分类资料的统计描述
- 格式:ppt
- 大小:2.03 MB
- 文档页数:10
第六章 分类资料的统计描述一、教学大纲要求(一)掌握内容 1. 绝对数。
2. 相对数常用指标:率、构成比、比。
3. 应用相对数的注意事项。
4. 率的标准化和动态数列常用指标:标准化率、标准化法、时点动态数列、时期动态数列、绝对增长量、发展速度、增长速度、定基比、环比、平均发展速度和平均增长速度。
(二)熟悉内容1. 标准化率的计算。
2. 动态数列及其分析指标。
二、教学内容精要(一) 绝对数绝对数是各分类结果的合计频数,反映总量和规模。
如某地的人口数、发病人数、死亡人数等。
绝对数通常不能相互比较,如两地人口数不等时,不能比较两地的发病人数,而应比较两地的发病率。
(二)常用相对数的意义及计算 相对数是两个有联系的指标之比,是分类变量常用的描述性统计指标,常用两个分类的绝对数之比表示相对数大小,如率、构成比、比等。
常用相对数的意义及计算见表6-1。
表6-1 常用相对数的意义及计算常用相对数概念表示方式 计算公式 举例率(rate ) 又称频率指标,说明一定时期内某现象发生的频率或强度 百分率(%)、千分率(‰)等单位时间内的发病率、患病率,如年(季)发病率、时点患病率等构成比(proportion )又称构成指标,说明某一事物内部各组成部分所占的比重或分布 百分数疾病或死亡的顺位、位次或所占比重比(ratio )又称相对比,是A 、B 两个有关指标之比,说明A 是B 的若干倍或百分之几倍数或分数①对比指标,如男:女=106.04:100 ②关系指标,如医护人员:病床数=1.64③计划完成指标,如完成计划的130.5%%100⨯=单位总数可能发生某现象的观察数发生某现象的观察单位率%100⨯=观察单位总数同一事物各组成部分的位数某一组成部分的观察单构成比BA=比(三) 应用相对数时应注意的问题1. 计算相对数的分母一般不宜过小。
2. 分析时不能以构成比代替率 容易产生的错误有 (1)指标的选择错误如住院病人只能计算某病的病死率,不能认为是某病的死亡率; (2)若用构成指标下频率指标的结论将导致错误结论,如 某部队医院收治胃炎的门诊人数中军人的构成比最高,但不一定军人的胃炎发病率最高。
分类资料的统计分析一、概念分类资料是指观测对象按照其中一种特征进行分类或分组的数据。
常见的分类资料有性别(男、女)、学历(小学、初中、高中、大学)、职业(医生、教师、律师等)。
分类资料中每个分类称为一类或一组,根据组别统计频数或百分比可以揭示不同分类间的差异和关系。
二、方法1.频数与频率分析:通过统计每个类别的个数,得到各类别的频数和频率(频次比),并绘制柱状图、饼图等图表,直观地展示不同类别的占比情况。
2.极差分析:对于有序分类资料,比如学历,可以计算最高和最低值的差距,该差距称为极差。
极差分析衡量了不同类别之间的距离,有助于比较不同类别在一些变量上的差异。
3.交叉分析:用于分析两个或多个分类资料之间的关系。
通过交叉表格(列联表)和卡方检验,可以计算出各类别之间的关联度,判断不同分类是否相互关联。
4.分类资料的描述性统计分析:主要包括计算百分比、计算平均数、计算方差等统计指标。
通过这些指标,可以对不同类别的分布情况进行综合分析。
三、实践应用1.人口统计学:年龄、性别、婚姻状况等是人口统计学中常见的分类资料。
通过对这些资料的统计分析,可以了解人口结构、人口变动趋势等,为制定人口政策提供参考。
2.市场调研:对于市场调研中收集到的消费者分类资料,可以通过频数分析和交叉分析揭示不同人群的消费偏好和购买行为,帮助企业制定更加精准的销售策略。
3.教育评估:对学生的学历、家庭背景等进行统计分析,可以了解学生群体的整体素质水平、教育资源配置情况等,为教育政策制定和学校招生计划提供依据。
4.健康管理:对医疗数据中患者的病种、治疗效果等分类资料进行统计分析,可以评估不同病种的流行趋势、治疗效果、药物副作用等,为医疗决策提供参考。
总之,分类资料的统计分析是统计学中的重要内容,通过对分类资料的频数、频率、交叉分析等方法进行利用,可以揭示分类之间的差异、关系和趋势,为各个领域的决策者和研究者提供参考依据。
描述分类变量资料的主要统计指标在描述统计中,经常要描述两个变量之间的关系,这就是指标。
描述分类变量资料的主要统计指标有:平均数(AV)、中位数(median)、众数(major)、方差(F)、标准差(SD)、相关系数(r)、误差(SEM)、信赖区间(CI)、 F统计值等。
一、全距n。
平均数在统计学上指全部观察单位的算术平均数,即众数、中位数和方差的算术平均数。
它反映了各个变量在总体中所占的比例。
用公式表示为n=AV。
例如:成人牙齿脱落率调查,共调查成人2046人,其中有根以上完全不能保留者占4.5%,按标准脱落百分数计算,每根牙齿应脱落2%。
则该项调查结果的全距是2.5%。
全距愈小说明变量在总体中所占的比例愈大,代表性愈强。
二、方差 1。
方差又称离散系数或变异系数。
由于各个观察单位所得的资料是来自不同的变量,因而这些资料都是不可比的。
但在抽样调查时,要使各个单位取得同样的结论,在对总体进行分析时,就必须把各单位的观察结果加以平均化,从而消除了由于来源不同引起的资料不可比问题,并使各单位的离散状况趋于一致。
这就需要用变异系数将各单位的资料加以平均,使其成为总体的平均资料。
因此,方差就是各个单位的变异程度的一种度量。
方差的符号是σ,单位是标准差(SD)。
2。
标准差的计算公式为:SD=∑[(X-Y)÷2]×100%。
式中SD表示标准差。
标准差的大小是随研究的目的而异的,通常用于某些问题的检验或推断。
如:某县的全年工业总产值的多少与全年粮食总产量的多少成正比;销售额的增长速度快慢与企业利润成正比。
对于全距,方差,标准差,原因,方差是概率统计的专有名词。
在实际工作中,我们通常简单地用:均数×方差=总体标准差(均值×方差=总体方差),来概括变量之间的关系。
当然,我们在阅读统计资料时,有时也会碰到一些专门用语,如果只看题目或只看这些专门用语,也很难理解题意,但只要知道它们的含义就行了。
实习二统计描述第164~180页实习二统计描述医学统计资料类型¾数值变量资料:又称为计量资料。
变量值是定量的,有单位的,表示为数值的大小。
¾无序分类资料:又称为计数资料。
变量值是定性的,没有单位,表示为相互独立的类别。
¾有序分类资料:又称为等级资料。
变量值是定性的,没有单位,各类别具有程度上的差异。
注:不同类型的资料,统计方法不同;各种类型的资料之间是可以相互转化的。
一、数值变量资料的统计描述统计描述包括两个方面:集中趋势的描述和离散趋势的描述一、数值变量资料的统计描述(一)数值变量资料的频数表频数表(frequency table):当变量值或者观测值较多时,将变量值分为适当的组段,统计各组段中相应的频数(或者人数),以描述数值变量资料的分布特征和分布类型。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途1.描述数值变量资料的分布特征集中趋势(central tendency):频数最多的组段代表了中心位置(平均水平),从两侧到中心,频数分布是逐渐增加的。
离散趋势(tendency of dispersion):从中心到两侧,频数分布是逐渐减少的。
反映了数据的离散程度或者变异程度。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途2.描述数值变量资料的分布类型正态分布:集中位置居中,左右两侧频数基本对称。
常见近似正态分布。
偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布:集中位置偏向数值小的一侧或者左侧,有较长的右尾部。
负偏态分布:集中位置偏向数值大的一侧或者右侧,有较长的左尾部。
一、数值变量资料的统计描述(二)数值变量资料的频数分布图及正态曲线直方图及近似正态分布直方图及正偏态分布(二)数值变量资料的频数分布图及正态曲线一、数值变量资料的统计描述(三)集中趋势指标描述1.算数均数(均数mean )适用于正态分布或者近似正态分布总体均数:µ;样本均数:一、数值变量资料的统计描述一、数值变量资料的统计描述(三)集中趋势指标描述2.几何均数(geometric mean,G)适用于一种特殊的偏态分布资料:等比资料(常见于抗体滴度)。