第九章 第二节 他励直流电动机的起动
- 格式:ppt
- 大小:872.00 KB
- 文档页数:30
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
他励直流电动机串电阻启动的设计直流电动机串联电阻启动是一种常见的启动方式,主要应用于较小功率的直流电动机,例如家用电器、小型机械设备等。
本文将从设计角度详细介绍串联电阻启动的原理、设计步骤和注意事项等内容。
一、串联电阻启动的原理串联电阻启动是通过在直流电动机的励磁回路中串联一定阻值的电阻,来降低电动机的电流起动冲击,从而实现平稳起动。
具体原理如下:1.启动过程中,电阻串联在励磁回路中,减小了直流励磁电流,降低了电枢绕组的电流冲击。
2.随着直流电动机转速的提高,励磁电流逐渐减小,当直流电动机达到运行速度时,电阻完全从回路中剔除。
二、串联电阻启动的设计步骤1.确定电机参数:包括额定电压、额定功率、额定转速、励磁电流等。
这些参数将决定所需的电阻大小。
2.计算起动时的励磁电流:通常起动时的励磁电流取额定电流的1.5倍至2倍之间。
3. 根据励磁电流和直流电动机的励磁回路电压计算所需串联电阻的阻值:串联电阻的阻值需满足电阻起动后,励磁电流达到起动时的设定值,可通过Ohm定律计算。
4.选择适当的电阻:根据计算所得的阻值,选择匹配的电阻进行串联。
三、串联电阻启动设计的注意事项1.电阻选择:根据计算得到的阻值,选择合适的电阻器进行串联。
电阻的耐压需要满足直流电机励磁回路的额定电压要求,并具备较好的散热性能。
2.电阻功率:电阻器需要具备足够的功率承载能力,以避免过载引起烧毁。
功率大小可根据电阻阻值和电阻串联前后电流计算得到。
3.励磁回路的稳定性:在设计中要确保电阻串联后励磁回路的稳定性,过大的串联电阻可能引起回路的不稳定,可能导致起动失败。
4.启动时间:串联电阻启动的时间一般较长,需要根据具体场合和电动机的特性来确定合适的启动时间。
四、串联电阻启动的优缺点优点:1.降低了直流电动机起动时的冲击电流,减少了电网压压降和设备的损坏。
2.启动过程简单,成本较低。
3.过载能力较强,承受短时过负荷。
缺点:1.启动时间长,启动效率低,启动过程中耗能较大。
他励直流电机的运行直流电动机的起动电动机接到规定电源后,转速从0上升到稳态转速的过程称为起动过程。
他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。
合闸瞬间的起动电流很大应尽可能的缩短启动时间,减少能量损耗以及减少生产中的损耗起动电流大的原因:1、起动开始时:n=0,Ea=CeΦn=0,2、电枢电流:Ia=(U-Ea)/Ra=U/Ra Ra一般很小这样大的起动电流会引起后果:1、电机换向困难,产生严重的火花2、过大转矩将损坏拖动系统的传动机构和电机电枢3、供电线路产生很大的压降。
变频器整流回路的启动电阻结论:因此必须采取适当的措施限制起动电流,除容量极小的电机外,绝不允许直接起动起动方法:电枢串电阻启动——起动过程中有能量损耗,现在很少用,在实验室中用降压启动——适用于电动机的直流电源是可调的,投资较大,但启动过程中没有能量损耗。
直流启动器电枢串电阻起动:最初起动电流:Ist=U/(Ra+Rst) 最初起动转矩:Tst=KTΦIst启动电阻:Rst=(UN/λi IN)-Ra为了在限定的电流Ist下获得较大的起动转矩Tst,应该使磁通Φ尽可能大些,因此起动时串联在励磁回路的电阻应全部切除。
有了一定的转速n后,电势Ea不再为0,电流Ist会逐步减小,转矩Tst 也会逐步减小。
为了在起动过程中始终保持足够大的起动转矩,一般将起动器设计为多级,随着转速n的增大,串在电枢回路的起动电阻Rst逐级切除,进入稳态后全部切除。
起动电阻Rst一般设计为短时运行方式,不容许长时间通过较大的电流。
降压起动:对于他励直流电动机,可以采用专门设备降低电枢回路的电压以减小起动电流。
起动时电压Umin,起动电流Ist:Ist= Umin/Ra< λiIN启动过程中U随Ea上升逐渐上升,直到U=UN串励电动机绝对不允许空载起动。
串电阻起动设备简单,投资小,但起动电阻上要消耗能量;电枢降压起动设备投资较大,但起动过程节能。
直流电动机启动方法和原理分析摘要:本文对直流电动机的工作原理做了阐述,并对直流电动机的直接启动的缺点做了说明。
通过对他励直流电动机启动原理的详细分析,说明了几种启动方法的实用性和有效性。
关键词:直流电动机启动1引言直流电动机由于具有良好的启动和调速性能被广泛应用。
直流电动机的运行过程主要包括启动、稳定运行和制动三个阶段。
在启动过程中,直流电动机的电流值超过额定运行值的十几倍,如此大的电流将对电动机本身及直流供电系统造成很大的不良影响,严重时将导致安全生产事故甚至停产,所以控制直流电动机启动阶段的电流值对工矿企业的正常与安全生产具有重要意义。
为控制直流电动机启动阶段的电流值,技术人员采取了许多方法,这些方法都是以直流电动机的启动原理作为根据的,为满足现代企业对直流拖动设备的需求并发展更多、更先进的启动方法,对直流电动机的启动原理进行深入的分析显得尤为重要。
2直流电动机工作原理直流电动机工作原理的理论基础是安培定律:带电导体在磁场中必然会受到力的作用即电磁力作用。
判断所受电磁力方向用左手定则:磁力线穿过左手掌心,左手四指方向为带电导体电流方向,左手大拇指方向即为导体所受到的电磁力方向。
直流电动机的主磁极绕组通以直流电建立主磁场,转子绕组(也称为电枢绕组)通以交流电即为带电导体,转子绕组在磁场中受到电磁力作用并产生电磁转矩使转子旋转。
即将输入的电能转化为机械能输出。
3他励直流电动机直接启动特性3.1直接启动:即他励直流电动机电枢回路两端电压为额定值,电枢回路不串入附加电阻的启动方法。
3.2直接启动电流特点:(1)他励直流电动机电枢回路电压平衡方程为:U=Ea+IaRa=Cefn+IaRa (公式1)公式1中:U为他励直流电动机电枢回路两端电压;Ea为电动机转子绕组切割主磁场产生的反电动势;Ia为电枢回路总电流;Ra为电枢回路总电阻;Ce为感应电动势常数;f为每极磁通量;n为转子转速。
(2)根据公式1可知:他励直流电动机启动瞬间转子转速 n为零,所以反电动势Ea为零;电枢回路两端电压U为额定值:电枢回路总电阻Ra为额定值,所以相当于电压直接加在了电枢回路电阻上。
实验报告实验名称他励直流电动机的启动指导教师实验类型验证实验学时 2 实验时间2015年10月29日一、实验目的1、学习电机实验的基本要求与安全操作注意事项。
2、认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。
3、熟悉他励电动机(即并励电动机按他励方式)的接线、启动、改变电机转向的方法。
二、预习要点1、如何正确选择使用仪器仪表。
特别是电压表电流表的量程。
2、直流电动机启动时,为什么在电枢回路中需要串接启动变阻器? 不串接会产生什么严重后果?3、直流电动机启动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果?三、实验项目1、了解电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。
2、直流他励电动机的启动、调速及改变转向的方法。
四、实验步骤1、由实验指导老师介绍电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。
2、直流仪表、转速表和变阻器的选择直流仪表、转速表量程是根据电机的额定值和实验中可能达到的最大值来选择,变阻器根据实验要求来选用,并按电流的大小选择串联、并联或串并联的接法。
(1)电压量程的选择如测量电动机两端为220V的直流电压,选用直流电压表为500V或1000V 量程档。
(2)电流量程的选择选用安培表测量电枢电流,选用毫安表测量励磁电流。
(3)电机额定转速为1500r/min,转速表选用激光转速测量表。
(4)变阻器的选择测量各个变阻器的最大值,选择合适的变阻器作为发电机负载电阻与励磁电阻、电动机启动电阻与励磁电阻。
3、他励直流电动机启动步骤(1)按图1.1接线,检查电表的极性(+,-)是否正确,量程是否正确,电动机励磁回路接线是否按牢靠。
然后,将电动机电枢所串联的起动电阻1R ,断开开关S ,并断开电枢电源开关,做好起动准备。
(2)当电动机M 启动后,观察转电动机的偏转方向,逐渐减小电动机起动电阻1R 值,即起动时电阻1R 放在最大位置,启动完毕后将1R 短接。
他励直流电动机常用的启动方法
嘿,朋友们!今天咱来聊聊他励直流电动机常用的启动方法。
这可真是个有意思的事儿啊!
你想啊,这电动机就好比是一辆汽车,要想让它跑起来,那得有合适的启动方式呀!就像汽车点火一样,得恰到好处。
咱先说直接启动吧。
这就好像是运动员听到起跑枪声,“嗖”地一下就冲出去了。
简单直接,没啥弯弯绕绕的。
但这也得注意哦,电流可不能太大了,不然电动机可能就“累坏”啦!
还有电枢回路串电阻启动呢,这就像是给汽车挂挡一样。
通过串入不同的电阻,来控制电动机的速度和力量。
就好像开车时根据路况换挡,是不是很形象?这样能让电动机更平稳地启动,减少冲击。
降压启动也很重要呀!这就好比是让汽车慢慢地加速,而不是一下子猛踩油门。
通过降低电压,让电动机循序渐进地进入工作状态,更安全可靠呢。
那咱为啥要这么在意启动方法呢?这可不是闹着玩的呀!要是启动不好,电动机可能就闹脾气啦,一会儿不转了,一会儿又出故障了。
那咱的工作不就受影响了嘛!你说是不是这个理儿?
所以啊,选择合适的启动方法就像是给电动机找了一把合适的钥匙,能让它乖乖听话,好好工作。
咱可得认真对待,不能马虎呀!
你想想看,如果电动机启动不顺利,那得多耽误事儿啊!生产线上的东西都等着它来带动呢,它要是掉链子了,那损失可就大了去了。
总之,他励直流电动机的启动方法可是非常关键的。
咱得像爱护宝贝一样对待电动机,给它选对启动方法,让它发挥出最大的作用。
可别小瞧了这些方法哦,它们可是能让电动机变得更厉害的秘密武器呢!大家一定要记住啦!
原创不易,请尊重原创,谢谢!。
1 他励直流电动机的起动和反转一.他励直流电动机的起动据直流电动机的电压方程:U =E a +I a R a , a a a U E I R -=。
起动时:n =0,E a =0,故:a aU I R =,R a 只是电枢绕组的电阻,是很小的,故若直流电动机直接加额定电压起动:N st a U I R =≈10~20I N 甚至更大,这么大的电流除了所产生的电磁力会损坏拖动系统的传动机构外,对直流电机还会使电刷与换向器间产生强烈的火花甚至环火。
因此除了有较大电枢电阻、转动惯量较小的微型直流电动机外,一般的直流电动机是绝不允许直接起动的。
一般直流电动机允许的最大电流为2I N ,由起动电流公式可知,直流电动机的起动方法有:(一)降压起动:由降压人为机械特性可见,开始时把电压降到令I st <2I N ,T st >T L ,电机开始起动,随着转速上升逐步升高电压,最后电压升到U N ,进入固有机械特性,起动完毕。
要注意避免升压过快产生过大的冲击电流,如图。
(二)电枢回路串电阻起动:由电枢回路串电阻的人为机械特性可见,开始时所串电阻令I st <2I N ,T st >T L ,电机开始起动,随着转速上升逐级撤除电阻,最后全部外串电阻撤除,进入固有机械特性,起动完毕。
要注意避免撤除电阻的瞬间产生过大的冲击电流,如图。
上述起动过程均可采用自动控制系统,则起动性能更好。
二.他励直流电动机的反转由转矩公式:T =T C a I φ可知,改变磁通Φ或电枢电流I a 的方向都可使T 反向,从而实现电动机的反转。
故他励直流电动机反转的方法有:1. 电枢反向:励磁接线不变2. 磁场反向:电枢接线不变。