数值分析试题集
- 格式:docx
- 大小:303.57 KB
- 文档页数:36
数值分析习题集及答案数值分析习题集及答案篇一:数值分析习题与答案第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx 的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式()()则得有5位有效数字,其误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2),相对误差限满足,而解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=,是 3位有数数字。
5.计算四个选项:取,利用:式计算误差最小。
第二、三章插值与函数逼近习题二、三 1.给定的数值表用线性插值与二次插值计算的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计()。
线性插值时,用及两点,用Newton插值误差限,因,故二次插值时,用,,三点,作二次Newton 插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次,函数表的步长h插值法求的近似值,要使误差不超过应取多少? 解:用误差估计式(),令因得3. 若,求和.解:由均差与导数关系于是4. 若的值,这里p≤n+1.解:可知当而当P=n+1时于是得有互异,求,由均差对称性5.求证.解:解:只要按差分定义直接展开得6.已知的函数表求出三次Newton均差插值多项式,计算f()的近似值并用均差的余项表达式估计误差. 解:根据给定函数表构造均差表由式()当n=3时得Newton均差插值多项式N3(x)=+()+()() 由此可得f() N3()= 由余项表达式()可得由于7. 给定f(x)=cosx的函数表篇二:数值分析试题1参考答案参考答案 1 一、1.22.xn?1?xn?3.1, 0 4.7,f(xn)(n?0,1,?) ?f(xn)25 7(k?1)15(k)x2x11336. ? ,1(k?1)x2??x1(k?1)1220?2003??10?2?4二、(1) L?0?13?00?1??(2)1?0?120??,U??0100?5??4000?23100??0?? 3??4?1??l65?a65?(l61u15?l62u25?l63u35?l64u45);u55u56?a55?(l51u16?l52u26?l53u356?l54u46)三、先造差分表如下:(1)选x1?,x2?,x3?,x4?为节点,构造三次向前Newton插值多项式2y1?3y1N(x?th)?y1??y1?t(t?1)?t(t?1)(t?2) 31 2!3!将x1和h代入上式,则有N3(?)?25?2t?1/2*t(t?1)?5/6*t(t?1)(?2)由??解得t?,所以f()?N()?(2) 选x3?,x4?,x5?为节点,构造二次向前Newton插值式N2(x3?th)?y3??y3t?t(t?1)2!将x3和h代入上式,则有N2(?)?20?t?t(t?1) 由+=解得t=,所以 f()?N2()?(3)由f(?)3ht(t?1)(t?2)3!(,0?t?2)R2(x0?th)?f(?)3600有R(2(xi?)?(t?1)(t?2)?**maxt(t?1)(t?2)0?t?23!3!可知f(x)有两位整数,故能保证有两位有效数字。
数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析复习试题第一章 绪论 一. 填空题 1.*x为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 位;又取 1.73≈-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为0.01 。
6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为0.0000204 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3位和 4 位有效数字。
9、若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多大误差7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字.8. 当N 充分大时,怎样求211Ndx x +∞+⎰9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝210. 设212S gt =假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大这个计算过程稳定吗12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量 a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nkkj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.24. 给定数据表如下:试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小r 是否唯一 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积19. 用许瓦兹不等式估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A fh --≈-++⎰;(2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. 用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-⎰;(2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式和辛普森公式当n →∞时收敛到积分()ba f x dx ⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)8.1xedx-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nnnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =,和处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,342⎛⎫ ⎪=- ⎪ ⎪⎝⎭x ,则 ∞A = ., 1x = ______.3.已知y =f (x )的均差(差商)01214[,,]3f x x x =,12315[,,] 3f x x x =,23491[,,]15f x x x =,0238[,,] 3f x x x =, 那么均差423[,,]f x x x = .4.已知n =4时Newton -Cotes 求积公式的系数分别是:,152,4516,907)4(2)4(1)4(0===C C C 则)4(3C = .5.解初始值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进的Euler 方法是 阶方法;6.求解线性代数方程组123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩的高斯—塞德尔迭代公式为 ,若取(0)(1,1,1)=-x, 则(1)=x .7.求方程()x f x =根的牛顿迭代格式是 . 8.1(), (),, ()n x x x 是以整数点01, ,, ,n x x x 为节点的Lagrange 插值基函数,则()n kjk k xx =∑= .9.解方程组=Ax b 的简单迭代格式(1)()k k +=+xBx g 收敛的充要条件是 .10.设(-1)1,(0)0,(1)1,(2)5f f f f ====,则()f x 的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式()p x 满足:(1)15p =,(1)20p '=,(1)30p ''=(2)57p =,(2)72p '=.2.构造代数精度最高的形式为10101()()(1)2xf x dx A f A f ≈+⎰的求积公式,并求出 其代数精度.3.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x .4.用最小二乘法求形如2y a bx =+的经验公式拟合以下数据:5.用矩阵的直接三角分解法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x .6 试用数值积分法建立求解初值问题0(,)(0)y f x y y y '=⎧⎨=⎩的如下数值求解公式1111(4)3n n n n n hy y f f f +-+-=+++,其中(,),1,,1i i i f f x y i n n n ==-+.三、证明题(10分)设对任意的x ,函数()f x 的导数()f x '都存在且0()m f x M '<≤≤,对于满足20Mλ<<的任意λ,迭代格式1()k k k x x f x λ+=-均收敛于()0f x =的根*x .参考答案一、填空题1.5; 2. 8, 9 ; 3.9115; 4. 1645; 5. 二; 6. (1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩, ,,0.1543)7. 1()1()k k k k k x f x x x f x +-=-'-; 8. j x ; 9. ()1B ρ<; 10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题 1.差商表:233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+ 令(2)57p =,(2)72p '=,求出a 和b. 2.取()1,f x x =,令公式准确成立,得:0112A A +=,011123A A +=, 013A =, 116A =. 2()f x x =时,公式左右14=;3()f x x =时,公式左15=, 公式右524=∴ 公式的代数精度2=.3.此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
数值分析复习试题第一章 绪论 一. 填空题 1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差.3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6位和 7 1.73≈(三位有效数字)-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 .5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0。
01 。
6、 已知近似值 2.4560A x=是由真值T x 经四舍五入得到,则相对误差限为 0。
0000204 。
7、 递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取01.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 。
8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10—5。
2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。
设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。
,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。
》0 —IT。
〉;+1| = 1。
|光 - 司 < 1。
5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。
1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。
,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。
R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。
进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。
数值分析习题集及答案数值分析习题集(适合课程《数值⽅法A》和《数值⽅法B》)长沙理⼯⼤学第⼀章绪论1.设x>0,x的相对误差为δ,求的误差.2.设x的相对误差为2%,求的相对误差.3.下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:4.利⽤公式求下列各近似值的误差限:其中均为第3题所给的数.5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少?6.设按递推公式( n=1,2,…)计算到.若取≈(五位有效数字),试问计算将有多⼤误差?7.求⽅程的两个根,使它⾄少具有四位有效数字(≈.8.当N充分⼤时,怎样求?9.正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝?10.设假定g是准确的,⽽对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,⽽相对误差却减⼩.11.序列满⾜递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多⼤?这个计算过程稳定吗?12.计算,取,利⽤下列等式计算,哪⼀个得到的结果最好?13.,求f(30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式计算,求对数时误差有多⼤?14.试⽤消元法解⽅程组假定只⽤三位数计算,问结果是否可靠?15.已知三⾓形⾯积其中c为弧度,,且测量a ,b ,c的误差分别为证明⾯积的误差满⾜第⼆章插值法1.根据定义的范德蒙⾏列式,令证明是n次多项式,它的根是,且.2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的⼆次插值多项式.3.4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究⽤线性插值求cos x 近似值时的总误差界.5.设,k=0,1,2,3,求.6.设为互异节点(j=0,1,…,n),求证:i)ii)7.设且,求证8.在上给出的等距节点函数表,若⽤⼆次插值求的近似值,要使截断误差不超过,问使⽤函数表的步长应取多少?9.若,求及.10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数).11.证明.12.证明13.证明14.若有个不同实根,证明15.证明阶均差有下列性质:i)若,则;ii)若,则.16.,求及.17.证明两点三次埃尔⽶特插值余项是并由此求出分段三次埃尔⽶特插值的误差限.18.求⼀个次数不⾼于4次的多项式,使它满⾜并由此求出分段三次埃尔⽶特插值的误差限.19.试求出⼀个最⾼次数不⾼于4次的函数多项式,以便使它能够满⾜以下边界条件,,.20.设,把分为等分,试构造⼀个台阶形的零次分段插值函数并证明当时,在上⼀致收敛到.21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误差.22.求在上的分段线性插值函数,并估计误差.23.求在上的分段埃尔⽶特插值,并估计误差.i)ii)25.若,是三次样条函数,证明i);ii)若,式中为插值节点,且,则.26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可⽤式的表达式).第三章函数逼近与计算1.(a)利⽤区间变换推出区间为的伯恩斯坦多项式.(b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较.2.求证:(a)当时,. (b)当时,.3.在次数不超过6的多项式中,求在的最佳⼀致逼近多项式.4.假设在上连续,求的零次最佳⼀致逼近多项式.5.选取常数,使达到极⼩,⼜问这个解是否唯⼀?6.求在上的最佳⼀次逼近多项式,并估计误差.7.求在上的最佳⼀次逼近多项式.8.如何选取,使在上与零偏差最⼩?是否唯⼀?9.设,在上求三次最佳逼近多项式.10.令,求.11.试证是在上带权的正交多项式.12.在上利⽤插值极⼩化求1的三次近似最佳逼近多项式.13.设在上的插值极⼩化近似最佳逼近多项式为,若有界,证明对任何,存在常数、,使14.设在上,试将降低到3次多项式并估计误差.15.在上利⽤幂级数项数求的3次逼近多项式,使误差不超过.16.是上的连续奇(偶)函数,证明不管是奇数或偶数,的最佳逼近多项式也是奇(偶)函数.17.求、使为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18.、,定义问它们是否构成内积?19.⽤许⽡兹不等式估计的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20.选择,使下列积分取得最⼩值:.21.设空间,分别在、上求出⼀个元素,使得其为的最佳平⽅逼近,并⽐较其结果.22.在上,求在上的最佳平⽅逼近.23.是第⼆类切⽐雪夫多项式,证明它有递推关系.24.将在上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25.把在上展成切⽐雪夫级数.29.编出⽤正交多项式做最⼩⼆乘拟合的程序框图.30.编出改进FFT算法的程序框图.31.现给出⼀张记录,试⽤改进FFT算法求出序列的离散频谱第四章数值积分与数值微分1.确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度:(1);(2);(3);(4).2.分别⽤梯形公式和⾟普森公式计算下列积分:(1); (2);(3); (4).3.直接验证柯特斯公式具有5次代数精度.4.⽤⾟普森公式求积分并计算误差.5.推导下列三种矩形求积公式:(1);(2);(3).6.证明梯形公式和⾟普森公式当时收敛到积分.7.⽤复化梯形公式求积分,问要将积分区间分成多少等分,才能保证误差不超过(设不计舍⼊误差)?8.⽤龙贝格⽅法计算积分,要求误差不超过.9.卫星轨道是⼀个椭圆,椭圆周长的计算公式是,这⾥是椭圆的半长轴,是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记为近地点距离,为远地点距离,公⾥为地球半径,则.我国第⼀颗⼈造卫星近地点距离公⾥,远地点距离公⾥,试求卫星轨道的周长.10.证明等式试依据的值,⽤外推算法求的近似值.11.⽤下列⽅法计算积分并⽐较结果.(1)龙贝格⽅法;(2)三点及五点⾼斯公式;(3)将积分区间分为四等分,⽤复化两点⾼斯公式.第五章常微分⽅程数值解法1. 就初值问题分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解相⽐较。
数值分析试题一、填空题(2 0×2′) 1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
第一章绪论 一. 填空题 x* -x4、 设x j —1.216, x^ - 3.654均具有3位有效数字,则 X 1X 2的相对误差限为 0.0055 ________ 。
5、 设为=1.216,x 2 =3.654均具有3位有效数字,则 为 他 的误差限为 0.01 _______________ 。
6、 已知近似值X A = 2.4560是由真值x T 经四舍五入得到,则相对误差限为0.0000204 .7、 递推公式二血 ,如果取y 0=逅".41作计算,则计算到 血时,误差为y n = 10y n-i -1, n = 1,2,11 8-10 ;这个计算公式数值稳定不稳定 不稳定 .28、 精确值二* =3.14159265…,则近似值=3.141和二2* =3.1415分别有_J3 _____________ 位和4 _ 位有效数字。
9、 若x 二e 、2.71828二x ,则x 有_6_位有效数字,其绝对误差限为 1/2*10 -。
10、 设x*的相对误差为2%,求(x*) n 的相对误差0.02n数值分析复习试题1. x 为精确值x 的近似值;y * = f x *为一元函数y1二 f X 的近似值;二f x*, y*为二元函数y2f x, y 的近似值,请写出下面的公式:*e 二 x* -x :f x*x*;r yi* :x* f f x*x*;r x*y2*f x*, y*:x(X*)+ 硏(x*,y*):y舍入误差 _______ 。
6 _____ 位和 7位; 又取 乔“.73 (三位有效数字),则1.73<丄汉10-22计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有ry2*:11、近似值x'0.231关于真值x =0.229有(2 )位有效数字;2..2001 • ”1999 。
数值分析练习题一、数值逼近1.1 利用泰勒公式求函数f(x) = e^x在x=0处的二阶近似表达式。
1.2 给定函数f(x) = sin(x),在区间[0, π]上,用插值法求三次多项式插值函数。
1.3 设已知点(0, 1),(1, 2),(2, 5),(3, 10),求通过这四个点的拉格朗日插值多项式。
x: 0, 1, 2, 3, 4y: 1, 3, 7, 11, 171.5 对于函数f(x) = e^(x^2),在区间[1, 1]上,求最佳平方逼近多项式。
二、数值积分与数值微分2.1 利用梯形公式计算定积分I = ∫(0, 1) e^x dx。
2.2 给定函数f(x) = x^3 3x,使用辛普森公式计算定积分I =∫(0, 2) f(x) dx。
2.3 对函数f(x) = 1/(1+x^2),在区间[5, 5]上,使用高斯勒让德求积公式计算定积分。
2.4 利用数值微分公式求函数f(x) = sin(x)在x=π/4处的导数。
2.5 给定数据点(x, y),其中x = 0, 1, 2, 3, 4, y = 1, 3, 7, 11, 17,求y在x=2处的导数。
三、常微分方程数值解法3.1 用欧拉法求解初值问题y' = x + y,y(0) = 1,步长h=0.1,计算y(0.5)的近似值。
3.2 对于初值问题y' = y + x^2,y(0) = 1,使用改进的欧拉法(梯形法)求解y(1)。
3.3 利用龙格库塔方法求解初值问题y' = 2xy,y(0) = 1,计算y(0.5)的近似值。
3.4 给定边值问题y'' + 4y = 0,y(0) = 0,y(π) = 1,使用有限差分法求解。
四、线性方程组数值解法4.1 利用高斯消元法求解线性方程组:3x + 4y z = 72x 3y + 5z = 8x + 2y + 3z = 35x + 2y z = 102x 6y + 3z = 4x + 0.5y + 4z = 74.3 给定矩阵A,使用共轭梯度法求解线性方程组Ax = b,其中:A = [[4, 1, 0], [1, 4, 1], [0, 1, 4]]b = [12, 9, 3]A = [[2, 1, 0], [1, 2, 1], [0, 1, 2]]b = [1, 0, 1]五、非线性方程数值解法5.1 使用二分法求解方程f(x) = x^3 2x 5 = 0在区间[2, 3]内的根。
模拟试卷(一)一、填空题(每小题3分,共30分)y f (X y)5.解初始值问题的改进的Euler 方法是 ________ 阶方法;y(X o ) y o5x-| 3X 2 0.1x 3 36 .求解线性代数方程组2x , 6X 2 0.7X 3 2的高斯一塞德尔迭代公式为X 1 2X 2 3.5x 3 1若取 X (0) (1. 1.1).则 X ⑴ ______________7.求方程Xf (X)根的牛顿迭代格式是 _______________ .&丨o (x). h(x).L . l n (X)是以整数点X o . X 1.L . X n .为节点的Lagrange 插值基函数,则nxj j (X k )= ----------------- .k 09.解方程组Ax b 的简单迭代格式X (k 1} Bx (k) g 收敛的充要条件是 ___________________ .10 .设f (-1)1. f (0)0. f (1) 1. f (2)5 ,则f (x)的三次牛顿插值多项式为 ___________________ ,其误差估计式为 _________________________ .二、综合题(每题10分,共60分)1. 求一次数不超过 4次的多项式p(x)满足:p(1) 15,p(1) 20 , p (1) 30p(2) 57 , p(2) 72.112.构造代数精度最高的形式为 °xf(x)dx A )f (3)Af(1)的求积公式,并求出1 5 232.设A2 1 0 , x 41422,贝V A =——.,X 广 ----------- 3.已知y=f(x)的均差14flX 0.X 1.X 2]— , flX 1.X 2.X 3]3^5 , flX 2.X 3.X 4]39115,8Hx o .X 2.X 3]- 3,那么均差 f [X 4,X 2, X 3]=4.已知n=4时Newton — Cotes 求积公式的系数分别是:C 04)-,C i (4)9016C (4) .C 2 451有3个不同节点的高斯求积公式的代数精度是次的.(差商)其代数精度.x k x k 13.用Newt on 法求方程x In x 2在区间(2,)内的根,要求 --------------- ----- 10X k25.用矩阵的直接三角分解法解方程组1 02 0X15 0 1 0 1 X 2 3 1 2 4 3 X 317 . 0 1 03 X 476试用数值积分法建立求解初值问题y f (: x ,y)的如下数值求解公式y(0) y o1 32 1 ⑷10. -x x -x, f ()( )(x 1)x(x 1)(x 2)/24( 1,2)6 6二、综合题y n 1y n 1hi (fn1 4fnf n 1),其中f i f (x, %), i n 1, n, n 1.三、证明题(10分) 设对任意的x ,函数f (x)的导数f (x)都存在且0f (x) M ,对于满足0 —的任意,迭代格式X k 1 X k f (xj 均收敛于f (x) 0的根x *.M参考答案一、填空题91, 16 1. 5 ; 2. 8, 9 ; 3.; 4.1545才1)(3 3x 2k) 0.1x 3k))/5 6. x 2k1)(2 2x (k1) 0.7x 3k))/6 , x 3k1)(1 才1) 2x 2k ")*2/75.(0.02 , 0.22, 0.1543)7. x k 1X kX k f(X k ) . 8 1 f (X k )'X j . 9.(B) 1.p(x) 1520( x 1) 15(x 1)2 7(x 1)3 (x 1)3(x 2) 5 4x 3x 2 2x 3 x 4其他方法: 设 p(x) 15 20(x 1) 15(x 1)2 7(x 1)3 (x 1)3(ax b)令 p(2)57 , p (2)72,求出 a 和 b.2•取f(x) 1,x ,令公式准确成立,得:5•解设1 02 0 11 020 1 0 1 l 21 1u22u 23 u 24 1 2 4 3l31 l321u33u340 1 0 3l 41l42 l 43 1u 44由矩阵乘法可求出U jj 和l ij1 1A 。
2 A J :;[则 || A 「一—仙二 -------------'a+1 23设「_1 J ,当a满足条件时,A 可作LU 分解。
(试卷一)一 (10 分)已知% =1.3409, x 2 =1.0125都是由四舍五入产生的近似值, 判断x-i x 2及x 1 - x 2有几位有效数字。
二(1多项式三(15分)设f(x)・ C 4[a,b ],H (x )是满足下列条件的三次多项式H (a)二 f (a) , H (b)二 f (b) , H (c) = f (c) , H (c)二 f (c)( a ::: c :: b )求f (x) -H(x),并证明之。
1四(15分)计算,: =10』。
o1 +X五(15分)在[0,2]上取X 。
= 0, X 1 = 1, X 2 = 2,用二种方法构造求积公式,并给出其公式的代 数精度。
六(10分)证明改进的尢拉法的精度是 2阶的。
七(10分)对模型y ■ = ■・y ,■:■ 0,讨论改进的尢拉法的稳定性。
八(15分)求方程x 3 4x 2 - 7x - 1 = 0在-1.2附近的近似值,;=10 "。
(试卷二)一 填空(4*2分)1 { k (x) }k£是区间[0,1]上的权函数为'(x)=x 2的最高项系数为1的正交多项式族,其中1(x ) =1,贝y . X 0( x )dx = ------------ , 1(X )工 -------数值分析试题集3 2 * * *4设非线性方程f (x)二(x -3x - 3x -1)(x • 3) = 0,其根& = -3 ,他 =-1,则求为的近似值时,二阶局部收敛的牛顿迭代公式是 -------------------------------------- 。
广1 —0.5 a '二(8 分)方程组AX=b,其中A= — 0.5 2 -0.5,X, R3l -a -0.5 1 』1试利用迭代收敛的充要条件求出使雅可比迭代法收敛的a的取值范围,a取何值时雅可比迭代收敛最快?2选择一种便于计算的迭代收敛的充要条件,求出使高斯-塞德尔迭代法收敛的a的取值范围。
"V " = f(X y)三(9分)常微分方程初值问题丿'的单步法公式为y n* = y n」+2hf (x n, y n),求该、、y°= y(x°)公式的精度。
四(14分)设A X =b为对称正定方程组1求使迭代过程X k 1二X k •〉(b-A・X k)收敛的数〉的变化范围;『2 -1 -1、、1、『0、2用此法解方程组-12 0-X2=1L1 0<X3」(取初值X。
=( 1,1,1)T,小数点后保留4位,给出前6次迭代的数据表)(试卷三)on一设A= ,求A的谱半径P (A),范数为1的条件数cond (A)1。
(—5 1丿设f (x) =3x2 5,x i =i, (i =0,1,2,…),分别计算该函数的二、三阶差商f [X n , x n1 x 2],f[x n, X n 1 ,x n '2 , x n '3]设向量x = (% , X2 , X3)TX" + 2x2+ x3,问它是不是一种向量范数?请说明理由。
若定义||x若定义11X ||二2-1-1 x1 3x2-12X3,问它又是不是一种向量范数?请说明理由。
-10 ,将矩阵分解为1」A二LU,其中L是对角线元素l H0(^ 1,2,3)的、 2五 设有解方程12 - 3x 2cosx =0的迭代法x n 1 = 4亠cosx n31证明:对任意x 0三(-::,::),均有lim Xn = x ( x 为方程的根);2取X 。
=4,用此迭代法求方程根的近似值,误差不超过 10;,列出各次迭代值;3此迭代的收敛阶是多少,证明你的结论。
六对于求积公式1求该求积公式的代数精度; 2 证明它为插值型的求积公式。
(试卷四)一填空题(每空5分,共25分)1设精确值为x =0.054039412,若取近似值x^ 0.05410281,该近似值具有 效数字。
22 设 f(x) =3x 5,X i =i (i = 0,1,2,),则三阶差商 f[x n ,x n 1,x n 2,x n 3](1 1、3 A =,贝U P(A)= -------------- 。
5 1丿 勺+1 2"T 亠4 设A=,当a 满足条件 ------------ 时,必有分解式 A=LL ,其中'、、a 4 丿素为正的下三角阵。
112 1112 35 求积公式 f(x)d^ - f(—) _一 f(—) • _ f(—)的代数精度为 --------------- 。
0 3 4 3 2 3 4二(10分)设f (X )• C 3[ 0,1],试求一个次数不超过 2的多项式P(x),使得p(0) = f(0) =1, p(1) = f(1) =e, p(1) = f (1) =e三(20分)1利用埃米特插值多项式推导带有导数项的求积公式11 1f(x)dx : 3【2f (4)------- 位有L 是对角线元bf (x)dx :ab 「a If (a) f (b)(b - a)2121f (b) - f (a)-f (!) 2f2且其余项为「窘宀)((a®) 2利用这个公式推导所谓带修正项的复化梯形求积公式Xn h2f(X)dX :「f (X n)-f (X o) 112x o这里:T n =h」f(X o) f(X!)f(x nj p - f(X n) , X iIL2 2四(15分)试确定系数:•,[,,使微分方程的数值计算公式y i • (y nj y n) h y.」y n)具有尽可能高的局部截断误差。
(符号说明:Y nj = y (X n _1), y n = Y (X p))3 2五(15分)方程X - X -1 = 0在X。
= 1.5附近有根,对于给定的迭代关系式, 1X k 1 =1 兀,试问:X k1、问迭代是否收敛;若收敛,用列表形式给出其前6步迭代的近似根。
2、估计该迭代式的收敛速度。
广1-0.5 a 、「1、六(15分)方程组AX = b,其中A =-0.52-0.5,b =2-0.51>L丿试利用迭代收敛的条件给出使雅可比迭代法收敛的a的取值范围,给出使雅可比迭代收敛最快的a取值,并用2至3个a的具体值进行计算,数值化地说明其迭代收敛的快慢程度。
(说明:数值实验的数据请以列表形式写出。
)(试卷五)一填空题(每空5分,共25分)1已知X1 =1.3409,X2 =1.0125都是由四舍五入产生的近似值,X1 X2的有效数字是几位---------- 。
22设f(x) =3x 5,X i =i (i =0,1,2,),则二阶差商f[X n,X n 1,X n 2H --------------------------- 。
‘1 1、3 A = ,则II A || 1 = ---------------------- 。
心1丿a +1 2、4设A= ,当a满足条件----------- 时,A可作LU分解。
T 4丿n5设X i (i =0,1, 2, ,n)是互异节点,对于k=0,1, 2厂,n,、x:l i(x)二 ----------- 。
i=0二(10分)三(25分)1设f(x)在〔a,b 1上具有二阶连续导数,利用泰勒展开推导以下求积公式2利用这个公式推导以下复化求积公式xn这里:T n -h 2 f (X 。
) f (xjf (X n 」)2 f(X n ) ,X ii3对于给定精度< -10 -4,利用上述求积公式T n ,选取合适的求积步长 h ,计算I 二e的近似值。
f (x)dxaf (a) (b - a) f (a) (b一 a)2f (a)(b-a)3 6f (x)dx T nxof (x n )-f (X 。
)1二 x 。
i h, h =2dx求该公式的精度。
2五(15分)设有解方程12 —3x • 2cosx 二0的迭代法x n d - 4 - cosx n31证明:对任意X 。
•(-==<=),均有limxn 二x* ( x*为方程的根);n —^c2取x o =4,用此迭代法求方程根的近似值,误差不超过 10 ",列出各次迭代值;3此迭代的收敛阶是多少,证明你的结论。
六(15分)设方程组| 5x 1 2x 2 x 3 - -12 -x 1 4x 2 2x 3 二 20 2x 1 -3x 210x 3 = 31给出雅可比迭代算式;2说明其收敛性;3取初始向量X 。
=(0,0,0)T ,给出其前6步迭代所求出的近似值。
(说明:数据请以列表形式写出。
)/、_4、/A 、》\(试卷八)一填空题(每空5分,共25分)1已知x 1 = 1.3409 , x 2 = 1.0125都是由四舍五入产生的近似值, x 1 x 2的有效数字是几位 ---------- 。
2 设 f (x ) -3x 2 5 , X j =i (i =0,1,2,),则二阶差商 f[x n ,xn 1,x n .2^ ----------------- 。
A 门3 A = 51,则 || A|| 严----------- 。
<5 1丿a +1 2、4 设A=,当a 满足条件 ----------- 时,A 可作LU 分解。
< T4丿n5 设 X i (i =0,1, 2,,n )是互异节点,对于 k =0,1, 2厂,n ,、x :l i (x )二 ------------ 。
i=0二(10分)由下表求插值多项式四(10分)常微分方程初值问题y 二 f(x,y) y 。
=y(x °)的数值公式为y n 1 二 2头一 y n 」—hf(X n ,y n ),(25分)1设f(x)在〔a,b 1上具有二阶连续导数,利用泰勒展开推导以下求积公式b 2 3(b — a) (b — a)f (x)dx : f (a) (b - a) f (a) f (a)-a 2 62利用这个公式推导以下复化求积公式Xn h2f (X)dx :「—I f (X n^ f (X o) I6x of(xo)f(xi)中(—。
M好1 3对于给定精度•;:=10 一4,利用上述求积公式T n,选取合适的求积步长h,计算I = . e0 的近似值。
y ' = f (x, y)四(10分)常微分方程初值问题丿y ' "的数值公式为y n出=2y n—y nJLi y。