观察函数
对数求导法适用于多个函数相乘或幂指函数 求导。
例6 y = x x (x > 0), 求 y . 解 两边取对数, 得 lny = xlnx. 上式两边同时对
x 求导, 把 y 看成 x 的函数, 得,
1 y ln x 1, y
于是 y = y (1 + lnx) = x x (1 + lnx).
个方程 F (x, y)=0 表示的函数,这种函数称为隐函数。
如,
x2 y2 1 0
x2 xy y2 4
一般的,如果变量 x 和 y 满足方程 F (x, y)=0, 在一定条件下,当 x 在某区间内任取一值时,相应 的总有满足该方程的唯一的 y 值存在,那么就说方 程 F (x, y)=0 在该区间内确定了一个隐函数。
例3 设 xy ex ey 0 确定了函数 y = y (x), 求 dy .
dx x0
解 方程两边同时对 x 求导, 把 y 看成 x 的函数有
y xy ex ey y 0,
解得
dy ey y dx x ey ,
再由原方程知 x 0 时,y 0. 代入上式,得
dy dx
x0
ey y x ey
上式两边同时对 x 求导, 把 y 看成 x 的函数, 得
1 y cos x ln ln x sin x 1 1 ,
y
ln x x
y
ln
x sin x
cosxlFra bibliotek lnx
sin x x ln x
.
例8 设 x > 1, x 2, 3, 4, y (x 1)(x 2) , 求 y.
(x 3)(x 4)
2sin y y (2 cos y)2