An 2+(4) 设有任意两个n 维向量组12,,,m ααα 和12,,,m βββ ,若存在两组不全为零的12,,,mλλλ 和12,,,m k k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-= ,则 (D)(A) 12,,,m ααα 和 12,,,m βββ 都线性相关 (B) 12,,,m ααα 和 12,,,m βββ 都线性无关 (C) 11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性无关 (D)11221122,,,,,,,m m m m αβαβαβαβαβαβ+++--- 线性相关(5) 已知0<P (B )<1,且P )()(])[(2121B A P B A P B A A +=+,则下列选项成立的是 (B)(A) )()(])[(2121B A P B A P B A A P +=+ (B) )()()(2121B A P B A P B A B A P +=+ (C) 1212()()()P A A P A B P A B +=+ (D) )()()()()(2211A B P A P A B P A P B P += 三、(本题满分6分)设()f x =()00,0xg x e x x x -⎧-≠⎪⎪⎨⎪⎪=⎩若若,其中()g x 有二阶连续导数,且(0)1g =, (0)1g '=-. (1) 求()f x '; (2) 讨论()f x '-∞+∞在(,)上的连续性.解:(1) 当0x ≠时,有22[()]()()()(1)()x x xx g x e g x e xg x g x x e f x x x---''+-+-++'==. ……1分 当0x =时,有20()(0)lim xx g x e f x-→-'= ……2分 00()()(0)1lim lim 222x x x x g x e g x e g x --→→'''''+--===. ……3分所以2()()(1)0()(0)102x xg x g x x e x x f x g x -'⎧-++≠⎪⎪'=⎨''-⎪=⎪⎩若若.……4分(2) 因为在0x =处,有0lim ()x f x →'00()()()(1)()lim lim22x x xx x g x xg x g x e x e g x e x ---→→''''''+-+-+-== (0)1(0)2g f ''-'==.……5分 从而()f x '在0x ≠处连续,所以()f x '在(,)-∞+∞上为连续函数.……6分四、(本题满分6分)设函数()z f u =,方程()()xyu u p t dt ϕ=+⎰确定u 是x 、y 的函数,其中()f u 、()u ϕ可微;(),()p t u ϕ' 连续,且()1u ϕ'≠. 求 ()()z zp y p x x y∂∂+∂∂. 解:由()z f u =可得();();z u z uf u f u x x y y∂∂∂∂''==∂∂∂∂ ……1分在方程()()x yu u p t dt ϕ=+⎰两边分别对,x y 求偏导数,得()()u uu p x x x ϕ∂∂'=+∂∂, ……2分 ()()u uu p y y yϕ∂∂'=-∂∂. ……3分 所以()(),1()1()u p x u p y x u y u ϕϕ∂∂-==''∂-∂-; ……5分 于是()()()()()()()01()1()z z p x p y p x p y p y p x f u x y u u φφ⎡⎤∂∂'+=-=⎢⎥''∂∂--⎣⎦. ……6分五、(本题满分6分) 计算2(1)xx xe dx e -+∞-+⎰. 解一: 2200(1)(1)x x x x xe xe dx dx e e +∞+∞--=++⎛⎛⎜⎜⎠⎠011xxd e +∞-⎛⎫= ⎪+⎝⎭⎛⎜⎠ ……1分00111xxx dx e e ∞+∞=-+++⎛⎜⎠ ……2分 011x dx e+∞=+⎛⎜⎠. ……3分令x e t =,则1dx dt t=.于是2101(1)(1)x x xe dx dt e t t +∞+∞--=++⎛⎛⎜⎜⎠⎠ ……4分 1111ln 11t dt t t t +∞+∞⎛⎫=-= ⎪++⎝⎭⎛⎜⎠ ……5分 ln 2=.……6分解二:21(1)1x x xxe dx xd e e ---⎛⎫= ⎪++⎝⎭⎛⎛⎜⎜⎠⎠111x xx dx ee --=-++⎛⎜⎠ 11x x x x e dx e e-=-++⎛⎜⎠ln(1)1x x xxe e C e =-+++. ……3分 所以20lim ln(1)ln 2(1)1x x x x x x xe xe dx e e e +∞--→+∞⎡⎤=-++⎢⎥++⎣⎦⎛⎜⎠. ……4分其中lim ln(1)lim ln(1)11x x x x xxx x xe xe e x x e e e →+∞→+∞⎡⎤⎡⎤-+=-+-+⎢⎥⎢⎥++⎣⎦⎣⎦ lim ln 00011x x x x x e e e →+∞⎡⎤=-+=+=⎢⎥++⎣⎦ ……5分 因此20ln 2ln 2(1)x x xe dx e +∞--=+=+⎛⎜⎠. ……6分六、(本题满分5分)设)(x f 在区间[0,1]上可微,且满足条件120(1)2()f xf x dx =⎰,求证:存在ξ)1,0(∈,使0)()(='+ξξξf f .证:设()()F x xf x =. 由积分中值定理,可见存在1(0,)2η∈.使112201()()()2xf x dx F x dx F η==⎰⎰. ……2分由已知条件,有1201(1)2()2()()2f xf x dx F F ηη==⋅=⎰.……3分 由于(1)(1)()F f F η==,……4分并且()F x 在[,1]η上连续,在(,1)η上可导.故由罗尔定理知:存在(,1)(0,1)ξη∈⊂,使得()0F ξ'=,即()()0f f ξξξ'+=.……5分七、(本题满分6分)设某种商品的单价为p 时,售出的商品数量Q 可以表示成c bp aQ -+=,其中,,a b c 均为正数,且a bc >.(1) 求p 在何范围变化时,使相应销售额增加或减少;(2) 要使销售额最大,商品单价p 应取何值?最大销售额是多少? 解:(1) 设售出商品的销售额为R ,则a R PQ P c a b ⎛⎫==-⎪+⎝⎭,令22()0()ab c P b R p b -+'==+. 得00ab bp b a bc c c ==>. ……2分 当0bp a bc c <<时,有0R '>.所以随p 的增加,相应的销售额也增加. ……4分当bp a bc c>时,有0R '<.所以随p 的增加,相应的销售额将减少.……5分 (2) 由(1)知,当bp a bc c=时,销售额R 取得最大值,最大销售额为2max (/)()/R ab c b c a bc ab c==. ……6分八、(本题满分6分)求微分方程x y x y dx dy 22+-=的通解. 解:令y z x =,则dy dzz x dx dx=+. ……1分 当0x >时,原方程化为21dz z x z z dx +=+21dx x z =-+, ……3分 其通解为221ln(1)ln 1C z z x C z z x+=-++或=,……5分代回原变量,得通解22(0)y x y C x +>=.……6分当0x <时,原方程的解与0x >时相同.九、(本题满分8分)设矩阵A= 010010000010012y ⎫⎛⎪ ⎪⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y ; (2) 求矩阵P ,使(AP)T(AP)为对角矩阵.解:(1) 因为22||(1)[(2)21]0I A y y λλλλ-=--++-=. 当3λ=时,代入上式解得2y =.……3分于是0100100000210012A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭. (2) 由T A A =,得2()()T T AP AP P A P =.而矩阵21000010000540045A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, ……4分 考虑二次型22222222212343412344495585()55T X A X x x x x x x x x x x x =++++=++++, ……6分 令1122334444,,,5y x y x y x x y x ===+=,即11223344100001000014/50001x y x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 取10000100400150001P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎭-⎪⎪⎝,则有100001000050()(900)05TAP AP ⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭.……8分(2) 另解:2A 的特征值为11λ=(三重),29λ=.……5分对应于11λ=的特征向量为123(1,0,0,0),(0,1,0,0),(0,0,1,1),T T T ααα===-经正交标准化后,得向量组123(1,0,0,0),(0,1,0,0),)22T T Tβββ===;……6分 对应于29λ=的特征向量为4(0,0,1,1)T α=,经单位化后,得422Tβ=. ……7分令()123410000100,,,00220022P ββββ⎛⎫ ⎪ ⎪ ⎪== ⎝,则210000100001000()()09T T P A P AP AP ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭.……8分十、(本题满分8分)设向量12,,,t ααα 是齐次线性方程组AX = 0的一个基础解系,向量β不是方程组 AX= 0的解,即A β≠0. 试证明向量组β,β+1α,β+2α,…,β+t α线性无关. 解:设有一组数12,,,,t k k k k ,使得1()0tiii k k ββα=++=∑,……1分 即11()()t tiiii i k k k βα==+=-∑∑ (1)……2分上式两边同时左乘矩阵A ,有11()()0t tiiii i k k A k A βα==+=-=∑∑.因为0A β≠,故10tii k k=+=∑ (2)……4分从而,由(1)式得1()0tiii k α=-=∑.由于向量组1,.......,t αα是基础解系,所以120t k k k ==== .……6分 因而由(2)式得0k =.因此向量组β,β+1α,……,β+t α线性无关.……8分十一、(本题满分7分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获得利润10万元;发生一次故障仍可获得利润5万元;发生二次故障多获得利润0元;发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?解:以X 表示一周五天内机器发生故障的天数,则X 服从参数为(5,0.2)的二项分布.即55{}0.20.8(0,1,2,3,4,5)kk kP X k C k -==⋅⋅=……2分 于是5{0}0.80.328P X ===, 145{1}0.20.80.410P X C ==⋅⋅=;……3分2235{2}0.20.80.205P X C ==⋅⋅=;{3}1{0}{1}{2}0.057P X P x P x P x ≥=-=-=-==. ……4分以Y 表示所获利润,则()Y f X ==10,05,10,22,3X X X X =⎧⎪=⎪⎨=⎪⎪≥⎩若若若-若,……5分所以100.32850.41000.20520.057 5.216EY =⨯+⨯+⨯-⨯=(万元).……7分十二、(本题满分6分)考虑一元二次方程x 2+ Bx + C = 0,其中B,C 分别是将一枚骰子接连掷两次先后出现的 点数.求方程有实根的概率p 和有重根的概率q .解:一枚色子(骰子)掷两次,其基本事件总数为36. 方程组有实根的充分必要条件是224,4B BC C ≥≤. ……2分B1 2 3 4 5 6 使2/4C B ≤的基本事件个数 0 1 2 4 6 6 使2/4C B =的基本事件个数11……4分因此,使方程组有实根的基本事件个数为1246619++++=.于是1936p =. ……5分 同理,使方程组有重根的基本事件个数为112+=,于是213618q ==. ……6分十三 (本题满分6分)设12,,,n X X X 独立且与X 同分布,k k EX α=(1,2,3,4)k =.求证:当n 充分大时,∑==n i i n X n z 121近似服从正态分布,并求出其分布参数. 解:依题意,12,,,n X X X 独立同分布,于是22212,,,n X X X 也独立同分布.由(1,2,3,4)k k EX k α==,有……1分 22i EX α=,2422242()i i i DX EX EX αα=-=-; ……2分 2211nn i i EZ EX n α===∑,……3分 22422111()n n i i DZ DX n nαα===-∑……4分根据中心极限定理2242()/n n U n αα=-即当n 充分大时,n Z 近似服从参数为2422(,)a a a n-的正态分布.……6分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】 (2) 【 同数学四 第一、(2) 题 】 (3) 设)1ln(2x x y ++=,则3x y '''=532(4) 五阶行列式aa a a a a a a a---------11110001100011000123451a a a a a =-+-+-.(5) 一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示3个零件中合格品的个数,则P (X=2)=1124. 二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设0)()(00=''='x f x f ,0)(0>'''x f , 则下列选项正确的是 (D)(A) )(0x f '是)(x f '的极大值 (B) )(0x f 是)(x f 的极大值(C) )(0x f 是)(x f 的极小值 (D) ))(,(00x f x 是曲线)(x f y =的拐点 (2) 【 同数学三 第二、(3) 题 】 (3) 【 同数学四 第二、(3) 题 】 (4) 【 同数学四 第二、(4) 题 】(5) 设A ,B 为任意两个事件,且A ⊂B , P (B )>0,则下列选项必然成立的是 (B)(A) ()()P A P A B < (B) ()()P A P A B ≤ (C) ()()P A P A B > (D) ()()P A P A B ≥ 三、(本题满分6分)【 同数学四 第三题 】 四、(本题满分7分) 设2(,)xyt f x y e dt -=⎰,求222222yfx y y x f x f y x ∂∂+∂∂∂-∂∂解:22x y fye x-∂=∂, ……2分 22x y f xey-∂=∂,222322x y f xy e x -∂=-∂, ……4分 222322x y f x ye y -∂=-∂,22222(12)x y f x y ex y-∂=-∂∂. ……6分 于是222222222x y x f f y f ey x x y x y -∂∂∂-+=-∂∂∂∂. ……7分五、(本题满分6分)【 同数学四 第五题 】六、(本题满分7分)【 同数学四 第七题 分值不同 】 七、(本题满分9分)已知一抛物线通过x 轴上的两点A ( 1, 0 ),B ( 3, 0 ).(1) 求证:两坐标轴与该抛物线所围图形的面积等于x 轴与该抛物线所围图形的面积; (2) 计算上述两个平面图形绕x 轴旋转一周所产生的两个旋转体体积之比. 解:(1) 设过,A B 两点的抛物线方程为(1)(3)y a x x =--, 则抛物线与两坐标轴所围图形的面积为110|(1)(3)|S a x x dx =--⎰……1分1204||(43)||3a x x dx a =-+=⎰. ……2分 抛物线与x 轴所围图形的面积为321|(1)(3)|S a x x dx =--⎰……3分 3214||(43)||3a x x dx a =-+=⎰.……4分所以12S S =.(2) 抛物线与两坐标轴所围图形绕x 轴旋转所得旋转体的体积为12210[(1)(3)]V a x x dx π=--⎰……5分124320[(1)4(1)4(1)]a x x x dxπ=---+-⎰5324120(1)4(1)38[(1)].5315x x a x a ππ--=--+=……6分抛物线与x 轴所围图形绕x 轴旋转所得旋转体的体积为32221[(1)(3)]V a x x dx π=--⎰353241(1)4(1)(1)53x x a x π⎡⎤--=--+⎢⎥⎣⎦ ……7分216.15a π=……8分 所以12198V V =.……9分八、(本题满分5分)设)(x f 在[,]a b 上连续,在(,)a b 内可导,且1()()ba f x dx fb b a=-⎰ 求证:在(,)a b 内至少存在一点ξ, 使 )(ξf ' = 0.证:因为()f x 在[,]a b 上连续,由积分中值定理可知,在(,)a b 内存在一点c ,使得()()()baf x dx f c b a =-⎰. ……2分 即()()()baf x dxf c f b b a==-⎰.……3分因为()f x 在[,]c b 上连续,在(,)c b 内可导,故由罗尔定理,在(,)c b 内至少存在一点出ξ,使得()0f ξ'=,其中(,)(,)c b a b ξ∈⊂.……5分九、(本题满分9分)已知线性方程组 ⎪⎪⎩⎪⎪⎨⎧+t= x - 6x - x - x -1=7x +px + x 2+3x -1= 4x + 6x - x + 2x 0= x 3+2x -x x 4321432143214321,讨论参数p, t 取何值时,方程组有解? 无 解? 当有解时, 试用其导出组的基础解系表示通解.解:方程组系数矩阵A 的增广矩阵为11230104112164101221327100800116100002A p p t t ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→⎪ ⎪-+ ⎪ ⎪---+⎝⎭⎝⎭……3分(1) 当2t ≠-时,()()A A ≠秩秩,方程组无解. ……4分 (2) 当2t =-时,()()A A =秩秩,方程组有解.……5分(a) 若8p =-,得通解1212141122(,010001x c c c c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为任意常数).……7分(b) 若8p ≠-得通解1112(0001x c c --⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数).……9分十、(本题满分7分)设有4阶方阵A 满足条件30I A +=,I A A T2=,0A <,其中I 是4阶单位阵,求方阵A 的伴随阵*A 的一个特征值.解:由3|(3)|0I A A I +=--=,得A 的一个特征值3λ=-. ……1分 又4|||2|2||16T AA I I ===,2||||||16T A A A ==.于是||4A =-.……3分由于||0A <,知A 可逆.设A 的对应于特征值3λ=-的特征向量为α,则3A αα=-,由此得11(3)A A A αα--=-.即113A αα-=-,知13-是1A -的特征值. ……5分 由于*114||(4)()33A A A αααα-==--=,所以*A 有特征值43.……7分十一、(本题满分7分)【 同数学四 第十一题 】 十二、(本题满分6分)某电路装有三个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ> 0的指数分布.当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解:以(1,2,3)i X i =表示第i 个电气元件无故障工作的时间,则123,,X X X 相互独立且同分布,其分布函数为1,0()00x e x F x x λ-⎧->=⎨≤⎩若,若,……1分设()G t 是T 的分布函数.当0t ≤时,()0G t =.当0t >时,有(){}1{}G t P T t P T t =≤=->……3分 1231{,,}P X t X t X t =->>>……4分 1231{}{}{}P X t P X t P X t =->⋅>⋅> ……5分 31[1()]F t =-- ……6分 31t e λ-=-.……7分总之,31,0()00t e t G t t λ-⎧->=⎨≤⎩若,若,于是T 服从参数为3λ的指数分布.。
1996年考研数学二试卷及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设232()x y x e -=+,则0x y ='=______.(2)121(x dx -+=⎰______.(3) 微分方程250y y y '''++=的通解为______.(4) 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+=⎢⎥⎣⎦______.(5) 由曲线1,2y x x x=+=及2y =所围图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设当0x →时,2(1)xe ax bx -++是比2x 高阶的无穷小,则 ( )(A) 1,12a b == (B) 1,1a b == (C) 1,12a b =-=- (D) 1,1a b =-=(2) 设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时,恒有2|()|f x x ≤,则0x =必是()f x 的 ( ) (A) 间断点 (B) 连续而不可导的点 (C) 可导的点,且(0)0f '= (D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 ( )(A) 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞(B) 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞(C) 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞(D) 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞(4) 在区间(,)-∞+∞内,方程1142||||cos 0x x x +-= ( )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有两个实根 (D) 有无穷多个实根(5) 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),由曲线(),y g x =(),y f x x a ==及x b =所围平面图形绕直线y m =旋转而成的旋转体体积为 ( )(A) [][]2()()()()bam f x g x f x g x dx π-+-⎰(B) [][]2()()()()bam f x g x f x g x dx π---⎰(C) [][]()()()()bam f x g x f x g x dx π-+-⎰(D)[][]()()()()bam f x g x f x g x dx π---⎰三、(本题共6小题,每小题5分,满分30分.) (1)计算ln 0⎰.(2) 求1sin dxx +⎰.(3) 设2022(),[()],t x f u du y f t ⎧=⎪⎨⎪=⎩⎰其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .(4) 求函数1()1xf x x-=+在0x =点处带拉格朗日型余项的n 阶泰勒展开式. (5) 求微分方程2y y x '''+=的通解.(6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴与底面成α角(02πα<<)的平面截此柱体,得一锲形体(如图),求此锲形体的体积V .四、(本题满分8分)计算不定积分22arctan (1)xdx x x +⎰.α五、(本题满分8分)设函数2312,1,(),12,1216, 2.x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩(1) 写出()f x 的反函数()g x 的表达式;(2) ()g x 是否有间断点、不可导点,若有,指出这些点.六、(本题满分8分)设函数()y y x =由方程3222221y y xy x -+-=所确定,试求()y y x =的驻点,并判别它是否为极值点.七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,()()0f a f b ''>,试证明:存在(,)a b ξ∈和(,)a b η∈,使()0f ξ=及()0f η''=.八、(本题满分8分)设()f x 为连续函数,(1) 求初值问题0(),0x y ay f x y ='+=⎧⎪⎨=⎪⎩的解()y x ,其中a 为正的常数;(2) 若|()|f x k ≤(k 为常数),证明:当0x ≥时,有|()|(1)ax ky x e a-≤-.答案一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】13132221132x xy x e e ,---⎛⎫⎛⎫'=+⋅- ⎪ ⎪⎝⎭⎝⎭02111323x y =⎛⎫'=-= ⎪⎝⎭.(2)【答案】2注意到对称区间上奇偶函数的积分性质,有原式()1122112121022x x dx dx --⎡⎤⎡⎤=+-==+=⎣⎦⎣⎦⎰⎰. (3)【答案】()12cos2sin 2xy ec x c x -=+因为250y y y '''++=是常系数的线性齐次方程,其特征方程2250r r ++=有一对共轭复根1212r ,r i.=-±故通解为()12cos2sin 2xy e c x c x -=+.(4)【答案】2因为x →∞时,sin ln 1ln 1k k kx x x⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭(k 为常数),所以, 原式3131lim sin ln 1lim sin ln 1lim lim 312x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫=+-+=⋅-⋅=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (5)【答案】1ln 22-曲线1y x ,x =+2y =的交点是()12,,2211,x y x x x '-⎛⎫'=+= ⎪⎝⎭当1x >时 1y x x=+(单调上升)在2y =上方,于是212211211ln 2ln 2.22S x dxx x x x ⎛⎫=+- ⎪⎝⎭⎛⎫=+-=- ⎪⎝⎭⎰二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(A)方法1:用带皮亚诺余项泰勒公式.由()21x e ax bx -++()()222112!x x x ax bx ο⎛⎫=+++-++ ⎪⎝⎭()()()222112b x a x x x οο⎛⎫=-+-+ ⎪⎝⎭令,可得 10111202b ,a ,b .a ,-=⎧⎪⇒==⎨-=⎪⎩应选(A). 方法2:用洛必达法则.由2200(1)2lim lim 0,2x x x x e ax bx e ax bx x→→-++--=洛 有 ()lim 210 1.xx e ax b b b →--=-=⇒=又由 0022121limlim 02222x x x x e ax b e a a a x →→----===⇒=. 应选(A).(2)【答案】(C)方法一:首先,当0x =时,|(0)|0(0)0f f ≤⇒=. 而按照可导定义我们考察2()(0)()00(0)f x f f x x x x x x x-≤=≤=→→,由夹逼准则, 0()(0)(0)lim0x f x f f x→-'==,故应选(C).方法二:显然,(0)0f =,由2|()|f x x ≤,(,)x δδ∈-,得2()1(,0)(0,)f x x xδδ≤∈-,,即2()f x x 有界,且 200()(0)()(0)limlim 0x x f x f f x f x x x →→-⎛⎫'==⋅= ⎪⎝⎭. 故应选(C).方法三:排除法.令3(),(0)0,f x x f '==故(A)、(B)、(D)均不对,应选(C). (3)【答案】(D)方法一:排除法.例如()f x x =,则(A),(C)不对;又令()xf x e -=,则(B)不对.故应选择(D).方法二:由lim ()x f x →+∞'=+∞,对于0M >,存在0x ,使得当0x x >时,()f x M '>.由此,当0x x >时,由拉格朗日中值定理,0000()()()()()()()f x f x f x x f x M x x x ξ'=+->+-→+∞→+∞,从而有lim ()x f x →+∞=+∞,故应选择(D).(4)【答案】(C)令1142()||||cos f x x x x =+-,则()()f x f x -=,故()f x 是偶函数,考察()f x 在(0,)+∞内的实数个数:1142()cos f x x x x =+-(0x >).首先注意到(0)10f =-<,1142()()()10,222f πππ=+>>当02x π<<时,由零值定理,函数()f x 必有零点,且由314211()sin 042f x x x x --'=++>,()f x 在(0,)2π单调递增,故()f x 有唯一零点.当2x π≥时,11114242()cos ()()10,22f x x x x ππ=+-≥+->没有零点; 因此,()f x 在(0,)+∞有一个零点.又由于()f x 是偶函数,()f x 在(,)-∞+∞有两个零点.故应选(C). (5)【答案】(B)见上图,作垂直分割,相应于[],x x dx +的小竖条的体积微元22(())(())dV m g x dx m f x dx ππ=---[][](())(())(())(())m g x m f x m g x m f x dx π=-+-⋅--- [][]2()()()()m g x f x f x g x dx π=--⋅-,于是 [][]2()()()()baV m g x f x f x g x dx π=--⋅-⎰,故选择(B).三、(本题共6小题,每小题5分,满分30分.) (1)方法一:换元法.u =,则221ln(1),21u x u dx du u=--=-, 所以2ln 2200011111)2)11211u du du du u u u u==-=+----+⎰1ln(22==. 方法二:换元法.令sin xe t -=,则cos ln sin ,sin t x t dx dt t =-=-,:0ln 2:26x t ππ→⇒→,ln 62026cos 1cos sin sin sin t t dt t dt t tππππ⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰2266ln(csc cot )cos ln(22t t t ππππ=--=-. 方法三:分部积分法和换元法结合.原式ln 2ln 0()x e e --==-⎰⎰22ln 2x xee--=-+⎰令xe t =,则:0ln 2:12x t →⇒→,原式2211ln(t =+=+⎰ln(22=-+.(3)这是由参数方程所确定的函数,其导数为22222()()24()()dydy f t f t t dt tf t dx dx f t dt'⋅⋅'===, 所以 2222221()(4())4()4()2()d y d dy dt d dt tf t f t tf t t dx dt dx dx dt dx f t ''''⎡⎤=⋅=⋅=+⋅⋅⎣⎦ 22224()2()()f t t f t f t '''⎡⎤=+⎣⎦. (4)函数()f x 在0x =处带拉格朗日余项的泰勒展开式为()(1)1(0)()()(0)(0),(01)!(1)!n n n n f f x f x f f x x x n n θθ++'=++++<<+.对于函数1()1xf x x -=+,有 12()12(1)1,1f x x x-=-=+-+2()2(1)(1),f x x -'=⋅-+ 3()2(1)(2)(1),f x x -''=⋅-⋅-+,,()(1)()2(1)!(1)n n n f x n x -+=-⋅+所以 ()(0)2(1)!,(1,2,3),n n fn n =-⋅ =故 121112()122(1)2(1)(01)1(1)n n n n n xx f x x x x xx θθ+++-==-+++-+- <<++. (5)方法一:微分方程2y y x ''+=对应的齐次方程0y y '''+=的特征方程为20r r +=,两个根为120,1r r ==-,故齐次方程的通解为12x y c c e -=+.设非齐次方程的特解2()Y x ax bx c =⋅++,代入方程可以得到1,1,23a b c ==-=, 因此方程通解为3212123xy c c ex x x -=++-+. 方法二:方程可以写成2()y y x ''+=,积分得303x y y c '+=+,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为30(())3dxdx xy e c e dx C -⎰⎰=++⎰33001(())()33xx x x xx e c e dx C e x de c e C --=++=++⎰⎰320(3)3x xx x e x e e x dx c Ce --=-++⎰ 332200(2)33x x xx x x x x x e e x dx c Ce e e x e xdx c Ce ----=-++=--++⎰⎰ 3202()3x x x x x x e e x e c Ce --=-+-++ 32123x x x x c Ce -=-+++. 方法三:作为可降阶的二阶方程,令y P '=,则y P '''=,方程化为2P P x '+=,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为220020()(22)2 2.x x x x x x xP e c x e dx e c x e xe e c e x x ---=+=+-+=+-+⎰再积分得 321223xx y c c e x x -=++-+. (6)建立坐标系,底面椭圆方程为22221x y a b+=.方法一:以垂直于y 轴的平面截此楔形体所得的截面为直角三角形, 其中一条直角边长为22a x b y b=-22tan a b y bα-, 故截面面积为22221()()tan 2a S y b y bα=-⋅. 楔形体的体积为222220022()tan ()tan 3bb a V S y dy b y dy a b b αα==-=⎰⎰.方法二:以垂直于x 轴的平面截此楔形体所得的截面为矩形,其中一条边长为222b y a x a=-另一条边长为tan x α⋅, 故截面面积为22()2tan bS x x a x aα=-,楔形体的体积为22200222()tan tan 3aa b V S x dx x a x dx a b a αα==-=⎰⎰.四、(本题满分8分) 方法一:分部积分法.2222arctan arctan arctan (1)1x x xdx dx dx x x x x =-++⎰⎰⎰1arctan ()arctan (arctan )xd xd x x=--⎰⎰2211arctan arctan (1)2dx x x x x x -+-+⎰分部 22111arctan ()arctan 12x x dx x x x x =-+--+⎰ 22111arctan ln ln(1)arctan 22x x x x C x =-+-+-+.方法二:换元法与分部积分法结合.令arctan x t =,则2tan ,sec x t dx tdt ==,2222222arctan sec cot (1)tan (1tan )tan x t t t dx dt dt t tdt x x t t t ===++⎰⎰⎰⎰2(csc 1)(cot )t t dt td t tdt =-=--⎰⎰⎰21cot cot 2t t dt t -+-⎰分部 2cos 1cot sin 2x t t dt t x =-+-⎰211cot sin sin 2t t d t t t =-+-⎰21cot ln sin 2t t t t C =-+-+.五、(本题满分8分)【解析】为了正确写出函数()f x 的反函数()g x ,并快捷地判断出函数()g x 的连续性、可导性,须知道如下关于反函数的有关性质.(1) 由题设,函数()f x的反函数为1,()18,16,8.12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩(2) 方法一:考察()f x的连续性与导函数.注意2312,1,(),12,1216,2x xf x x xx x⎧-<-⎪=-≤≤⎨⎪->⎩在(,1),(1,2),(2,)-∞--+∞区间上()f x分别与初等函数相同,故连续.在1,2x x=-=处分别左、右连续,故连续.易求得24,1,()3,12,(1)4,(1)3,12,2(2)12,(2)12(2)12.x xf x x x f fxf f f-+-+-<-⎧⎪'''=-<<-=-=⎨⎪>⎩'''==⇒=由于函数()f x在(,)-∞+∞内单调上升且连续,故函数()g x在(,)-∞+∞上单调且连续,没有间断点.由于仅有0x=时()0f x'=且(0)0f=,故0x=是()g x的不可导点;仅有1x=-是()f x的不可导点(左、右导数∃,但不相等),因此()g x在(1)1f-=-处不可导.方法二:直接考察()g x的连续性与可导性.注意1,()18,16,8,12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩在(,1),(1,8),(8,)-∞--+∞区间上()g x分别与初等函数相同,故连续.在1,8x x=-=处分别左、右连续,故连续,即()g x在(,)-∞+∞连续,没有间断点.()g x 在(,1),(1,8),(8,)-∞--+∞内分别与初等函数相同,在0x =不可导,其余均可导.在1x =-处,1111(1),(1),43x x g g -++=--=-'⎛'''-==-== ⎝ (1)g '⇒-不∃.在8x =处,881161(8),(8),121212x x x g g -+-+=='+'⎛⎫''====⎪⎝⎭ (8)g '⇒∃.因此,()g x 在(,)-∞+∞内仅有0x =与1x =-两个不可导点.六、(本题满分8分) 方程两边对x 求导,得22320,(32)0.y y yy xy y x y y x y y x ''''-++-=-++-= ①令0,y '=得y x =,代入原方程得32210x x --=,解之得唯一驻点1x =;对①两边再求导又得22(32)(32)10x y y x y y y x y y '''''-++-++-=. ②以1,0x y y '===代入②得11210,0,2x y y =''''-==> 1x =是极小点.定理:设函数()f x 在0x 处具有二阶导数且00()0,()0f x f x '''=≠,那么 (1) 当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2) 当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分8分)首先证明(,)a b ξ∃∈,使()0f ξ=:方法一:用零点定理.主要是要证明()f x 在(,)a b 有正值点与负值点.不妨设()0,f a '>()0f b '>.由()()lim ()()0x a f x f a f a f a x a ++→-''==>-与极限局部保号性,知在x a =的某右邻域,()()0f x f a x a->-,从而()0f x >,因而111,,()0x b x a f x ∃>>>;类似地,由()0f b '>可证 2122,,()0x x x b f x ∃<<<.由零点定理,12(,)(,)x x a b ξ∃∈⊂,使()0f ξ=.方法二:反证法.假设在(,)a b 内()0f x ≠,则由()f x 的连续性可得()0f x >,或()0f x <,不妨设()0f x >.由导数定义与极限局部保号性,()()()()()lim lim 0x a x a f x f a f x f a f a x ax a +++→→-''===≥--,()()()()()lim lim 0x b x b f x f b f x f b f b x b x b ---→→-''===≤--,从而()()0f a f b ''≤,与()()0f a f b ''>矛盾.其次,证明(,)a b η∃∈,()0f η''=:由于()()()0f a f f b ξ===,根据罗尔定理,12(,),(,)a b ηξηξ∃∈∈,使12()()0f f ηη''==;又由罗尔定理, 12(,)(,),()0a b f ηηηη''∃∈⊂=.注:由0()0f x '>可得:在000(,),()()x x f x f x δ-<;在000(,),()()x x f x f x δ+>.注意由0()0f x '>得不到()f x 在00(,)x x δδ-+单调增的结果! 4.罗尔定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.八、(本题满分8分)(1) ()y ay f x '+=为一阶线性非齐次微分方程,可直接利用通解公式求解.通解为[]()()()ax ax ax y x e f x e dx C e F x C --⎡⎤=+=+⎣⎦⎰,其中()F x 是()axf x e 的任一原函数,由(0)0y =得(0)C F =-,故[]0()()(0)()xax ax at y x e F x F e e f t dt --=-=⎰.(2) 当0x ≥时,0()()()xxaxat axat y x ee f t dt ee f t dt --=⋅≤⎰⎰001(1)x x ax at ax at ax k ke e dt ke e e a a---⎛⎫≤⋅=⋅=- ⎪⎝⎭⎰.。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 已知全集I =N ,集合A ={x │x =2n ,n ∈N },B ={x │x =4n ,n ∈N },则 ( )(A) B A I =(B)B A I =(C) B A I =(D) B A I =(2) 当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图像( )(3) 若sin 2x >cos 2x ,则x 的取值范围是 ( )(A) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ (B) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ (C) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ (D) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ(4) 复数54)31()22(i i -+等于( )(A) i 31+(B) i 31+-(C) i 31-(D) i 31--(5) 如果直线l 、m 与平面α、β、γ满足:l l ,γβ =∥m m 和αα⊂,,⊥γ,那么必有( )(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β (C)m ∥β且l ⊥m(D)α∥β且α⊥γ(6) 当x x x f x cos 3sin )(,22+=≤≤-函数时ππ的( ) (A) 最大值是1,最小值是-1 (B) 最大值是1,最小值是-21 (C) 最大值是2,最小值是-2 (D) 最大值是2,最小值是-1(7) 椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是( )(A) (-3,5),(-3,-3) (B) (3,3),(3,-5) (C) (1,1),(-7,1)(D) (7,-1),(-1,-1))](arccos[sin )]2(arcsin[cos ,20)8(απαππα+++<<则若等于( )(A)2π (B) -2π (C)2π-2α (D) -2π-2α (9) 将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )(A) 63a(B) 123a(C)3123a (D)3122a (10) 等比数列{}n a 的首项a 1=-1,前n 项和为S n ,若3231510=S S 则n n S ∞→lim 等于( )(A)32(B) -32 (C) 2 (D) -2(11) 椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是( )(A) (3,0),(1,π)(B) (3,2π),(3,23π)(C) (2,3π),(2,35π)(D) (7,23arctg),(7,23arctg -2π) (12) 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A) 130(B) 170(C) 210(D) 260(13) 设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过),0)(0,(b a 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率为 ( )(A) 2(B)3(C)2 (D)332 (14) 母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 ( )(A)π322 (B)π332 (C)π2(D)π362 (15) 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5) 等于( )(A) 0.5 (B) -0.5(C) 1.5(D) -1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(16)已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则P=(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答)(18)40tg 20tg 340tg 20tg ++的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log >-xa .(21)已知△ABC 的三个内角A ,B ,C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求2cosCA -的值. 22.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足. ① ∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF ⊥AC ,② ∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG . ③ ∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG , ④ ∵ ∴FG ∥AA 1,△AA 1C ∽△FGC , ⑤ ∵ ∴112121BB AA FG ==,即11,21EB BE BB BE ==故 23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)24.已知l 1、l 2是过点)0,2(-P 的两条互相垂直的直线,且l 1、l 2与双曲线122=-x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)若12211,5l B A B A 求 、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1.(Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B(5)A(6)D(7)B(8)A(9)D(10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32 (18)3(19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为1-a <0,所以x <0, ∴.011<<-x a——5分(Ⅱ)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-.11,011a xx由①得,x >1或x <0, 由②得,,110ax -<< ∴ax -<<111 ——10分综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知B =60°,A +C =120°. ——2分∵,2260cos 2-=-∴22cos 1cos 1-=+CA 将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+ ——6分将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分,0)32cos 22)(22cos2(=+---C A C A ∵,032cos 22≠+-CA ∴.022cos2=--CA 从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A CA 则,可得α+= 60A ,α-= 60C ——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα——7分依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α, ∴02cos 2=-α. 从而得222cos =-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1,——2分 ②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC ,——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D . ∵1EB ∥11112121,CC BB EB CC ==, ∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°, ∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°, ∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°, ∴∠CA 1C 1=45°,即所求二面角为45°——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M ——5分化简得]22.1)01.01(1.11[10103+⨯-⨯≤x ——7分 ∵]22.1)01.01(1.11[10103+⨯-⨯ )]01.001.01(22.11.11[1022101103 +⨯+⨯+⨯-⨯=C C ]1045.122.11.11[103⨯-⨯≈ 1.4≈—— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.——10分(24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④同理有)13(4,0122222-=∆≠-k k 又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x ∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+=2212121)1()13)(1(4--+=k k k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥ 由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+ 解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得 │c │=│f (0)│≤1, 即│c │≤1.——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数, ∴g (-1)≤g (x )≤g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1, ∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2,g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2;——5分当a <0时,g (x )=ax +b 在[-1,1]上是减函数, ∴g (-1)≥g (x )≥g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2, 由此得│g (x )│≤2;——7分 当a =0时,g (x )=b ,f (x )=bx +c . ∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2. 综上得│g (x )│≤2. ——8分证法二:由4)1()1(22--+=x x x ,可得b ax x g +=)()2121(])21()21[(22--++--+=x x b x x a ])21()21([])21()21([22c x b x a c x b x a +-+--++++= ),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f 即│g (x )│≤2.——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2, 即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1, ∴c =f (0)=-1.——10分因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab即 由① 得a =2. 所以 f (x )=2x 2-1. ——12分。
考研数学二(常微分方程)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1989年)微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b 为常数) 【】A.aeχ+bB.aχeχ+bC.aeχ+bχD.aχeχ+bχ正确答案:B解析:y〞-y=eχ+1的特解应为方程y〞-y=eχ和y〞-y=1的特解之和,而特征方程为r2-1=0,解得r=±1 因此y-y=eχ的特解应为y1*=aχeχ,y〞-y=1的特解应为y2*=b 则原方程特解应具有形式y=aχeχ+b 知识模块:常微分方程2.(1998年)已知函数y=f(χ)在任意点χ处的增量△y=+α,其中α是比△χ(△χ→0)的高阶无穷小,且y(0)=π,则y(1)=【】A.B.2πC.πD.正确答案:A解析:由于△y与△χ+α,其α是比△χ(△χ→0)高阶的无穷小,则解此变量可分离方程得y=Cearctanχ,再由y(0)=π得C=π故y=兀earctanχ,y(1)=π知识模块:常微分方程3.(2000年)具有特解y1=e-χ,y2=2χe-χ,y3=3eχ的三阶常系数齐次线性微分方程是【】A.y〞′-y〞-y′+y=0B.y〞′+y〞-y′-y=0C.y〞′-6y〞+11y′-6y=0D.y〞′-2y〞-y′+2y=0正确答案:B解析:由本题所给三个特解可知,所求方程的特征方程的根为λ1=1,λ2=-1(二重),故特征方程是(λ-1)(λ+1)2=0,展开得λ3+λ2-λ-1=0 从而,微分方程应为y′〞+y′-y=0,则应选B.知识模块:常微分方程4.(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】A.不存在B.等于1C.等于2D.等于3正确答案:C解析:由于y(χ)是方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,在方程y〞+py′+qy=e3χ中,令χ=0 得y〞(0)+Py′(0)+qy(0)=e0=1 即y〞(0)=1 所以应选C.知识模块:常微分方程5.(2003年)已知y=是微分方程y′=的解,则φ()的表达式为【】A.B.C.D.正确答案:A解析:将y=代入方程y′=得故应选A.知识模块:常微分方程填空题6.(1994年)微分方程ydχ+(χ2-4χ)dy=0的通解为_______.正确答案:(χ-4)y4=Cχ.解析:该方程是一个变量可分离方程,即(χ-4)y4=Cχ知识模块:常微分方程7.(1995年)微分方程y〞+y=-2χ的通解为_______.正确答案:y=-2χ+C1cosχ+C2sinχ.解析:特征方程为r2+1=0,解得r1=i,r2=-I 齐次通解为=C1cos χ+C2sinχ易观察出非齐次一个特解为y*=-2χ则原方程通解为y=C1>cosχ+C2sinχ-2χ知识模块:常微分方程8.(1996年)微分方程y〞+2y′+5y=0的通解为_______.正确答案:y=e-χ(C1cos2χ+C2sin2χ).解析:特征方程为r2+2r+5=0,r1,2=-1±2i 故通解为y=C1e-χcos2χ+C2e-χsin2χ.知识模块:常微分方程9.(1999年)微分方程y〞-4y=e2χ的通解为________.正确答案:y=C1e-2χ+(C2+χ)e2χ(C1,C2为任意常数).解析:特征方程为r2-4=0,r1,2=±2 齐次通解为=1e-2χ+C2e2χ设非齐次方程特解为y*Aχe2χ代入原方程得A=,故原方程通解为知识模块:常微分方程10.(2001年)过点(,0)且满足关系式y′arcsinχ+=1的曲线方程为_______·正确答案:yarcsinχ=χ-.解析:由y′arcsinχ+=1 知(yarcsinχ)′=1 则yarcsinχ=χ+C 由因此yarcsinχ=χ-知识模块:常微分方程11.(2002年)微分方程yy〞+y′2=0满足初始条件的特解是_______.正确答案:y2=χ+1或y=解析:令y′=P,则,y〞=,代入原方程得则所求的特解为y2=χ+1.知识模块:常微分方程12.(2004年)微分方程(y+χ3)dχ-2χdy=0满足的特解为_______.正确答案:解析:方程(y+χ3)dχ-2χdy=0可改写为设方程为一阶线性方程,则其通解为由知C=1,则所求特解为y=知识模块:常微分方程13.(2005年)微分方程χy′+2y=χlnχ满足y(1)=-的解为_______.正确答案:解析:方程χy+2y=χlnχ是一阶线性方程,方程两端同除以χ得:y′+=lnχ,则通解为由y(1)=-得,C=0,则知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
1996年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设232()x y x e -=+,则0x y ='=______.(2)121(x dx -+=⎰______.(3) 微分方程250y y y '''++=的通解为______.(4) 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+=⎢⎥⎣⎦______.(5) 由曲线1,2y x x x=+=及2y =所围图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设当0x →时,2(1)xe ax bx -++是比2x 高阶的无穷小,则 ( )(A) 1,12a b == (B) 1,1a b == (C) 1,12a b =-=- (D) 1,1a b =-=(2) 设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时,恒有2|()|f x x ≤,则0x =必是()f x 的 ( ) (A) 间断点 (B) 连续而不可导的点 (C) 可导的点,且(0)0f '= (D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 ( )(A) 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞(B) 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞(C) 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞(D) 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞(4) 在区间(,)-∞+∞内,方程1142||||cos 0x x x +-= ( )(A) 无实根 (B) 有且仅有一个实根(C) 有且仅有两个实根 (D) 有无穷多个实根(5) 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),由曲线(),y g x =(),y f x x a ==及x b =所围平面图形绕直线y m =旋转而成的旋转体体积为 ( )(A) [][]2()()()()bam f x g x f x g x dx π-+-⎰(B) [][]2()()()()bam f x g x f x g x dx π---⎰(C) [][]()()()()bam f x g x f x g x dx π-+-⎰(D)[][]()()()()bam f x g x f x g x dx π---⎰三、(本题共6小题,每小题5分,满分30分.) (1)计算ln 0⎰.(2) 求1sin dxx +⎰.(3) 设2022(),[()],t x f u du y f t ⎧=⎪⎨⎪=⎩⎰其中()f u 具有二阶导数,且()0f u ≠,求22d y dx .(4) 求函数1()1xf x x-=+在0x =点处带拉格朗日型余项的n 阶泰勒展开式. (5) 求微分方程2y y x '''+=的通解.(6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴与底面成α角(02πα<<)的平面截此柱体,得一锲形体(如图),求此锲形体的体积V .四、(本题满分8分)计算不定积分22arctan (1)xdx x x +⎰.α五、(本题满分8分)设函数2312,1,(),12,1216, 2.x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩(1) 写出()f x 的反函数()g x 的表达式;(2) ()g x 是否有间断点、不可导点,若有,指出这些点.六、(本题满分8分)设函数()y y x =由方程3222221y y xy x -+-=所确定,试求()y y x =的驻点,并判别它是否为极值点.七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,()()0f a f b ''>,试证明:存在(,)a b ξ∈和(,)a b η∈,使()0f ξ=及()0f η''=.八、(本题满分8分)设()f x 为连续函数,(1) 求初值问题0(),0x y ay f x y ='+=⎧⎪⎨=⎪⎩的解()y x ,其中a 为正的常数;(2) 若|()|f x k ≤(k 为常数),证明:当0x ≥时,有|()|(1)ax ky x e a-≤-.1996年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】13【解析】132221132x xy x e e ,---⎛⎫⎛⎫'=+⋅- ⎪ ⎪⎝⎭⎝⎭02111323x y =⎛⎫'=-= ⎪⎝⎭.(2)【答案】2【解析】注意到对称区间上奇偶函数的积分性质,有原式()1122112121022x x dx dx --⎡⎤⎡⎤=+-==+=⎣⎦⎣⎦⎰⎰. 【相关知识点】对称区间上奇偶函数的积分性质:若()f x 在[,]a a -上连续且为奇函数,则()0aa f x dx -=⎰; 若()f x 在[,]a a -上连续且为偶函数,则0()2()aaaf x dx f x dx -=⎰⎰.(3)【答案】()12cos2sin 2xy ec x c x -=+【解析】因为250y y y '''++=是常系数的线性齐次方程,其特征方程2250r r ++=有一对共轭复根1212r ,r i.=-±故通解为()12cos2sin 2xy e c x c x -=+.(4)【答案】2【解析】因为x →∞时,sin ln 1ln 1k k k x x x⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭::(k 为常数),所以, 原式3131lim sin ln 1lim sin ln 1lim lim 312x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫=+-+=⋅-⋅=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (5)【答案】1ln 22-【解析】曲线1y x ,x =+2y =的交点是()12,,2211,x y x x x '-⎛⎫'=+= ⎪⎝⎭当1x >时 1y x x=+(单调上升)在2y =上方,于是212211211ln 2ln 2.22S x dx x x x x ⎛⎫=+-⎪⎝⎭⎛⎫=+-=- ⎪⎝⎭⎰二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(A)【解析】方法1:用带皮亚诺余项泰勒公式.由()21x e ax bx -++()()222112!x x x ax bx ο⎛⎫=+++-++ ⎪⎝⎭()()()222112b x a x x x οο⎛⎫=-+-+ ⎪⎝⎭令,可得 10111202b ,a ,b .a ,-=⎧⎪⇒==⎨-=⎪⎩应选(A). 方法2:用洛必达法则.由2200(1)2lim lim 0,2x x x x e ax bx e ax bx x→→-++--=洛 有 ()lim 210 1.xx e ax b b b →--=-=⇒=又由 0022121limlim 02222x x x x e ax b e a a a x →→----===⇒=. 应选(A).(2)【答案】(C)【解析】方法一:首先,当0x =时,|(0)|0(0)0f f ≤⇒=. 而按照可导定义我们考察2()(0)()00(0)f x f f x x x x x x x-≤=≤=→→,由夹逼准则, 0()(0)(0)lim0x f x f f x→-'==,故应选(C).方法二:显然,(0)0f =,由2|()|f x x ≤,(,)x δδ∈-,得2()1(,0)(0,)f x x xδδ≤∈-U ,,即2()f x x有界,且 200()(0)()(0)limlim 0x x f x f f x f x x x →→-⎛⎫'==⋅= ⎪⎝⎭. 故应选(C).方法三:排除法.令3(),(0)0,f x x f '==故(A)、(B)、(D)均不对,应选(C).【相关知识点】定理:有界函数与无穷小的乘积是无穷小. (3)【答案】(D)【解析】方法一:排除法.例如()f x x =,则(A),(C)不对;又令()xf x e -=,则(B)不对.故应选择(D).方法二:由lim ()x f x →+∞'=+∞,对于0M >,存在0x ,使得当0x x >时,()f x M '>.由此,当0x x >时,由拉格朗日中值定理,0000()()()()()()()f x f x f x x f x M x x x ξ'=+->+-→+∞→+∞,从而有lim ()x f x →+∞=+∞,故应选择(D).【相关知识点】拉格朗日中值定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导,那么在(,)a b 内至少有一点ξ(a b ξ<<),使等式()()()()f b f a f b a ξ'-=-成立.(4)【答案】(C)【解析】令1142()||||cos f x x x x =+-,则()()f x f x -=,故()f x 是偶函数,考察()f x 在(0,)+∞内的实数个数:1142()cos f x x x x =+-(0x >).首先注意到(0)10f =-<,1142()()()10,222f πππ=+>>当02x π<<时,由零值定理,函数()f x 必有零点,且由314211()sin 042f x x x x --'=++>,()f x 在(0,)2π单调递增,故()f x 有唯一零点.当2x π≥时,11114242()cos ()()10,22f x x x x ππ=+-≥+->没有零点; 因此,()f x 在(0,)+∞有一个零点.又由于()f x 是偶函数,()f x 在(,)-∞+∞有两个零点.故应选(C).【相关知识点】零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.(5)【答案】(B) 【解析】见上图,作垂直分割,相应于[],x x dx +的小竖条的体积微元22(())(())dV m g x dx m f x dx ππ=---[][](())(())(())(())m g x m f x m g x m f x dx π=-+-⋅--- [][]2()()()()m g x f x f x g x dx π=--⋅-,于是 [][]2()()()()baV m g x f x f x g x dx π=--⋅-⎰,故选择(B).三、(本题共6小题,每小题5分,满分30分.) (1)【解析】方法一:换元法.u =,则221ln(1),21u x u dx du u=--=-, 所以2ln 220011111)2)11211u du du du u u u u==-=+----+⎰1ln(22==. 方法二:换元法.令sin xe t -=,则cos ln sin ,sin t x t dx dt t =-=-,:0ln 2:26x t ππ→⇒→,ln 62026cos 1cos sin sin sin t t dt t dt t tππππ⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰2266ln(csc cot)cos ln(22t t tππππ=--=-.方法三:分部积分法和换元法结合.原式ln2ln00()xe e--==-⎰⎰22ln2xxe e--=-+⎰令x e t=,则:0ln2:12x t→⇒→,原式2211ln(22t=-+=-++⎰ln(22=-+. 【相关知识点】1.1csc ln csc cotsinxdx dx x x Cx==-+⎰⎰,2. 0a>时,ln x C=++.(2)【解析】方法一:2(1sin)1sin1sin(1sin)(1sin)cosdx x dx xdxx x x x--==++-⎰⎰⎰22221sin cosseccos cos cosxdx d xdx xdxx x x=-=+⎰⎰⎰⎰1tancosx Cx=-+.方法二:21sin(cos sin)22dx dxx xx=++⎰⎰222(1tan)sec222(1tan)(1tan)1tan222xdxdx Cx x x+===-++++⎰⎰.方法三:换元法.令tan2xt=,则22222tan22arctan,,sin11tan1t tx t dx xt t t====+++,原式2221222221(1)111tan12dtdt C Ct xt t tt=⋅==-+=-+++++++⎰⎰.(3)【解析】这是由参数方程所确定的函数,其导数为22222()()24()()dydy f t f t tdt tf tdxdx f tdt'⋅⋅'===,所以 2222221()(4())4()4()2()d y d dy dt d dt tf t f t tf t t dx dt dx dx dt dx f t ''''⎡⎤=⋅=⋅=+⋅⋅⎣⎦ 22224()2()()f t t f t f t '''⎡⎤=+⎣⎦. (4)【解析】函数()f x 在0x =处带拉格朗日余项的泰勒展开式为()(1)1(0)()()(0)(0),(01)!(1)!n n n n f f x f x f f x x x n n θθ++'=++++<<+L .对于函数1()1xf x x -=+,有 12()12(1)1,1f x x x-=-=+-+2()2(1)(1),f x x -'=⋅-+3()2(1)(2)(1),f x x -''=⋅-⋅-+ ,,L()(1)()2(1)!(1)n n n f x n x -+=-⋅+所以 ()(0)2(1)!,(1,2,3),n n fn n =-⋅ =L故 121112()122(1)2(1)(01)1(1)n n n n n x x f x x x x x x θθ+++-==-+++-+- <<++L . (5)【解析】方法一:微分方程2y y x ''+=对应的齐次方程0y y '''+=的特征方程为20r r +=,两个根为120,1r r ==-,故齐次方程的通解为12x y c c e -=+.设非齐次方程的特解2()Y x ax bx c =⋅++,代入方程可以得到1,1,23a b c ==-=, 因此方程通解为3212123xy c c ex x x -=++-+. 方法二:方程可以写成2()y y x ''+=,积分得303x y y c '+=+,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为30(())3dxdx xy e c e dx C -⎰⎰=++⎰33001(())()33xx x x xx e c e dx C e x de c e C --=++=++⎰⎰320(3)3x xx x e x e e x dx c Ce --=-++⎰ 332200(2)33x x xx x x x x x e e x dx c Ce e e x e xdx c Ce ----=-++=--++⎰⎰ 3202()3x x x x x x e e x e c Ce --=-+-++ 32123x x x x c Ce -=-+++. 方法三:作为可降阶的二阶方程,令y P '=,则y P '''=,方程化为2P P x '+=,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为220020()(22)2 2.x x x x x x xP e c x e dx e c x e xe e c e x x ---=+=+-+=+-+⎰再积分得 321223xx y c c e x x -=++-+. 【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. 4. 一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数. (6)【解析】建立坐标系,底面椭圆方程为22221x y a b+=.方法一:以垂直于y 轴的平面截此楔形体所得的截面为直角三角形, 其中一条直角边长为22a x b y b=-22tan a b y bα-, 故截面面积为22221()()tan 2a S y b y bα=-⋅. 楔形体的体积为222220022()tan ()tan 3bb a V S y dy b y dy a b b αα==-=⎰⎰.方法二:以垂直于x 轴的平面截此楔形体所得的截面为矩形, 其中一条边长为222b y a x a=-另一条边长为tan x α⋅, 故截面面积为22()2tan bS x x a x aα=-,楔形体的体积为200222()tan tan 3aa b V S x dx a b a αα===⎰⎰.四、(本题满分8分)【解析】方法一:分部积分法.2222arctan arctan arctan (1)1x x xdx dx dx x x x x =-++⎰⎰⎰1arctan ()arctan (arctan )xd xd x x=--⎰⎰2211arctan arctan (1)2dx x x x x x -+-+⎰分部 22111arctan ()arctan 12x x dx x x x x =-+--+⎰ 22111arctan ln ln(1)arctan 22x x x x C x =-+-+-+.方法二:换元法与分部积分法结合.令arctan x t =,则2tan ,sec x t dx tdt ==,2222222arctan sec cot (1)tan (1tan )tan x t t t dx dt dt t tdt x x t t t ===++⎰⎰⎰⎰2(csc 1)(cot )t t dt td t tdt =-=--⎰⎰⎰21cot cot 2t t dt t -+-⎰分部 2cos 1cot sin 2x t t dt t x =-+-⎰211cot sin sin 2t t d t t t =-+-⎰21cot ln sin 2t t t t C =-+-+.五、(本题满分8分)【分析】为了正确写出函数()f x 的反函数()g x ,并快捷地判断出函数()g x 的连续性、可导性,须知道如下关于反函数的有关性质.【相关知识点】反函数的性质:① 若函数()f x 是单调且连续的,则反函数()g x 有相同的单调性且也是连续的;② 函数()f x 的值域即为反函数()g x 的定义域;③ 1()()g x f x '=',故函数()f x 的不可导点和使()0f x '=的点x 对应的值()f x 均为()g x 的不可导点.【解析】(1) 由题设,函数()f x的反函数为1,()18,16,8.12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩(2) 方法一:考察()f x的连续性与导函数.注意2312,1,(),12,1216,2x xf x x xx x⎧-<-⎪=-≤≤⎨⎪->⎩在(,1),(1,2),(2,)-∞--+∞区间上()f x分别与初等函数相同,故连续.在1,2x x=-=处分别左、右连续,故连续.易求得24,1,()3,12,(1)4,(1)3,12,2(2)12,(2)12(2)12.x xf x x x f fxf f f-+-+-<-⎧⎪'''=-<<-=-=⎨⎪>⎩'''==⇒=由于函数()f x在(,)-∞+∞内单调上升且连续,故函数()g x在(,)-∞+∞上单调且连续,没有间断点.由于仅有0x=时()0f x'=且(0)0f=,故0x=是()g x的不可导点;仅有1x=-是()f x的不可导点(左、右导数∃,但不相等),因此()g x在(1)1f-=-处不可导.方法二:直接考察()g x的连续性与可导性.注意1,()18,16,8,12xg x xxx⎧<-⎪⎪⎪=-≤≤⎨⎪+⎪>⎪⎩在(,1),(1,8),(8,)-∞--+∞区间上()g x分别与初等函数相同,故连续.在1,8x x=-=处分别左、右连续,故连续,即()g x在(,)-∞+∞连续,没有间断点.()g x在(,1),(1,8),(8,)-∞--+∞内分别与初等函数相同,在0x =不可导,其余均可导.在1x =-处,1111(1),(1),43x x g g -++=--=-'⎛'''-==-== ⎝ (1)g '⇒-不∃.在8x =处,881161(8),(8),121212x x x g g -+-+=='+'⎛⎫''====⎪⎝⎭ (8)g '⇒∃.因此,()g x 在(,)-∞+∞内仅有0x =与1x =-两个不可导点.六、(本题满分8分)【解析】方程两边对x 求导,得22320,(32)0.y y yy xy y x y y x y y x ''''-++-=-++-= ①令0,y '=得y x =,代入原方程得32210x x --=,解之得唯一驻点1x =;对①两边再求导又得22(32)(32)10x y y x y y y x y y '''''-++-++-=. ②以1,0x y y '===代入②得11210,0,2x y y =''''-==> 1x =是极小点.【相关知识点】1.驻点:通常称导数等于零的点为函数的驻点(或稳定点,临界点). 2.函数在驻点处取得极大值或极小值的判定定理.当函数()f x 在驻点处的二阶导数存在且不为零时,可以利用下述定理来判定()f x 在驻点处取得极大值还是极小值.定理:设函数()f x 在0x 处具有二阶导数且00()0,()0f x f x '''=≠,那么 (1) 当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2) 当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分8分)【解析】首先证明(,)a b ξ∃∈,使()0f ξ=:方法一:用零点定理.主要是要证明()f x 在(,)a b 有正值点与负值点.不妨设()0,f a '>()0f b '>.由()()lim ()()0x a f x f a f a f a x a ++→-''==>-与极限局部保号性,知在x a =的某右邻域,()()0f x f a x a->-,从而()0f x >,因而111,,()0x b x a f x ∃>>>;类似地,由()0f b '>可证2122,,()0x x x b f x ∃<<<.由零点定理,12(,)(,)x x a b ξ∃∈⊂,使()0f ξ=.方法二:反证法.假设在(,)a b 内()0f x ≠,则由()f x 的连续性可得()0f x >,或()0f x <,不妨设()0f x >.由导数定义与极限局部保号性,()()()()()lim lim 0x a x a f x f a f x f a f a x ax a +++→→-''===≥--,()()()()()lim lim 0x b x b f x f b f x f b f b x b x b ---→→-''===≤--, 从而()()0f a f b ''≤,与()()0f a f b ''>矛盾.其次,证明(,)a b η∃∈,()0f η''=:由于()()()0f a f f b ξ===,根据罗尔定理,12(,),(,)a b ηξηξ∃∈∈,使12()()0f f ηη''==;又由罗尔定理, 12(,)(,),()0a b f ηηηη''∃∈⊂=.注:由0()0f x '>可得:在000(,),()()x x f x f x δ-<;在000(,),()()x x f x f x δ+>.注意由0()0f x '>得不到()f x 在00(,)x x δδ-+单调增的结果!【相关知识点】1.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.2.函数极限的局部保号性定理:如果0lim ()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).3. 函数极限局部保号性定理的推论:如果在0x 的某去心邻域内()0f x ≥(或()0f x ≤),而且0lim ()x x f x A →=,那么0A ≥(或0A ≤).4.罗尔定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.八、(本题满分8分)【解析】(1) ()y ay f x '+=为一阶线性非齐次微分方程,可直接利用通解公式求解.通解为[]()()()ax ax ax y x e f x e dx C e F x C --⎡⎤=+=+⎣⎦⎰,其中()F x 是()axf x e 的任一原函数,由(0)0y =得(0)C F =-,故[]0()()(0)()xax ax at y x e F x F e e f t dt --=-=⎰.(2) 当0x ≥时,0()()()xxaxat axat y x ee f t dt ee f t dt --=⋅≤⎰⎰001(1)x x ax at ax at ax k ke e dt ke e e a a---⎛⎫≤⋅=⋅=- ⎪⎝⎭⎰.【相关知识点】一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数.。