人教版小学五年级上册数学总复习知识点整理版本
- 格式:docx
- 大小:50.21 KB
- 文档页数:12
人教版小学五年级数学上册知识点总结人教版小学五年级数学上册知识要点总结一、数的认识1.1 万以上数的认识:学生需要掌握万、十万、百万、千万、亿等大数的读法和写法,了解十进制计数法,并能够解决相关问题。
1.2 数的读写方法:学生需要掌握任意一个数的读写方法,包括整数、小数和分数。
1.3 数的改写和近似数:学生需要掌握如何将一个数改写成指定单位,如将千米改写成米,以及如何求一个数的近似数。
二、数的运算2.1 四则运算的意义:学生需要理解加法、减法、乘法和除法的意义,并能够解决简单的四则运算问题。
2.2 运算定律和简便运算:学生需要掌握加法交换律、加法结合律、乘法交换律、乘法结合律等基本运算定律,并能够运用这些定律进行简便运算。
2.3 估算:学生需要掌握如何对一个数进行估算,并能够运用估算解决实际问题。
三、简易方程3.1 方程的意义:学生需要理解方程的意义,并能够根据题意列方程。
3.2 解方程:学生需要掌握一些基本的解方程的方法,如移项、合并同类项、系数化为1等。
3.3 应用问题:学生需要能够运用方程解决一些简单的应用问题。
四、多边形面积4.1 平行四边形和三角形面积:学生需要掌握平行四边形和三角形的面积计算公式,并能够解决相关问题。
4.2 梯形面积:学生需要掌握梯形的面积计算公式,并能够解决相关问题。
4.3 面积单位换算:学生需要掌握常用的面积单位之间的换算关系,并能够进行简单的单位换算。
五、简易代数5.1 代数式和表达式:学生需要了解什么是代数式和表达式,并能够用代数式表示简单的数量关系。
5.2 解方程组:学生需要掌握如何解二元一次方程组,并能够解决相关问题。
5.3 应用问题解方程组:学生需要能够运用方程组解决一些简单的应用问题。
六、统计与概率6.1 统计图表的认识和应用:学生需要了解各种常见的统计图表,如柱状图、折线图和饼图等,并能够运用这些图表解决实际问题。
同时,学生还需要了解一些基本的概率知识,如随机事件、概率的意义和计算方法等。
小学五年级数学上册复习教学知识点归纳总结第一单元:小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
也可以表示1.2的5倍是多少。
2.一个数乘以小数的意义是求这个数的十分之几、百分之几、千分之几…是多少。
如1.2×0.5表示求1.2的十分之五是多少。
3.小数乘法的计算法则:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数部分末尾的0要去掉乘得的积得小数位数不够,要在前面用零补足。
再点上小数点。
4. 规律:(1)一个数(零除外)乘1,积等于原来的数。
(2)一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个数(零除外)乘大于1的数,积比原来的数大。
一个数(零除外)乘小于1的数,积比原来的数小。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
5.整数乘法的交换律、结合律、分配律,对于小数乘法也使用。
6.运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c - b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法1.小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算或者被除数里面有多少个除数。
如:2.4÷1.6表示已知两个因数的积是2.4,其中一个因数是1.6,求另一个因数是多少。
最新人教版五年级数学上册重要知识点归纳(精品)(可直接打印、背诵)1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版小学五年级数学上册知识点归纳总结小学五年级数学上册复知识点归纳总结第一单元:小数乘法小数乘法的计算方法是,按照整数乘法的法则算出积,再从积的右边起数出因数中一共有几位小数,点上小数点。
需要注意的是,计算结果中小数部分末尾的要去掉,把小数化简;小数部分位数不够时,要用占位。
在计算小数加减法时,先把小数点对齐,再把相同数位上的数相加。
在计算小数乘法时,末尾对齐,按照整数乘法法则进行计算。
如果整数因数末尾有小数乘法时,要把整数数位中不是的最右侧数字与小数因数末尾对齐。
一个数(除外)乘大于1的数,积比原来的数大;一个数(除外)乘小于1的数,积比原来的数小。
求积的近似数有三种方法,分别是四舍五入法、进一法、去尾法。
在计算钱数时,保留两位小数表示精确到分,保留一位小数表示精确到角。
小数四则运算顺序和整数四则运算顺序是一样的。
只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。
小数乘法的运算定律和性质和整数乘法的交换律、结合律和分配律相同。
常见乘法计算(敏感数字):25×4=100,125×8=1000.加法的交换律是a+b=b+a,加法的结合律是(a+b)+c=a+(b+c)。
乘法的交换律是a×b=b×a,乘法的结合律是(a×b)×c=a×(b×c),乘法的分配律是(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c。
减法的性质是,从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
即a-b-c=a-(b+c),a-b-c=a-c-b。
除法的性质是,从一个数里连续除以两个数,我们可以除以两个除数的积,或者交换两个除数的位置。
即a÷b÷c=a÷(b×c),a÷b÷c=a÷c÷b。
人教版五年级上册数学知识点梳理一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
例如:2.5×3 = 7.5,先算25×3 = 75,因数2.5有一位小数,所以从75右边起数出一位点上小数点得7.5。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如:2.5×0.3表示2.5的十分之三是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如:2.5×0.3 = 0.75,先算25×3 = 75,因数2.5有一位小数,0.3有一位小数,共两位小数,从75右边起数出两位点上小数点得0.75。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如:2.5×0.3 = 0.75,如果保留一位小数,看百分位上的5,向十分位进1,0.75≈0.8。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a×b = b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a + b)×c=a×c + b×c。
这些运算定律在小数乘法中同样适用。
例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3(运用乘法结合律);(2.5+0.3)×0.4 =2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12(运用乘法分配律)。
小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
(人教课标版)五年级数学上册【学问点】第一单元《小数乘法》具体内容重点知识小数乘整数的计算方法:小数乘整数,先按整数乘法的小数乘整数计算方法计算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。
积的小数末尾有0的把0去掉。
小数乘法的计算方法:把小数乘法转化为整数乘法进展小数乘小数计算;看因数中共有几位小数,就从积的右面起数出几位点上小数点,积的小数位数不够时,需要添0补位;末尾有0的要把0去掉。
求积的近似数的方法:用“四舍五入”法求积的近似数。
积的近似数首先明确要保存的小数位数;再看保存的小数位数下一位的数字,假设大于或等于5向前一位进一,假设小于5舍去。
连乘、乘加乘减1.小数连乘的运算挨次:依据从左往右的挨次依次运算。
2.乘加、乘减运算挨次:无括号的,先算乘法,再算加减;有括号的,先算括号里面的,再算括号外面的。
整数乘法运算定律推广到小数整数乘法运算定律对于小数乘法同样适用,应用乘法运算定律可以使一些计算简便。
其次单元《小数除法》具体内容重点知识1.小数除以整数,依据整数除法的计算法则计算,商的小数点要和被除数的小数点对齐,有余数时可在余数小数除法计后补0连续除。
算法则2.一个数除以小数,先去掉除数的小数点,看原来除数有几位小数,被除数的小数点也向右移动几位,然后依据除数是整数的计算法则计算。
计算商时,要比需要保存的小数位数多算出一位,然后商的近似数依据“四舍五入”法截取商的近似数。
1.循环小数:一个数的小数局部,从某一位起,一个数字或者几个数字依次不断重复消灭,这样的小数叫做循环小数循环小数。
2.有限小数:小数局部的位数是有限的小数。
3.无限小数:小数局部的位数是无限的小数。
用计算器探探究规律的步骤:1.用计算器计算。
2.观看觉察规律。
索规律3.依据规律写商。
1.连除解决问题:用总量依次除以另外两个量。
解决问题2.依据实际需要,有时要用“进一法”或“去尾法”截取商的近似数。
第三单元《观看物体》具体内容重点知识1.从不同方向观看同一物体,看到的外形可能是不同的。
最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学五年级上册数学知识点总结一、数与代数(一)小数的乘法和除法1.小数乘法•计算方法:将小数乘法转化为整数乘法进行计算,然后再将结果转化为小数形式。
•运算律:乘法交换律、乘法结合律、乘法分配律在小数乘法中仍然适用。
•积的近似值:根据题目要求,对乘积进行四舍五入。
•特殊情况:当两个小数相乘时,如果其中一个因数比1小,那么积也比另一个因数小;如果其中一个因数比1大,那么积也比另一个因数大;如果两个因数都比1大或都比1小,那么积比1大或比1小。
2.小数除法•计算方法:将小数除法转化为整数除法进行计算,然后再将结果转化为小数形式。
•商的近似值:根据题目要求,对商进行四舍五入。
•循环小数:当一个数除以另一个数时,如果结果是一个无限重复的小数,那么这个小数就是循环小数。
例如,1÷3=0.333…。
•除法的性质:除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
(二)整数、小数四则混合运算1.运算顺序:先乘除后加减,有括号则先计算括号内的运算。
2.简便计算:利用运算律(如交换律、结合律、分配律)进行简便计算。
3.估算:对结果进行大致的估计,以判断答案的合理性。
(三)用字母表示数1.代数式:用字母和数字通过有限次的四则运算得到的式子。
2.方程:含有未知数的等式。
3.方程的解:使方程左右两边相等的未知数的值。
二、空间与图形(一)平行四边形的面积1.平行四边形面积的计算:底×高。
2.特殊平行四边形:正方形和长方形是特殊的平行四边形。
正方形的四条边都相等,长方形的对边相等。
(二)三角形的面积1.三角形面积的计算:底×高÷2。
2.等底等高的三角形:等底等高的三角形面积相等。
(三)梯形的面积1.梯形面积的计算:(上底+下底)×高÷2。
2.特殊梯形:当梯形的上底为0时,梯形变为三角形;当梯形的上底与下底相等时,梯形变为平行四边形。
最新人教版小学五年级数学上册知识点归纳总结
小学五年级数学上册主要包括以下知识点:
1. 数字的认识:认识万以内的整数,认识正数、负数、零以及它们在数轴上的位置关系。
2. 常见整数的运算:掌握整数的加法、减法,能够解决与整数运算相关的实际问题。
3. 分数的认识:认识真分数、假分数、整数,能够对分数进行比较大小。
4. 分数的运算:学习分数的加法、减法,了解几个同分母分数相加时分子不变分母相
加的规律。
5. 单位之间的转换:认识厘米、米、千米、毫升、升、毫克、克、千克等单位之间的
换算关系,能够进行简单的单位换算。
6. 顺序数的认识:学习顺序数的读法、表达及顺序数之间的比较。
7. 图形的认识:认识平面图形和立体图形的名称、性质及特征。
8. 图形的初步操作:能够正确使用直尺、量角器等工具进行测量和画图。
9. 关系和函数:学习集合和集合中元素的关系,了解数与数之间的函数关系。
10. 数据的整理和处理:学习用表格和图表整理和描述数据,能够进行简单的数据分析。
这些知识点是小学五年级数学上册的主要内容,通过学习这些知识点,可以帮助学生打好数学基础,为进一步学习打下坚实的基础。
人教版五年级数学上册知识点整理(完整版)第一单元小数乘法一、小数乘整数(一)小数乘整数与整数乘法的联系1、小数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2、计算小数乘整数,可以根据计量单位间的关系进行单位转化,先把小数转化成整数,再按照整数乘法的计算方法进行计算。
(二)小数乘整数的算理和算法1、算理(1)小数点移动引起小数大小变化的规律小数点向右①移动一位,相当于把原数乘10,小数就扩大到原数的10倍;②移动两位,相当于把原数乘100,小数就扩大到原数的100倍;③移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;小数点向左:①移动一位,相当于把原数除以10,小数就缩小到原数的110。
②移动两位,相当于把原数除以 100,小数就缩小到原数的1100;③移动三位,相当于把原数除以1000,小数就缩小到原数的11000;(2)积的变化规律:两个数相乘,一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几。
2、算法(1)用竖式计算小数乘整数的要点:①把小数乘整数转化成整数乘法进行计算。
小数乘法中一般右端要对齐,不必把相同数位对齐。
②处理好积中小数点的位置。
因数中共有几位小数,积中也应该有几位小数。
注意:当积的小数部分末尾有0 时,要依据小数的性质进行化简。
二、小数乘小数(一)小数乘小数的算理和算法1、算理因数的变化引起积的变化规律:一个因数扩大到原来的a倍,另一个因数扩大到原来的 b 倍,积扩大到原来的(a×b)倍。
2、算法(1)小数乘小数的计算方法①先按照整数乘法算出积,再点小数点,小数乘法中一般右端要对齐,不必把相同数位对齐。
②点小数点时,看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(2)积的小数位数不够的小数乘法的计算方法:计算小数乘法,乘得的积的小数位数如果不够,要在前面用0补足,再点小数点。
三、探究因数和积之间的大小关系(一)一个数(0 除外)乘大于1的数,积比原来的数大。
人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。
4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。
二、小数乘小数的算理及计算方法:(1)按照整数乘法算出积,再点小数点;(2)点小数点时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;(3)积的小数位数如果不够,在前面用0补足,再点小数点;(4)积的小数部分末尾有0的要把0去掉。
三、积与因数的关系一个因数(0除外)乘大于1的数,积比原来的因数大;一个因数(0除外)乘小于1的数,积比原来的因数小。
四、求一个数的小数倍数是多少的问题的解题方法:用乘法计算,即用这个数乘小数倍数。
五、小数乘法的常用验算方法:(1)根据因数与积的大小关系检验;(2)交换两个因数的位置,重新计算;(3)用计算器验算。
六、用“四舍五入”法求积的近似数:1、先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2、用四舍五入法保留一定的小数位数。
四舍五入法:小于5,把它和右边的数全舍去,改写成0大于5,向前进1,再把它和右面的数全舍去,改写成0由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。
2.205≈2 (保留整数)2.205≈2.2 (保留一位小数)2.205≈2.21 (保留两位小数)3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。
如6.597 保留两位小数为6.60。
特别注意:在保留整数、(一位、两位、三位)小数、省略(亿···万···十分位、百分位···)后面的尾数、精确到(亿···万···十分位、百分位···)这类题目,都可以用划圆圈的方法来完成。
人教版五年级数学上册各单元知识点小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。
第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:积中小数末尾有0的乘法。
先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。
如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。
如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。
)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。
如6.597 保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。
先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。
性质:整数可以进行加减乘除四则运算,但除以零没有意义。
特点:整数在数轴上表示为离散的点。
举例:1、2、3、0、-1、-2等都是整数。
2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。
性质:小数可以进行加减乘除四则运算,但小数点要对齐。
特点:小数可以表示比整数更精确的数量。
举例:0.5、1.23、4.567等都是小数。
3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。
性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。
特点:分数可以表示不可分割的数量关系。
举例:1/2、3/4、5/6等都是分数。
4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。
性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。
特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。
举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。
二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。
性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。
特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。
举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。
2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。
性质:面积可以用平方单位来衡量,如平方厘米、平方米等。
小学五年级数学上册知识点归纳整理人: 马艳芳第一单元小数乘法1.小数乘整数:意义——求几个相同加数的和的简便运算。
如: 1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数, 就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如: 1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。
计算方法: 先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数, 就从积的右边起数出几位点上小数点。
注意: 按整数算出积后, 小数末尾的0要去掉, 也就是把小数化简;位数不够时, 要用0占位。
3、积与因数的大小关系:一个数(0除外)乘大于1的数, 积比原来的数大;一个数(0除外)乘小于1的数, 积比原来的数小。
4.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数, 保留两位小数, 表示计算到分;保留一位小数, 表示计算到角。
6.小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:加法交换律: a+b=b+a加法加法结合律:(a+b)+c=a+(b+c)减法性质: 从一个数里连续减去两个数,我们可以减去这两个数的和,或者交换两个减数的位置。
a-b-c=a-(b+c)a-(b+c)=a-b-c乘法乘法交换律: 两个数相乘交换因数的位置, 它们的积不变。
a×b=b×a乘法结合律:三个数相乘, 先把前两个数相乘, 再和最后一个数相乘, 或先把后两个数相乘, 再和第一个数相乘, 积不变。
(a×b)×c=a×(b×c).乘法分配律: 两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c除法的性质: 一个数连续除以数两个数,等于除以这两个除数的积,或者交换两个除数的位置。
五年级上册第一单元测试题(小数乘法)、计算。
2.5 ×4= 2.4 0.01=×8 ×0.24=3.9 1.3=×3.2 ×0.16=8×0.125=4.2 3.5=× 0.27 3=×0.85 ×72= 1.6 4.6=× 8.9 4×= 2.98 3.2=×二、填空。
1、 3.5 ×9 表示()2、根据46 ×15=690 ,直接写出下面各题的结果。
4.6 15×= 0.46 0.15= × 4.6 1.5 = ×3、0.8+0.8+0.8+0.8 用乘法算式表示是()4、一个三位小数,保留两位小数是 1.50,这个三位小数最大(),最小()。
5、13.65 扩大()倍是1365; 6.6 缩小()倍是0.066 。
6、把7.4343434343 ⋯⋯用简便方法写出来是(),保留两位小数是()。
7、把7.1687 保留整数约是(),精确到千分位约是()。
8、4.09 ×0.05的积有()小数, 5.2 ×4.76 的积有()位小数。
三、在○里填上“>”“或<”“=”。
0.3 ×1.2○ 0.3 0.5 1.8○1.8 × 0.3 0.2○0.3 × 1.5 ×1.8○ 1.8 0.3 1○0.3 1×1.2○1.2 42.85 ×1.15○42.85 69.4 0.9898○ 6×9.4 8.95 ×1.0001○8.95 148.8 ×0.91○148.8四、脱式计算(能简算的要用简算)12.5 ×0.4 ×2.5 ×8 9.5 101 ×五、列式计算1、1.25乘 4.2减5,差是多少?2、比 4.7 的 1.5倍多 3.05 的数是多少?3、商店运进14 筐苹果,每筐35.8 千克,卖掉了400 千克,还剩下多少千克?4、甲车和乙车同时从两地相对开出,8 小时后相遇,甲车每小时行80千米,乙车的速度是甲车的 1.02 倍,两地相距多少千米?4.2 ×7.8+2.2 4×.2 0.87 3.16+4.64 ×五年级上册第三单元检测题(小数除法)一、填空题。
(每空 1 分,共23分)1. 两个因数的积是 6.4,其中的一个因数是 1.6,另一个因数是()。
2. 两个数相除的商是0.85,如果被除数和除数的小数点同时向右移动两位,这时商是()。
3.1.32÷0.4=()÷ 4 12÷ 0.06=()÷64. 3÷1.1 的商用循环小数表示是(),保留一位小数是()。
5. 小明在做一道除法算式时,把除数 6 看作了9,算出的商是0.4,正确的商应是()。
6. 8. 5的 1.3倍是();91.2是3.8的()倍。
7. 在下面的里填上“﹥”“﹤”或“=”。
1.49 ÷0.9 ○ 1.49 3.87 1.2 ○ 3.87 ×6.52 0÷.7 ○ 652 7÷07.02 0.1 ○ 7.02 ×1÷08. 在 1.2323, 1.5050⋯0.568412, 1.205205⋯, 3.1415926⋯中,有限小数有()个;无限小数有()个;循环小数有()个。
10. 一辆自行车4小时行驶16千米,这辆自行车每小时行驶()千米,每行驶 1 千米需要()小时。
11. 一个两位小数,保留一位小数后是 6.5,这个两位小数最大是(),最小是()。
12. 找规律:6× 0.7= 4.2 6.6 ×6.7 =44.22,()× 66.7=444.222 6.666× 666.7 =()二、“对号入座”选一选。
(每题 1 分,共5分)1. 5.9948 保留两位小数约是()。
A. 6.00B. 5.99C. 6.02. 下面算式中,商是无限小数的是()。
A. 36 ÷6B. 6.25 1.25 ÷C. 4.8 7 ÷3. 下面算式的商最大的是( )。
A. 8.5 0.1÷25 B. 8.5 12.5 ÷ C. 8.5 1.25 ÷4. 每一个油桶最多装 4.5 千克油,购买 62千克,至少要准备( )只这样的油桶? A. 13 B. 14 C. 155. 一个停车场收费标准为:停车 2 小时以内收费 5元,超过 2小时按每小时 4 元收费(不足 1 小时按 1 小时计算)。
王叔叔交了 21 元停车费,他最多在这个停车场停车( )小 时。
A.6 B.5 C.4三、小法官判对错,对的打“√”,错的打“×”。
(每题 1 分,共 5 分)1. 无限小数都比有限小数大。
( )2. 2.3×1.2÷2.3× 1.2=1( )3. 大于 0.5且小于 0.6 的两位小数有 9个。
( )4. 被除数和除数都是小数,商不一定是小数。
( )3. 下面各题怎样简便怎样算。
( 12 分) 2.8+1.2 0×.71.25 9.5 ×0.8×四、计算。
(共 37 分) 1.直接写出得数。
10 分)32÷ 0.8= 0.27÷ 0.03= 1.6÷0.8= 80 ÷0.4= 0.7× 1.3= 1.24÷ 0.4=2.列竖式计算。
( 15 分)18 ÷24 25.3 0.880.36÷ 1.2= 0.65× 0.4= 3.52 +0.48=7-2.45=1÷.687 0.28 ÷2.5÷ 0.7 (得数保留两位小数)2 ÷ 1.1 (用循环小数表商)3.6÷( 2.58+4.62)0.8÷2.5÷ 4五、解决问题。
(每小题5分,共30 分)1. 小云家有一块长方形的菜地,面积是33.58平方米,它的宽是7.3 米,长是多少米?2. 一条高速路长336km ,一辆客车3.2 小时行完全程,一辆货车 4 小时行完全程,客车的速度比货车的速度快多少?3. 小芳买了一支净含量140g 的儿童牙膏,她早晚各刷一次牙,刷一次平均用牙膏 1.25g。
这支牙膏小芳可以用多少天?4. 一辆汽车 2.5 小时行驶200 千米,照此速度,行驶500 千米需要多少小时?5. 张老师准备用100元钱买一些文具作为运动会奖品,他先花45.6 元钱买了12套七巧板,剩下的钱准备买单价 2.4 元的钢笔,最多可以买几支钢笔?6. 假日里,李老师带了部分同学去森林公园玩,门票每人 6.5元,他们买门票共花了175.5 元,还必须准备94.5 元买回去的车票。
(1)李老师一共带了多少同学去森林公园玩?2)你还能提出其他数学问题并解答吗?五年级上册第五单元检测题(简易方程)一、填空(25 分)1、小明身高138 厘米,比哥哥矮a厘米,哥哥身高()厘米。
2、一个正方形的边长是 a 米,它的周长是()米,面积是()米2。
3、一堆煤有 a 吨,每车运 b 吨,运了 5 车后,还剩()吨。
4、在自然数中,与数 a 相邻的两个数是()和()它们三个数的和是()。
5、当5x=11 时,x= (),4x=()。
6、2.8 比()的5倍少 1.2。
7、已知x=4 是方程ax-18=6 的解,a的值是(),6a=()。
8、小丽买了 5 个笔记本,每个x 元,付出了20元,应找回()元。
9、某班有学生40名。
女生有40-b 名,这里的b表示()。
8、当a=10 时,b=15 时,3a=(),b÷ a=()。
9、解 1.7x=8.5时,需要在方程的两边同时除以(),x=()。
10 、四年级有X 人,三年级比四年级少15 人,三年级有()人。
11、三个连续的自然数,最大的数是 A ,最小的数是(),中间的数是()。
12、学校有a个足球,篮球的个数是足球的 2.5 倍。
学校有足球和篮球共()个,篮球比足球多()个。
13、一枝圆珠笔a元,比一枝钢笔便宜 6.9 元,买一枝钢笔和一枝圆珠笔共用()元。
14、一辆汽车t 小时行了s 千米,每小时行()千米二、选择(10 分)1、下面()说法是正确的。
A、含有未知数的式子叫做方程。
B、2a 一定大于a。
C、x=20 是方程4÷ x=0.2 的解。
2、爸爸今年a岁,比妈妈大 3 岁,表示妈妈岁数的式子是()。
A 、a+3B 、a- 3C 、a-3+13 、长方形的周长是c米,宽是 b 米,长是()米。
A、c-b B 、c-2bC、c÷ 2-b4、下面各式不属于方程的是()。
A、7+5x B 、7.2+8.3=15.5 C 、X+2=75、已知△ +△+○=19 △+○=12,那么:△和○分别是()。
A 9、8 B、7、6 C 7,5三、判断( 5 分)1、y=6 是方程。
()2、等式不一定是方程,方程一定是等式。
3、x2与2x 表示的意义相同。
4、甲数减去乙数,差是b,甲数是x, 乙数就是x-b。
(5、X=3 是方程8+2X=30 的解。
()四、计算(29 分)1、省略乘号写出下面各式:( 5 分)3×x = 7× b+8= a×1.2×a= 5d-2d= 2、解方程:(24 分)五、解决问题:(共31 分)书每本多少元?(本题 6 分)(用两种方法解)ⅹ·ⅹ =12÷ⅹ =0.3(检验) 6.75 -x=1.68 (检验)0.7x=4.20.7x+6 ×5=37 10 x-25)÷ 5=15 2X - 7.5 = 8.57.9X –X = 8.97 13(X + 5 )=911、李明到书店买了 4 本连环画和 3 本故事书,一共付了29.7 元,连环画每本 4.8 元,故事2、根据统计,2004 年亚洲人口约有39亿,比欧洲人口的 5 倍还多 4 亿,2004 年欧洲人口有多少亿?(用方程解)(本题 5 分)3、图书室科技书的本数比文艺书的 3 倍少75本,科技书有495本。
文艺书有多少本?(用方程解)(本题 5 分)4、小红和小明共有126 张邮票,小红的邮票是小明的 2 倍,小明和小红各有多少邮票?(用方程解)(本题 5 分)5、爸爸比儿子大36 岁,今年,爸爸的年龄是儿子年龄的 4 倍,求父子二人今年各是多少岁?(用方程解)(本题 5 分)五年级上册第六单元检测题(多边形的面积)一、“认真细致”填一填:(17分)1、篮球场占地约420(), 2.65平方米=()平方分米3600 平方米=()公顷286 厘米=()米2、一个三角形底5dm,高6dm,面积是()dm2,与它等底等高的平行四边形面积是()。