当前位置:文档之家› 精馏塔工艺设计

精馏塔工艺设计

精馏塔工艺设计
精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书

(一)设计题目

设计一座苯-氯苯连续精馏塔,要求年产纯度为98.5%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。

(二)操作条件

1.塔顶压强4kPa(表压)

2.进料热状况:饱和蒸汽进料

3.回流比:R=2R

4.单板压降不大于0.7kPa

min

(三)设计内容

设备形式:筛板塔

设计工作日:每年330天,每天24小时连续运行

厂址:青藏高原大气压约为77.31kpa的远离城市的郊区

设计要求

1.设计方案的确定及流程说明

2.塔的工艺计算

3.塔和塔板主要工艺尺寸的确定

(1)塔高、塔径及塔板结构尺寸的确定

(2)塔板的流体力学验算

(3)塔板的负荷性能图绘制

(4)生产工艺流程图及精馏塔工艺条件图的绘制

4、塔的工艺计算结果汇总一览表

5、对本设计的评述或对有关问题的分析与讨论

(四)基础数据

1.组分的饱和蒸汽压 i p (mmHg )

2.组分的液相密度ρ(kg/m 3

3.组分的表面张力σ(mN/m )

4.液体粘度μ(mPa ?s )

5.Antoine常数

二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分)

(一)设计方案的确定及工艺流程的说明

原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。

典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。

(二)全塔的物料衡算

1.料液及塔顶底产品含苯的摩尔分率

苯和氯苯的相对摩尔质量分别为78.11 kg/kmol和112.6kg/kmol

=+=

6

.112/39.011.78/61.011

.78/61.0F x 0.693

2.平均摩尔质量

3.料液及塔顶底产品的摩尔流率

依题给条件:一年以330天,一天以24小时计,有:

h kmol 62.5824

330989

.010*******=???=

D ,

全塔物料衡算: W x D x F x W D F w D f +=+= ?25.6kmol/h

W kmol/h

22.84==F

(三)塔板数的确定 1.理论塔板数T N 的求取 2)确定操作的回流比R

将1)表中数据作图得y x ~曲线及y x t ~-曲线。在y x ~图上,因q=0, e (0.693,0.693)查得693.0=q y ,31.0=q x 。故有:

7624.031

.0693.0693.0989.0min =--=--=

q q q D x y y x R ;525.12min ==R R

3)求理论塔板数(图解法)

精馏段操作线:392.0604.01

1

+=++

+=

x R x x R R y D

总理论板层数:6.5(包括再沸器) 进料板位层:4 2.实际塔板数p N 1)全塔效率T E

选用m T E μlog 616.017.0-=公式计算。该式适用于液相粘度为0.07~1.4mPa ·s 的烃类物系,式中的m μ为全塔平均温度下以进料组成表示的平均粘度。

塔的平均温度为0.5(80+129)=104.5℃(取塔顶底的算术平均值),在此平均温度下查化工原理附录得:s mPa 246.0?=A μ,s mPa 352.0?=B μ。 2)实际塔板数p N (近似取两段效率相同)

精馏段:651.0/31==Np 块 提馏段:551.0/5.21==Np 块 (四)塔的精馏段操作工艺条件及相关物性数据的计算 1.平均压强m p

取每层塔板压降为0.7kPa 计算。 塔顶:kPa 31.81431.77=+=D p

加料板:kPa 51.8567.031.81=+=?F p 塔底:kPa 01.8957.051.85=+=?W p

精馏段平均压强kPa 41.832/)51.8531.81(=+=m p 提馏段平均压强kPa 26.872/)51.8501.89(=+=m p 2.平均温度m t

B B A A x P x P P οο+=和 C

t B

A P +-

=οlg 两式联立由试差法求得 35.73=D t ℃ ;76.83=F t ℃ ;79.125=W t ℃

精馏段平均温度:℃

提馏段平均温度:℃

3.平均分子量m M

塔顶: 989.01==D x y ,93.01=x (查相平衡图) 加料板:725.0=F y ,38.0=F x (查相平衡图)

塔底: 075.0=W y ,014.0=W x

精馏段:kg/kmol 04.832/)59.8749.78(=+=Vm M 提馏段:kg/kmol 8.982/)01.11059.87(=+=Vm M 4.平均密度m ρ 1)液相平均密度m L ρ,

塔顶:35.73=D t ℃ 3/2.822m Kg A =ρ3/3.1049m Kg =B ρ 进料板:76.83=F t ℃3/8.810m Kg A =ρ3/7.1037m Kg =B ρ 塔底:76.83=w t 3/7.761m Kg A =ρ3/6.989m Kg =B ρ 精馏段:3/05.8862/)2.9479.824(m Kg Lm =+=ρ 提馏段:3/9.9662/)6.9862.947(m Kg Lm =+=ρ 2)汽相平均密度m V ρ,

精馏段:3/38.2)15.27355.78(314.804

.8381.84m Kg RT M P m vm m Vm =+??==ρ 提馏段:3/76.2)

15.27371.104(314.836

.9981.84m Kg RT M P m vm m Vm =+??==

ρ 5.液体的平均表面张力m σ

塔顶:35.73=D t ℃;m mN DA /09.22=σm mN DB /44.24=σ 进料板:76.83=F t ℃;m mN FA /82.20=σ m mN FB /34.23=σ 塔底:79.125=W t ℃; m mN WA /82.15=σ m mN WB /77.18=σ 精馏段:m mN Lm /86.212/)59.2144.24(=+=σ 提馏段:m mN Lm /18.202/)77.1859.21(=+=σ 6.液体的平均粘度m L μ,

塔顶:35.73=D t ℃s mpa DA ?=332.0μs mpa DB ?=457.0μ

加料板:76.83=F t ℃s mpa FA ?=298.0μs mpa FB ?=416.0μ 塔底:79.125=F t ℃,s mpa FA ?=206.0μ,s mpa FB ?=302.0μ 精馏段:s mpa Lm ?=+=3335.02/)334.0333.0(μ 提馏段:s mpa Lm ?=+=317.02/)3003.0334.0(μ (五)精馏段的汽液负荷计算

汽相摩尔流率h Kmol D R V /02.14862.58525.2)1(=?=+= 汽相体积流量s m VM Vs Vm Vm /43.138

.2360004

.8302.14836003=??==

ρ

液相回流摩尔流率h Kmol RD L /40.8962.58525.1=?== 液相体积流量s m LM Ls Lm Lm /0025.005

.88636000

.9040.8936003=??==

ρ

(六)塔和塔板主要工艺结构尺寸的计算 1.塔径

1)初选塔板间距m m 400=T H 及板上液层高度mm 50=L h ,则: 2)按Smith 法求取允许的空塔气速m ax u (即泛点气速F u )

查Smith 通用关联图得075.020=C 负荷因子0763.0)20

86.21(

075.0)20

(2

.02.020=?==L

C C σ 泛点气速: s m u /47.138

.238

.205.8860763

.0max =-=m/s

3)操作气速

取s m u u /029.147.17.07.0max =?== 4)精馏段的塔径

圆整取mm 1400=D 塔截面积为222539.1)4.1(4

4

m D A T =?=

=

π

π

此时的操作气速s m u /935.0011

.242

.1==

。 2.塔板工艺结构尺寸的设计与计算 1)溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、凹形受液盘,且不设进口内堰。

①溢流堰长(出口堰长)w l

取m 84.04.16.06.0=?==D l w ②出口堰高w h

查得E=1.02

③降液管的宽度d W 和降液管的面积f

A

由66.0/=D l w ,查化原下P 147图11-16得055.0/,1.0/==T f d A A D W ,即:

m 14.0=d W ,2055.0m A f =

液体在降液管内的停留时间 s Ls

H A T

f 555.133600>==

τ(满足要求)

④降液管的底隙高度o h

液体通过降液管底隙的流速一般为0.07~0.25m/s ,取液体通过降液管底隙的

流速m/s 1.0='o u ,则有:

故降液管设计合底隙高度设计合理 2)塔板布置

1.塔板分块 因D=1400 故塔板分4块

2.边缘区宽度 m W s 09.0'=m W c 04.0= ②开孔区面积a A

式中:()0.47m 2/=+-=s d W W D x 3)开孔数n 和开孔率φ

取筛孔的孔径mm 5=o d ,正三角形排列,筛板采用碳钢,其厚度mm 3=δ,且取0.3/=o d t 。故孔心距mm 1553=?=t 。

每层塔板的开孔数576911582

==t

A n (孔)

每层塔板的开孔率()

101.03907

.0/907.02

2===

o d t φ(φ应在5~15%,故满足要求) 气体通过筛孔的孔速s m A V u s

/54.120

0== 4)精馏段的塔高1Z

m Z 24.0)16(H )1-N (T 精精=-==;

(七)塔板上的流体力学验算 1.塔板压降

1)气体通过干板的压降c h

???

? ???

??

?

??=L V c C u h ρρ2

00051.0 84.0=o C 。 2)气体通过板上液层的压降1h

动能因子)/(52.138.2983.02/10m s Kg F ?== 查化原图得60.0=β

3)气体克服液体表面张力产生的压降σh 4)气体通过筛板的压降(单板压降)p h 和p p Δ

Kpa Kpa gh P P L p 7.0539.0<==?ρ(满足工艺要求)。

2.雾沫夹带量v e 的验算

验算结果表明不会产生过量的雾沫夹带。 3.漏液的验算

漏液点的气速om u

s m h h C u V L l o /16.7/)13.00056.0(4.40min =-+=ρρσ<11.07m/s

筛板的稳定性系数)5.1(75.1min

00>==u u K (无漏液)

4.液泛的验算

为防止降液管发生液泛,应使降液管中的清液层高度()w T d h H ΦH +≤ 取?=0.5;m h H w T 218.0)(=+?

()w T d h H ΦH +≤成立,故不会产生液泛。

通过流体力学验算,可认为精馏段塔径及塔板各工艺结构尺寸合适,若要做出最合理的设计,还需重选T H 及L h ,进行优化设计。 (八)塔板负荷性能图 1.液沫夹带线(1)

2

.365.2107.5??????-?=-L T

a v h H u e σ (1)

式中:s f

T s a V A A V u 688.0=-=

将已知数据代入式(1)

3

/255.17905.2s

s L u -= (1-1)

在操作范围内,任取几个s L 值,依式(1-1)算出对应的s V 值列于下表:

0.001 0.0015 0.002 0.0025

2.73

2.67

2.62

2.58

依据表中数据作出雾沫夹带线(1) 2.液泛线(2)

3/22223.817.17066976.11Ls Ls Vs --= (2-2)

在操作范围内,任取几个s L 值,依式(2-2)算出对应的s V 值列于下表: 0.001 0.0015 0.002 0.0025

3.34

3.30

3.26

3.22

依据表中数据作出液泛线(2) 3.液相负荷上限线(3)

/s m 00847.03max ,==

τ

f

T s A H L (3-3) 4.漏液线(气相负荷下限线)(4)

整理得:L V

s S 32

2

min

,66.6555.0+= (4-4)

在操作范围内,任取几个s L 值,依式(4-4)算出对应的s V 值列于下表:

依据表中数据作出漏液线(4) 5.液相负荷下限线(5)

取平堰堰上液层高度006.0=ow h m s m Ls /000716.03min = (5-5)

操作弹性定义为操作线与界限曲线交点的气相最大负荷max ,s V 与气相允许最小负荷min ,s V 之比,即:

操作弹性=

06.38

.045

.2min ,max ,==s s V V 三、塔的提馏段操作工艺条件

(五)提馏段的汽液负荷计算

汽相摩尔流率h Kmol F q V V /8.63)1('=--= 汽相体积流量s m M V Vs Vm

Vm

/634.03600'3==

ρ

液相回流摩尔流率h Kmol L L /4.89'== 液相体积流量s m M L Ls Lm

Lm

/0027.03600'3==

ρ

(六)塔和塔板主要工艺结构尺寸的计算

1.塔径

1)初选塔板间距mm 500=T H 及板上液层高度m m 60=L h ,则: 2)按Smith 法求取允许的空塔气速m ax u (即泛点气速F u )

查Smith 通用关联图得09.020=C 负荷因子0902.0)20

18.20(

09.0)20

(2

.02.020=?==L

C C σ 泛点气速: 3)操作气速

取s m u u /181.1687.17.07.0max =?== 4)精馏段的塔径

圆整取mm 1000=D 塔截面积为222785.0)0.1(4

4m D A T =?=

=

π

π

此时的操作气速s m u /81.0785

.0634

.0==

。 2.塔板工艺结构尺寸的设计与计算 1)溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、平形受液盘,且不设进口内堰。

①溢流堰长(出口堰长)w l

取m 7.07.0==D l w ②出口堰高w h

0431.00169.006.0=-=-=ow L w h h h m

③降液管的宽度d W 和降液管的面积f

A

由7.0/=D l w ,查化原下P 147图11-16得09.0/,139.0/==T f d A A D W ,即:

m 139.0=d W ,2065.0m A f =

液体在降液管内的停留时间 s L H A S

T

f 513>==

τ(满足要求) ④降液管的底隙高度o h

液体通过降液管底隙的流速一般为0.07~0.25m/s ,取液体通过降液管底隙的

流速m/s 08.0='o

u ,则有: 故降液管设计合底隙高度设计合理 3)塔板布置

1.塔板分块 因D=1000 故塔板分3块

2.边缘区宽度 m W W s a 065.0'==m W c 035.0= ②开孔区面积a A

式中:()()m 311.0065.01736.07.02/=+-=+-=s d W W D x 3)开孔数n 和开孔率φ

取筛孔的孔径mm 5=o d ,正三角形排列,筛板采用碳钢,其厚度mm 3=δ,且取0.3/=o d t 。故孔心距mm 1553=?=t 。

每层塔板的开孔数2731155.12

==t A n (孔) 每层塔板的开孔率()101.03907

.0/907.022

===

o d t φ(φ应在5~15%,故满足要求)

气体通过筛孔的孔速s m A V u s

/81.110

0== 4)精馏段的塔高1Z

(七)塔板上的流体力学验算 1.塔板压降

1)气体通过干板的压降c h

???

? ???

??

?

??=L V c C u h ρρ2

00051.0 84.0=o C 。 2)气体通过板上液层的压降l h

动能因子)/(61.176.2968.02/10m s Kg F ?== 查化原图得60.00=ε

3)气体克服液体表面张力产生的压降σh 4)气体通过筛板的压降(单板压降)p h 和p p Δ

Kpa Kpa gh P P L p 7.0626.0<==?ρ(满足工艺要求)。

2.雾沫夹带量v e 的验算

验算结果表明不会产生过量的雾沫夹带。 3.漏液的验算

漏液点的气速om u 筛板的稳定性系数58.1min

00==u u K (大于1.5,不会产生过量液漏)

4.液泛的验算

为防止降液管发生液泛,应使降液管中的清液层高度()w T d h H ΦH +≤

()w T d h H ΦH +≤成立,故不会产生液泛。

通过流体力学验算,可认为精馏段塔径及塔板各工艺结构尺寸合适,若要做出最合理的设计,还需重选T H 及L h ,进行优化设计。 (八)塔板负荷性能图 1.雾沫夹带线(1)

2

.365.2107

.5??

?

???

-?=-L T a v h H u e σ (1) 式中:s f

T s a V A A V u 527.1=-=

将已知数据代入式(1)

3

/2672.861.1s

s L V -= (1-1)

在操作范围内,任取几个s L 值,依式(1-1)算出对应的s V 值列于下表: 0.001 0.002 0.003 0.0045

1.52

1.47

1.43

1.37

依据表中数据作出雾沫夹带线(1) 2.液泛线

()d

ow w p w T h h h h h H Φ+++=+

(已算出)

3/22278.1414862.2Ls Ls Vs --= (2-2)

在操作范围内,任取几个s L 值,依式(2-2)算出对应的s V 值列于下表:

依据表中数据作出液泛线(2) 3.液相负荷上限线(3)

/s m 008125.03max ,==

τ

f

T s A H L (3-3) 4.漏液线(气相负荷下限线)(4)

整理得:

L s Vs 32

252.1131.0+= (4-4)

在操作范围内,任取几个s L 值,依式(4-4)算出对应的s V 值列于下表:

依据表中数据作出漏液线(4) 5.液相负荷下限线(5)

取平堰堰上液层高度008.0=ow h m s m Ls /000919.03min = (5-5)

操作弹性定义为操作线与界限曲线交点的气相最大负荷max ,s V 与气相允许最小负荷min ,s V 之比:

操作弹性=

18.334

.011

.1min ,max ,==s s V V 四、精馏塔的设计计算结果汇总一览表

精馏塔的设计计算结果汇总一览表

参考文献:

1.陈敏恒、从德滋、方图南等编,《化工原理》上、下册(第二版),北京:化学工业出版社

2.《化学工程手册》编委会编,《化学工程手册》(第二版),化学工业出版社

3.潘国昌,《化工设备设计》,清华大学出版社

4.杨祖荣等编,《化工原理》,化学工业出版社

精馏实验

精馏实验 一、简答题 1、电加热开关何时开启?精馏过程如何调节电压? 待塔釜料液加好后,将加热电压调节旋钮全关,再开电加热开关,以免启动功率过大,烧坏电加热管。刚开始加热电压可高些如200~220V,等塔釜温度稳定在九十几度也即釜温达泡点时,电压降至100~120V左右,注意加热电压不能太高,否则会出现淹塔现象。 2、其他条件都不变,只改变回流比,对塔性能会产生什么影响? 3、进料板位置是否可以任意选择,它对塔的性能有何影响? 4、为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 5、将本塔适当加高,是否可以得到无水酒精?为什么? 6、为什么精馏开车时,常先采用全回流操作? 精馏塔要保持稳定高效操作,首先必须使精馏塔从下到上建立起一整套与给定操作条件对应的逐板递升的浓度梯度和逐板递降的温度梯度。即使全塔的浓度梯度和温度梯度按需要渐变。所以,在精馏塔开车时,常先采用全回流操作,待塔内情况基本稳定后,再开始逐渐增大进料流量,逐渐减小回流比,同时逐渐增大塔顶塔底产品流量。 7、精馏塔操作时,若精馏段的高度已不能改变,要提高塔顶产品易挥发组分的浓度,则采用什么方法? 影响塔顶产品质量的诸因素中,影响最大而且最容易调节的是回流比。所以若需提高塔顶产品易挥发组分的浓度,常采用增大回流比的办法。 8、精馏塔操作时,若提馏段的高度已不能改变,要提高塔底产品中难挥发组分的浓度,则采用什么办法? 最简便的办法是增大再沸器上升蒸汽的流量与塔底产品的流量之比。 (由7、8题可见,在精馏塔操作中,产品的浓度要求和产量要求是相互矛盾的,为此必须统筹兼顾,不能盲目地追求高浓度或高产量。一般是在保证产品浓度能满足要求以及能稳定操作的前提下,尽可能提高产量。此时提高产量的办法是在允许的范围内采用尽可能小的回流比和尽可能大的再沸器加热量。) 9、精馏操作稳定的必要条件是什么?

甲醇水筛板精馏塔课程设计

化学与化学工程学院 《化工原理》专业课程设计 设计题目常压甲醇-水筛板精馏塔设计 姓名:潘永春 班级:化工101 学号: 2010054052

指导教师:朱宪 荣 课程设计时间2013、6、8——2013、6、20 化工原理课程设计任务书 专业:化学与化学工程学院:化工101 姓名:潘永春 学号 20100054052 指导教师朱宪荣 设计日期: 2013 年6月8日至 2013年6月20日 一、设计题目:甲醇-水精馏塔的设计 二、设计任务及操作条件: 1、设计任务 生产能力(进料) 413.34Kmol/hr 操作周期 8000小时/年 进料组成甲醇0.4634 水0.5366(质量分率下同) 进料密度 233.9Kg/m3 平均分子量 22.65 塔顶产品组成 >99% 塔底产品组成 <0.04% 2、操作条件 操作压力 1.45bar (表压) 进料热状态汽液混合物液相分率98% 冷却水 20℃ 直接蒸汽加热低压水蒸气 塔顶为全凝器,中间汽液混合物进料,连续精馏。 3、设备形式筛板式或浮阀塔

4、厂址齐齐哈尔地区 三、图纸要求 1、计算说明书(含草稿) 2、精馏塔装配图(1号图,含草稿) 一.前言5 1.精馏与塔设备简介 5 2.体系介绍 5 3.筛板塔的特点 6 4.设计要求: 6 二、设计说明书7 三.设计计算书8 1.设计参数的确定8 1.1进料热状态8 1.2加热方式8 1.3回流比(R)的选择8 1.4 塔顶冷凝水的选择 8 2.流程简介及流程图 8 2.1流程简介8 3.理论塔板数的计算与实际板数的确定9 3.1理论板数计算9 3.1.1物料衡算9 3.1.2 q线方程9 3.1.3平衡线方程10 3.1.4 Rmin和R的确定10 3.1.5精馏段操作线方程的确定10 3.1.6精馏段和提馏段气液流量的确定10 3.1.7提馏段操作线方程的确定10 3.1.8逐板计算10 3.1.9图解法求解理论板数如下图: 12 3.2实际板层数的确定12 4精馏塔工艺条件计算12 4.1操作压强的选择12 4.2操作温度的计算13

年产5.4万吨丙烯精馏塔的工艺设计

年产5.4万吨丙烯精馏塔 的工艺设计

目录 摘要............................................................. I 第1章绪论.. (2) 1.1丙烯的性质 (2) 1.1.1 丙烯的物理性质 (2) 1.1.2 丙烯的化学性质 (2) 1.2丙烯的发展前景 (2) 1.3丙烯的生产技术进展 (3) 1.3.1 概况 (3) 1.3.2 丙烯的来源 (3) 1.3.3 丙烯的生产方法 (3) 1.3.4 丙烯生产新技术现状及发展趋势 (4) 第2章丙烯精馏塔的物料衡算及热量衡算 (4) 2.2.1 确定关键组分 (5) 2.2.2计算每小时塔顶产量 (5) 2.2.4物料衡算计算结果见表2.5 (7) 2.3塔温的确定 (8) 2.3.1 确定进料温度 (8) 2.3.2 确定塔顶温度 (8) 2.3.3 确定塔釜温度 (8) 第3章精馏塔板数及塔径的计算 (10) 3.1塔板数的计算 (10) 3.1.1 最小回流比的计算 (10) 3.1.2 计算最少理论板数 (11) 3.1.3 塔板数和实际回流比的确定 (11) 3.2确定进料位置 (11) 3.3全塔热量衡算 (12)

3.3.1 冷凝器的热量衡算 (12) 3.3.2 再沸器的热量衡算 (13) 3.3.3 全塔热量衡算 (13) 3.4板间距离的选定和塔径的确定 (14) 3.4.1 计算混合液塔顶、塔釜、进料的密度及气体的密度 (14) 3.4.2 求液体及气体的体积流量 (16) 3.4.3 初选板间距及塔径的估算 (17) 3.5浮阀塔塔板结构尺寸确定 (18) 3.5.1塔板布置 (18) 3.5.2 溢流堰及降液管设计计算 (19) 3.6塔高的计算 (21) 第四章流体力学计算及塔板负荷性能图 (22) 4.1水利学计算 (22) 4.1.1 塔板总压力降的计算 (22) 4.1.2 雾沫夹带 (23) 4.1.3 淹塔情况校核 (26) 4.2浮阀塔的负荷性能图 (27) 4.2.1 雾沫夹带线 (27) 4.2.2 液泛线 (28) 4.2.3 降液管超负荷线 (29) 4.2.4泄露线 (29) 4.2.5 液相下限线 (30) 4.2.6 操作点 (30) 总论 (32) 致谢 (33) 参考文献 (35) 附录 (38)

乙醇——水筛板精馏塔工艺设计-课程设计

学院 化工原理课程设计任务书 专业: 班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

精馏塔实验讲义

E T = ?100% C pm (t BP - t F ) + r m 精馏塔实验讲义 一、 实验目的 1. 充 分 利 用 计 算 机 采 集 和 控 制 系 统 具 有 的 快 速 、 大 容 量 和 实 时 处 理 的 特 点 , 进 行 精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2. 学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3. 学习精馏塔性能参数的测量方法,并掌握其影响因素。 4. 测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、 实验原理 1. 在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来字塔板下降的回流液,在塔板 上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是 精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分 离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全 部返回塔内中,这在生产中无实际意义。但是,由于此时所需理论塔板数最少,又易于达到 稳定,故常在工业装置的开停车、排除故障及科学研究时使用。 实际回流比常取最小回流比 1.2—2.0 倍。在精馏操作中,若回流系统出现故障,操作情 况会急剧恶化,分离效果也会变坏。 2. 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操 作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数 N T 。按照式(5-1)可以 得到总板效率 E T ,其中 N P 为实际塔板数。 N T N P 部分回流时,进料热状况参数的计算式为 q = r m 式中:

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

板式精馏塔课程设计

《化工原理》课程设计报告 苯-氯苯分离过程板式精馏塔设计 学院 专业 班级 学号 姓名 合作者 指导教师

化工原理设计任务书 一、设计题目: 苯-氯苯分离过程板式精馏塔设计 二、设计任务 1)进精馏塔的原料液中含氯苯为38%(质量百分比,下同),其余为苯。 2)塔顶馏出液中含氯苯不高于2%。 3)生产能力为日产纯度为99.8%的氯苯Z吨产品。年工作日300天,每天24小时连续运行。(设计任务量为3.5吨/小时) 三、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力0.5MPa; 5.单板压降不大于0.7kPa; 6. 设备型式:自选 7.厂址天津地区 四、设计内容 1.精馏塔的物料衡算; 2.塔板数的确定; 3.精馏塔的工艺条件及有关五行数据的计算; 4.精馏塔的塔体工艺尺寸计算; 5.塔板的主要工艺尺寸计算; 6.塔板的流体力学计算; 7.塔板负荷性能图; 8.精馏塔接管尺寸计算; 9.绘制生产工艺流程图; 10.绘制精馏塔设计条件图; 11.绘制塔板施工图; 12.对设计过程的评述和有关问题的讨论

五、基础数据 1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 氯苯 t B 111.11127-= ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。 纯组分的汽化潜热与温度的关系可用下式表示: 38 .01212??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书(一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R min 4.单板压降不大于 (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 p(mmHg) i 2.组分的液相密度ρ(kg/m3) 3.组分的表面张力σ(mN/m) 4.液体粘度μ(mPas) 常数

二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为 kg/kmol 和kmol =+= 6 .112/39.011.78/61.011 .78/61.0F x 2.平均摩尔质量 3.料液及塔顶底产品的摩尔流率 依题给条件:一年以330天,一天以24小时计,有: h kmol 62.5824 330989 .010*******=???= D ,

化工原理课程设计--- 乙醇——水筛板精馏塔工艺设计

化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间 1设计任务

1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于

乙醇-水精馏塔实验

乙醇-水精馏塔实验 一、实验目的: 1.了解板式精馏塔的结构和操作。 2.学习精馏塔性能参数的测量方法,并掌握其影响因素。 二、实验内容: 1.测定精馏塔在全回流条件下,稳定操作后的全塔理论塔板数和总板效率。 2.测定精馏塔在部分回流条件下,稳定操作后的全塔理论塔板数和总板效率。 三、实验原理: 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T .按照式1可以得到总板效率E T ,其中N P 为实际塔板数。 E T %100?= P T N N (1) 部分回流时,进料热状况参数的计算式为 m m F BP Pm r r t t C q +-= )( (2) 式中: t F — 进料温度,℃ 。 t BP — 进料的泡点温度,℃ 。 Cpm — 进料液体在平均温度(t F + t P )/2下的比热,kJ/(kmol ? ℃) r m — 进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 222111x M C x M C Cpm P P += kJ/(kmol ? ℃) (3) 222111x M r x M r r m += kJ/kmol (4) 式中: C P1, C P2 —分别为纯组份1和组份2在平均温度下的比热,kJ/(kg ? ℃)。 r 1,r 2 —分别为纯组份1和组份2在泡点温度下的汽化潜热,kJ/kg 。 M 1,M 2—分别为纯组份1和组份2的摩尔质量,kJ/kmol 。

x1,x2—分别为纯组份1和组份2在进料中的摩尔分率。 四、实验装置基本情况: 1.实验设备流程图(如图1所示): 图1 精馏实验装置流程图 1-储料罐;2-进料泵;3-放料阀;4-加热器;5-直接进料阀;6-间接进料阀;7-进料流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14-回流比流量计;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-冷却水流量计;19-塔釜储料罐;20-塔釜冷凝器;21-第8块板进料阀;22-第9块板进料阀;23-第10块板进料阀;24-液位计;25-料液循环阀;26-釜残液出料阀;27-进料入口阀;28-指针压力表

苯-甲苯筛板精馏塔课程设计

河西学院 Hexi University 化工原理课程设计 题目: 苯-甲苯筛板式精馏塔设计学院:化学化工学院

专业:化学工程与工艺 学号: 姓名: 指导教师: 2014年12月6日 目录 化工原理课程设计任务书 1.概述 (5) 1.1序言 ....................................................................................................................... 5 1.2再沸器?5 1.3冷凝器?5 2.方案的选择及流程说明?6 3.塔的工艺计算?6 3.1原料及塔顶塔底产品的摩尔分率?7 3.2原料液及塔顶、塔底产品的平均摩尔质量 (7) 3.3物料衡算?7 4.塔板数的确定 (7) 4.1理论塔板数T N (7)

4.2最小回流比及操作回流比?8 4.3精馏塔的气、液相负荷?8 4.4操作线方程 .............................................................................. 错误!未定义书签。 4.5图解法求理论塔板数 (9) 4.6实际板层数?9 5.精馏塔的工艺条件及有关物性数据................................................. 错误!未定义书签。 5.1操作压力?9 5.2操作温度?10 10 5.3平军摩尔质量? 5.4平均密度?11 5.5液体平均表面张力 ........................................................................................... 12 5.6液体平均黏度 ..................................................................................................... 12 13 6.精馏塔的塔体工艺尺寸? 6.1塔径 (13) 6.2空塔气速 (13) 6.3实际空塔气速 (14) 6.4精馏塔有效高度?错误!未定义书签。 7.踏板主要工艺尺寸的设计......................................................................................... 157.1塔板布置 .......................................................................................................... 18 7.2.塔板布 置………………………………………………………………………….18

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书 (一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为98.5%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R 4.单板压降不大于0.7kPa min (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为77.31kpa的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3 ) 3.组分的表面张力σ(mN/m ) 4.液体粘度μ(mPa ?s )

5.Antoine常数 二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为78.11 kg/kmol和112.6kg/kmol

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

苯-甲苯筛板精馏塔课程设计

河西学院 Hexi University 化工原理课程设计 题目: 苯-甲苯筛板式精馏塔设计 学院: 化学化工学院 专业:化学工程与工艺 学号: 姓名: 指导教师: 2014年12月6日

目录 化工原理课程设计任务书 1.概述 (5) 1.1序言 (5) 1.2再沸器 (5) 1.3冷凝器 (5) 2.方案的选择及流程说明 (6) 3.塔的工艺计算 (6) 3.1原料及塔顶塔底产品的摩尔分率 (7) 3.2原料液及塔顶、塔底产品的平均摩尔质量 (7) 3.3物料衡算 (7) 4.塔板数的确定 (7) N (7) 4.1理论塔板数T 4.2最小回流比及操作回流比 (8) 4.3精馏塔的气、液相负荷 (9) 4.4操作线方程 (9) 4.5图解法求理论塔板数 (9) 4.6实际板层数 (9) 5.精馏塔的工艺条件及有关物性数据 (9) 5.1操作压力 (9) 5.2操作温度 (10) 5.3平军摩尔质量 (10) 5.4平均密度 (11) 5.5液体平均表面张力 (12) 5.6液体平均黏度 (13) 6.精馏塔的塔体工艺尺寸 (13) 6.1塔径 (13) 6.2空塔气速 (14) 6.3实际空塔气速 (15)

6.4精馏塔有效高度 (15) 7.踏板主要工艺尺寸的设计 (15) 7.1塔板布置 (17) 7.2.塔板布 置 (18) 8.筛板的流体力学验算 (19) 8.1塔板压降 (19) 8.2液面落差 (20) 8.3液沫夹带 (20) 8.4漏液 (20) 8.5液泛 (21) 9.塔板负荷性能图 (22) 9.1漏液线 (22) 9.2液沫夹带线 (22) 9.3液相负荷下限线 (23) 9.4液相负荷上限线 (24) 9.5液泛线 (24) 10.板式塔常见附件 (26) 10.1进料罐线管径 (27) 11.附属设备 (30) 11.1塔顶空间 (30) 11.2塔底空间. (30) 11.3人孔 (30) 11.4塔高 (30) 12.设计筛板塔的主要结果汇总: (30) 参考文献 (32) 设计心得体会 (32) 成绩评定: ............................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档