粉末烧结(术语)
- 格式:pdf
- 大小:110.90 KB
- 文档页数:3
粉末烧结原理
粉末烧结是一种常见的金属材料制备工艺,通过高温加热和压力作用,将金属粉末颗粒相互结合,形成致密的块状材料。
这种制备方法被广泛应用于粉末冶金、陶瓷制备、复合材料制备等领域。
下面将介绍粉末烧结的原理及其在材料制备中的应用。
首先,粉末烧结的原理是基于固态扩散和颗粒间的结合作用。
在烧结过程中,粉末颗粒表面发生固态扩散,使得颗粒间的空隙逐渐减小,最终形成致密的结构。
同时,高温和压力的作用使得颗粒间发生结合,形成坚固的结构。
这种固态扩散和颗粒结合作用是粉末烧结的基本原理。
其次,粉末烧结在材料制备中具有重要的应用价值。
首先,粉末烧结可以制备高性能的工程材料。
通过粉末烧结,可以制备出具有良好力学性能、耐磨性、耐腐蚀性的材料,广泛应用于航空航天、汽车制造、机械加工等领域。
其次,粉末烧结还可以制备具有特殊功能的材料。
例如,通过粉末烧结可以制备出具有磁性、导电性、导热性等特殊功能的材料,用于电子器件、磁性材料等领域。
因此,粉末烧结在材料制备中具有广泛的应用前景。
总之,粉末烧结是一种重要的材料制备工艺,其原理是基于固态扩散和颗粒结合作用。
粉末烧结在材料制备中具有重要的应用价值,可以制备高性能的工程材料和具有特殊功能的材料。
随着材料科学的发展,粉末烧结技术将会得到进一步的发展和应用,为各个领域提供更加优质的材料产品。
材料的烧结名词解释烧结是一种通过高温处理将粉末颗粒结合成实体块体的工艺过程。
在材料科学和工程中,烧结被广泛应用于金属、陶瓷和复合材料等领域。
本文将对几个与烧结过程相关的名词进行解释,以帮助读者更好地理解这一重要的材料加工方法。
1. 简介烧结是通过在合适的温度下将粉末颗粒粘结在一起,形成块体材料的过程。
通常,这种过程需要提供足够的热量和压力来促进颗粒之间的结合。
烧结既可以用于制备金属材料,也可以用于制备陶瓷材料以及金属陶瓷复合材料。
2. 颗粒颗粒是指烧结过程中所使用的原始材料,通常以粉末的形式存在。
这些粉末可以是金属、陶瓷或其他材料的小颗粒,具有一定的形状和尺寸。
在烧结过程中,这些颗粒被加热至高温下与相邻颗粒产生扩散,并形成晶粒结构,从而实现颗粒结合。
3. 扩散扩散是指在高温下,原子或离子在固体内部移动的过程。
在烧结过程中,扩散是颗粒结合的重要机制之一。
通过扩散,颗粒表面的原子或离子可以逐渐向相邻颗粒扩散,形成结合接触点。
这种扩散过程使得颗粒能够逐渐融合在一起,形成一个整体的材料。
4. 烧结温度烧结温度指在烧结过程中所需要的温度条件。
对于不同的材料,其烧结温度各不相同。
烧结温度通常与材料的熔点相关,但不一定与熔点相同。
烧结温度的选择对于烧结过程的进行具有重要意义,过高或过低的温度可能会导致颗粒结合不良或材料的缺陷。
5. 烧结压力烧结压力是指在烧结过程中施加在颗粒上的压力。
通过施加适当的压力,可以促进颗粒之间的结合,提高烧结的效率和质量。
烧结压力的大小取决于烧结过程中所使用的设备和材料的性质。
通常情况下,较高的烧结压力可以达到更密实的结构。
6. 烧结时间烧结时间是指颗粒在高温下进行烧结过程所需要的时间。
对于不同的材料和烧结条件,烧结时间各不相同。
烧结时间的选择应综合考虑烧结温度、压力和材料的性质等因素。
较长的烧结时间可以提高材料的致密性和结合强度,但过长的时间可能会导致颗粒生长过大或发生异常晶粒长大。
粉末烧结原理粉末冶金是一种重要的金属材料制备技术,而粉末烧结则是粉末冶金中的一项关键工艺。
粉末烧结是指将金属或非金属粉末在一定的温度、压力和时间条件下进行加热压制,使粉末颗粒之间发生冶金结合,从而形成致密的块状材料的工艺过程。
下面将详细介绍粉末烧结的原理。
首先,粉末烧结原理的第一步是粉末的预处理。
通常情况下,粉末材料需要经过混合、干燥和成型等工艺步骤,以确保粉末颗粒的均匀性和成型性。
在混合过程中,不同种类的粉末可以被混合在一起,以获得特定性能的材料。
然后,干燥工艺可以去除粉末中的水分,有利于后续的成型工艺。
最后,成型工艺将粉末压制成特定形状的坯料,为后续的烧结工艺做好准备。
其次,粉末烧结的第二步是烧结过程。
在烧结过程中,粉末坯料被置于高温环境中,通常伴随着一定的压力。
在高温下,粉末颗粒之间会发生扩散和结合的过程,从而形成致密的晶粒结构。
在烧结过程中,温度、压力和时间是三个重要的参数,它们将直接影响到烧结后材料的密度、晶粒大小和性能。
最后,粉末烧结的第三步是后处理工艺。
烧结后的材料通常需要进行热处理、表面处理和精加工等工艺步骤,以进一步提高材料的性能和精度。
热处理可以消除烧结过程中产生的残余应力和缺陷,提高材料的强度和韧性。
表面处理可以改善材料的耐腐蚀性能和外观质量。
精加工则可以使材料达到特定的尺寸和形状要求。
总之,粉末烧结是一种重要的材料制备工艺,它通过预处理、烧结和后处理三个步骤,将粉末材料转化为致密的块状材料。
粉末烧结工艺可以制备出具有特定性能和形状的材料,广泛应用于汽车、航空航天、电子、医疗器械等领域。
通过对粉末烧结原理的深入了解,可以更好地掌握这一重要工艺,为材料制备和应用提供技术支持。
粉末烧结原理
粉末烧结是一种常用的金属粉末加工技术,用于将细粉末颗粒通过加热和压制的方式,形成致密的固体材料。
其工作原理可简述如下:
1. 粉末制备:首先需要选择合适的金属粉末或其混合物,这些粉末通常具有较小的粒径和均匀的颗粒大小。
粉末制备过程可以包括球磨、气雾化、水热合成等手段,以获得所需的粉末。
2. 粉末混合:将所选的金属粉末混合均匀,以确保最终烧结体具有均一的组织结构和化学成分。
3. 压制成型:将混合的金属粉末置于模具中,并施加高压力以压制粉末。
压制的目的是使粉末颗粒之间发生变形,并使颗粒间的物理接触增加,促进后续烧结过程中的颗粒结合。
4. 烧结:将已压制成型的粉末坯体置于高温环境中进行加热处理。
在加热过程中,金属粉末颗粒之间发生扩散和结合,生成新的结晶颗粒,并形成致密的固体结构。
具体的烧结温度和时间取决于所使用的粉末和目标材料。
5. 冷却处理:完成烧结过程后,将烧结体从高温环境中取出,并进行冷却处理,使其达到室温。
冷却过程有助于固化和稳定烧结体的结构,并提高其力学性能。
总的来说,粉末烧结通过压制和加热金属粉末,使其颗粒结合并形成坚固的体材料。
这种方法可用于制备各种金属材料,具
有较高的加工效率和良好的成型能力,广泛应用于金属制造和材料工程领域。
粉末烧结原理粉末冶金是一种利用粉末作为原料,通过成型和烧结工艺制备金属、陶瓷和复合材料的工艺方法。
其中,粉末烧结是粉末冶金中最为重要的一环,它通过高温烧结使粉末颗粒互相结合,形成致密的块体材料。
本文将介绍粉末烧结的原理及其在工业生产中的应用。
首先,粉末烧结的原理是基于固相烧结的物理化学过程。
在烧结过程中,粉末颗粒之间发生扩散、溶解、再结晶等过程,最终形成致密的块体材料。
这一过程主要受温度、压力、时间等因素的影响。
在高温下,粉末颗粒表面发生扩散,原子间的结合能降低,颗粒之间出现结合,形成颗粒间的颈部,最终形成致密的结构。
其次,粉末烧结的原理还与粉末颗粒的形状、大小和分布有关。
通常情况下,形状不规则、尺寸均匀的粉末颗粒更有利于烧结过程中的颗粒间结合。
此外,粉末颗粒的分布均匀性也对烧结效果有着重要影响。
分布不均匀会导致烧结过程中局部温度过高或过低,影响颗粒间的结合质量。
再者,粉末烧结的原理还与烧结助剂的选择和添加有关。
烧结助剂可以改善粉末颗粒间的结合情况,促进烧结过程中的颗粒间扩散和溶解。
常用的烧结助剂有氧化铝、氧化锆等,它们能够形成液相,填充颗粒间的空隙,促进颗粒间的结合。
最后,粉末烧结在工业生产中有着广泛的应用。
在制备金属材料方面,粉末烧结可以制备具有特殊功能的工程材料,如高温合金、硬质合金等。
在制备陶瓷材料方面,粉末烧结可以制备高性能的陶瓷材料,如氧化铝、氮化硅等。
此外,粉末烧结还可以制备具有复合功能的粉末冶金材料,如金属陶瓷复合材料、金属基复合材料等。
总之,粉末烧结作为粉末冶金中的重要工艺环节,其原理是基于固相烧结的物理化学过程,受到温度、压力、时间等因素的影响。
在工业生产中,粉末烧结已经得到了广泛的应用,为制备高性能的材料提供了重要的技术手段。
粉末的烧结定义烧结:压坯置于基体金属熔点以下温度(约0.7~0.8T,单位K)加热保温,粉末颗粒之间产生原子扩散、固溶、化合和熔接,致使压坯收缩并强化,这一过程称为烧结。
烧结对粉末冶金材料和制品的性能有着决定性的影响。
烧结的结果是粉末颗粒之间发生粘接,烧结体的强度增加,密度提高。
在烧结过程中,压坯要经过一系列的物理化学变化。
开始是水分或有机物的蒸发或挥发,吸附气体的排除,应力的消除,粉末颗粒表面氧化物的还原;继之是原子间发生扩散,粘性流动和塑性流动,颗粒间的接触面增大,发生再结晶和晶粒长大等。
出现液相时,还可能有固相的溶解和重结晶。
这些过程彼此之间并无明显的界限,而是穿插进行,互相重叠,互相影响。
加之一些其它烧结条件,使整个烧结过程变得很复杂。
用粉末烧结的方法可以制得各种纯金属、合金、化合物以及复合材料。
在烧结过程中,固体颗粒表面能的减小是烧结的“推动力”,也即热力学条件。
烧结是一个自发的不可逆过程。
粉末烧结用填料(packing material for powder sintering)粉末烧结时在烧舟内充填于产品间的,起均热、保护作用和防止成分挥发的粉状或粒状材料。
将粉末压坯埋入惰性粉末或者装入密封盒内进行烧结是一种极简单的烧结技术,从生产粉末冶金零件的早期起,它就得到了广泛的应用。
采用装有填料的密封盒,则在烧结时可以不必使用还原气氛。
含于填料内的空气中的氧,在烧结开始阶段会与压坯表面起反应,如果填料中含有还原剂,则不足以引起严重的氧化。
适合于用作填料材料的有Al2O3粉、ZrO2粉以及石墨粉、炭黑、木炭粉、铸铁屑等以及它们的混合物。
对铁粉压坯的烧结,为了防止脱碳,填料中含有少量的碳是必不可少的。
在有色金属粉末冶金中,黄铜压坯的烧结总与一定程度的锌的挥发联系在一起,如果黄铜压坯放入密封盒内进行烧结,则盒内气氛很快充满锌的蒸气而可防止合金的进一步脱锌。
在氢气中烧结硬质合金时,为减少和防止硬质合金压坯脱碳而使合金性能下降,通常使用Al2O3粉并在其中加入少量炭黑作填料等等。
粉末冶金烧结1.烧结的方法⑴按原料组成不同分类。
可以将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、M oSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag -W等。
多元系液相烧结以超过系统中低熔成分熔点的温度进行的烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵按进料方式不同分类。
分为为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,烧结时烧结材料连续地或平稳、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可依据炉内烧结材料的性能确定合适的烧结制度,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
⑴烧结温度和时间烧结温度的高低和时间的长短影响到烧结体的孔隙率、致密度、强度和硬度等。
粉末冶金术语(烧结)
1、烧结 sintering
粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
2、填料 packing material
在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。
3、预烧 presintering
在低于最终烧结温度的温度下对压坯的加热处理。
4、加压烧结 pressure
在烧结同时施加单轴向压力的烧结工艺。
5、松装烧结 loose-powder sintering,gravity sintering
粉末未经压制直接进行的烧结。
6、液相烧结 liquid-phase sintering
至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。
7、过烧 oversintering
烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。
8、欠烧 undersintering
烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。
9、熔渗 infiltration
用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。
10、脱蜡 dewaxing,burn-off
用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。
11、网带炉 mesh belt furnace
一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。
12、步进梁式炉 walking-beam furnace
通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。
13、推杆式炉 pusher furnace
将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。
14、烧结颈形成 neck formation
烧结时在颗粒间形成颈状的联结。
15、起泡 blistering
由于气体剧烈排出,在烧结件表面形成鼓泡的现象。
16、发汗 sweating
压坯加热处理时液相渗出的现象。
17、烧结壳 sinter skin
烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。
18、相对密度 relative density
多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。
19、径向压溃密度 radial crushing strength
通过施加径向压力测定的烧结圆筒试样的破裂强度。
20、孔隙度 porosity
多孔体中所有孔隙的体积与总体积之比。
21、扩散孔隙 diffusion porosity
由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。
22、孔径分布 pore size distribution
材料中存在的各级孔径按数量或体积计算的百分率。
23、表观硬度 apparent hardness
在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。
24、实体硬度 solid hardness
在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排
除了孔隙的影响。
25、起泡压力 bubble-point pressure
迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。
26、流体透过性 fluid permeability
在规定条件下测定的在单位时间内液体或气体通过多孔体的数量
粉末冶金术语(烧结后处理)
1、复压 re-pressing
为了提高物理和(或)力学性能,通常对烧结制品施加压力。
2、精整 sizing
为了达到所需尺寸而进行的复压。
3、整形 coining
为了达到特定的表面形貌而进行的复压。
4、粉末锻造 powder forging
由粉末制造的未烧结的、预烧结的或烧结的预成形坯用锻造进行热致密化,同时伴随着形状的改变。
5、浸渍 impregnation
用非金属物质(如油、石蜡或树脂)填充烧结件的连通开孔孔隙的方法。
6、水蒸汽处理 steam treatment
将烧结铁基制品在过热水蒸汽中加热,使表层形成四氧化三铁保护膜,从而提高某些性能。