第22周 作图法解题
- 格式:doc
- 大小:70.50 KB
- 文档页数:7
上海中考数学第22题解题方法上海中考数学第22题是一个函数题,要求在规定的坐标系中,用线段来表示一个函数的图像。
解题时,可以按照以下步骤进行思考和操作:1.理解题意:通读题目,理解题意。
题目中给出了一个函数的定义和一张坐标系图。
要求我们根据函数的定义来画出函数的图像。
2.理解函数定义:首先,我们需要理解函数的定义。
函数定义给出了自变量(x)和函数值(y)之间的关系。
函数定义中给出了x的取值范围和对应的y值。
注意到函数定义中涉及到绝对值、分段函数等情况,需要根据x的取值范围进行分析。
3.确定函数的定义域:首先,通过函数定义中的限制条件确定函数的定义域。
从函数定义来看,x的取值范围是在[-7,4]之间。
即-7 ≤ x ≤ 4。
这就是函数的定义域。
4.分析函数的性质:根据函数的定义和给出的x的取值范围,我们需要分析函数的性质。
首先,考虑函数的图像是否是连续的。
根据函数的定义,可以看出函数在x = -7和x = 4两个点上可能有断点,可以通过分段定义的方式进行判断。
5.分段定义函数:根据函数定义的不同情况,我们可以将函数分为几段进行讨论。
在[-7,4]的取值范围内,可以将函数分为三段,分别是:x ≤ -2, -2 < x ≤ 3, x > 3。
6.画出函数的图像:根据分段定义的结果,可以对不同的x范围内画出函数的图像。
首先,取x = -7,可以根据函数定义中的表达式得到y的值。
同样地,取x = -2和x = 4,可以得到函数在这两个点上的函数值。
根据分段函数的定义,我们可以将这些点连接起来,画出函数的图像。
7.考虑特殊情况:在函数的定义域内,我们需要考虑特殊情况,比如在x = -2和x = 3的位置上,观察函数是否存在不连续点。
对于这题的函数,我们发现在x = -2的位置上,函数是连续的,而在x =3的位置上,存在一个开放圆点。
在作图时,可以用空心圆表示这个点,表示这个点不在函数的定义范围内。
中考数学22题解题技巧(一)中考数学22题解题技巧问题描述中考数学22题通常是一个较为复杂的问题,需要运用各种技巧进行解答。
本文将从不同的角度介绍解题的方法和技巧。
技巧一:审题•仔细阅读题目,理解题意。
•确定所给条件和所求答案。
技巧二:寻找关键信息•注意题目中的关键词和特征,如”每个学生”、“相差”、“平均数”等。
•根据关键信息分析问题的本质和解题思路。
技巧三:运用代数方法•把问题抽象成代数方程,通过方程求解得到答案。
•建立变量和方程,利用代数运算求解未知数的值。
技巧四:使用图形方法•利用图形表示问题,画出图形直观地理解问题。
•通过几何图形的性质解决问题,如平行线、相似三角形等。
技巧五:利用等式性质•运用等式的性质解决问题,如等式两边同时加减、乘除相等的性质等。
技巧六:找出隐含条件•题目中可能存在隐含条件,要仔细揣摩题意,找出并利用它们。
•这些隐含条件可以是数学定理、条件限制等。
技巧七:备选策略•在遇到复杂问题时,可以尝试不同的解题策略。
•如果一种方法不可行,可以尝试其他方法,寻找适合的解决思路。
技巧八:检查答案•回顾问题和解决方法,检验所得答案是否符合逻辑,是否满足所给条件。
•通过检查可以避免因计算错误或解题思路问题导致的答案错误。
以上是中考数学22题解题的一些常用技巧和方法,通过充分理解题目、分析问题、运用适当的解题方法,我们能够更准确地解答这类题目。
希望本文对你有所帮助!很抱歉,根据相关规则,以及可以向你提供的有关”中考数学22题解题”的信息,我已经提供了一份详细的文章。
如果有其他问题需要回答,请继续提问。
23(2020·福建)如图,CC为线段AAAA外一点.(1)求作四边形AAAACCAA,使得CCAA//AAAA,且CCAA=2AAAA;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形AAAACCAA中,AACC,AAAA相交于点PP,AAAA,CCAA的中点分别为MM,NN,求证:MM,PP,NN三点在同一条直线上.23(2021·福建)如图,已知线段MMNN=aa,AAAA⊥AAAA,垂足为AA.(1)求作四边形AAAACCAA,使得点AA,AA分别在射线AAAA,AAAA上,且AAAA=AACC=aa,∠AAAACC=60°,CCAA//AAAA;(要求:尺规作图,不写作法,保留作图痕迹)(2)设PP,QQ分别为(1)中四边形AAAACCAA的边AAAA,CCAA的中点,求证:直线AAAA,AACC,PPQQ相交于同一点.23.(2022福建中考)如图,AAAA是矩形AAAACCAA的对角线.(1)求作⊙AA,使得⊙AA与AAAA相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设AAAA与⊙AA相切于点EE,CCCC⊥AAAA,垂足为CC.若直线CCCC与⊙AA相切于点GG,求tan∠AAAAAA的值.1.【答案】解:(1)如图,四边形AAAACCAA即为所求;(2)如图,∵CCAA//AAAA,∴∠AAAAPP=∠CCAAPP,∠AAAAPP=∠AACCPP,∴△AAAAPP∽△CCAAPP,∴AAAA CCCC=AAAA AACC,∵AAAA,CCAA的中点分别为MM,NN,∴AAAA=2AAMM,CCAA=2CCNN,∴AAAA CCCC=AAAA AACC,连接MMPP,NNPP,∵∠AAAAPP=∠AACCPP,∴△AAPPMM∽△CCPPNN,∴∠AAPPMM=∠CCPPNN,∵点PP在AACC上,∴∠AAPPMM+∠CCPPMM=180°,∴∠CCPPNN+∠CCPPMM=180°,∴MM,PP,NN三点在同一条直线上.【解析】本题考查了作图−复杂作图、相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.(2)在(1)的四边形AAAACCAA中,根据相似三角形的判定与性质即可证明MM,PP,NN三点在同一条直线上.2.【答案】(1)解:如图,四边形AAAACCAA为所作;(2)证明:设PPQQ交AAAA于GG,AACC交AAAA于GG′,∵AAQQ//AAPP,∴GGCC GGAA=CCDD AAAA,∵AACC//AAAA,∴GG′CC GG′AA=CCCC AAAA,∵PP,QQ分别为边AAAA,CCAA的中点,∴AACC=2AAQQ,AAAA=2AAPP,∴GG′CC GG′AA=CCCC AAAA=2CCDD2AAAA=CCDD AAAA,∴GG′CC GG′AA=GGCC GGAA,∴点GG与点GG′重合,∴直线AAAA,AACC,PPQQ相交于同一点.【解析】(1)先截取AAAA=aa,再分别以AA、AA为圆心,aa为半径画弧,两弧交于点CC,然后过CC点作AAAA的垂线得到CCAA;(2)证明:设PPQQ交AAAA于GG,AACC交AAAA于GG′,利用平行线分线段成比例定理得到GGCC GGAA=CCDD AAAA,GG′CC GG′AA=CCCC AAAA=2CCDD2AAAA=CCDD AAAA,则GG′CC GG′AA=GGCC GGAA,于是可判断点GG与点GG′重合.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线分线段成比例定理.3.【答案】解:(1)根据题意作图如下:(2)设∠AAAAAA=αα,⊙AA的半径为rr,∵AAAA与⊙AA相切于点EE,CCCC与⊙AA相切于点GG,∴AAEE⊥AAAA,AAGG⊥CCGG,即∠AAEECC=∠AAGGCC=90°,∵CCCC⊥AAAA,∴∠EECCGG=90°,∴四边形AAEECCGG是矩形,又AAEE=AAGG=rr,∴四边形AAEECCGG是正方形,∴EECC=AAEE=rr,在AARR△AAEEAA和AARR△AAAAAA中,∠AAAAEE+∠AAAAAA=90°,∠AAAAAA+∠AAAAAA=90°,∴∠AAAAEE=∠AAAAAA=αα,在AARR△AAAAEE中,tan∠AAAAEE=AABB AABB,∵四边形AAAACCAA是矩形,∴AAAA//CCAA,AAAA=CCAA,∴∠AAAAEE=∠CCAACC,又∠AAEEAA=∠CCCCAA=90°,∴△AAAAEE≌△CCAACC,∴AAEE=AACC=rr⋅RR aa ttαα,∴AAEE=AACC+EECC=rr⋅RR aa ttαα+rr,在AARR△AAAAEE中,tan∠AAAAEE=AABB CCBB,即AAEE⋅RR aa ttαα=AAEE,∴rr⋅RR aa ttαα+rr=rr,即tan2αα+RR aa ttαα−1=0,∵RR aa ttαα>0,∴RR aa ttαα=√5−12,即tan∠AAAAAA的值为√5−12.【解析】(1)以AA为圆心AAAA长为半径画弧交AAAA与MM,作AAMM的垂直平分线,交AAAA与NN,以AA为圆心AANN为半径画圆即为所求;(2)设∠AAAAAA=αα,⊙AA的半径为rr,证四边形AAEECCGG是正方形,根据AAAAAA证△AAAAEE≌△CCAACC,得出AAEE=AACC=rr⋅RR aa ttαα,AAEE=AACC+EECC=rr⋅RR aa ttαα+rr,根据等量关系列出关系式求出RR aa ttαα的值即可.本小题考查直角三角形的性质,特殊平行四边形的判定与性质,圆的概念与性质,锐角三角函数、一元二次方程等基础知识,考查尺规作图技能,考查函数与方程、化归与转化等数学思想方法,考查推理能力,运算能力、空间观念与几何直观、创新意识等数学素养,渗透数学文化.。
第二十二周作图法解题专题简析:用作图的方法把应用题的数量关系提示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。
在解答已知一个数或者几个数的和差、倍差及相互之间的关系,求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。
例题1 五(1)班的男生人数和女生人数同样多。
抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。
五(1)班原有男、女生各多少人?分析根据题意作出示意图:从图中可以看出,由于女生比男生多抽去26-18=8名去合唱队,所以,剩下的男生人数是女生人数的3倍,而这8名同学正好相当于剩下女生人数的2倍,剩下的女生人数有8÷2=4名,原来女生人数是26+4=30名。
练习一1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。
这两根电线原来共长多少厘米?2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。
原来两筐水果各有多少个?3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。
哥哥原来存有多少钱?例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。
红花比紫花多几朵?分析通过线段图来观察:从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多36+12=48朵。
练习二1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。
奶奶家养的鸡比鹅多几只?2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。
运来的香蕉比苹果少多少筐?3,期末测试中,明明的语文得了90分。
数学比语文和作文的总分少70分。
明明的数学比作文高多少分?例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第二十二周作图法解题
专题简析:
用作图的方法把应用题的数量关系提示出来,使题意形象具体,
一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑
难的应用题,能起化难为易的作用。
在解答已知一个数或者几个数的和差、倍差及相互之间的关系,
求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的
数量关系,借助线段图进行分析,从而列出算式。
例题1 五(1)班的男生人数和女生人数同样多。
抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。
五(1)班原有男、女生各多少人?
分析根据题意作出示意图:
从图中可以看出,由于女生比男生多抽去26-18=8名去合唱队,所以,剩下的男生人数是女生人数的3倍,而这8名同学正好相当于剩下女生人数的2倍,剩下的女生人数有8÷2=4名,原来女生人数是26+4=30名。
练习一
1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。
这两根电线原来共长多少厘米?
2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。
原来两筐水果各有多少个?
3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。
哥哥原来存有多少钱?
例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。
红花比紫花多几朵?
分析通过线段图来观察:
从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多36+12=48朵。
练习二
1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。
奶奶家养的鸡比鹅多几只?
2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。
运来的香蕉比苹果少多少筐?
3,期末测试中,明明的语文得了90分。
数学比语文和作文的总分少70分。
明明的数学比作文高多少分?
例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。
原来四个小组各植树多少棵?
分析图中实线表示四个小组实际植树的棵数:
从图中可以看出,把丙组植的棵数看作1份,甲组和乙组共植了这样的4份,丁组也植了这样的4份。
因此,我们可以先求出丙组植树的棵数:45÷(1+4+4)=5棵,从而得出甲组植了5×2-2=8棵,乙组植了5×2+2=12棵,丁组植了5×4=20棵。
练习三
1,甲、乙、丙、丁四个数的和是100,甲数加上4,乙数减去4,丙数乘以4,丁数除以4后,四个数就正好相等。
求这四个数。
2,甲、乙、丙三人分113个苹果,如果把甲分得的个数减去5,乙分得的个数减去24,丙把分得的个数送给别人一半后,三人的苹果个数就相同。
三人原来各分得苹果多少个?
3,甲、乙、丙、丁一共做370个零件,如果把甲做的个数加10,乙做的个数减20,丙做的个数乘以2,丁做的个数除以2,四人做的零件正好相等,求乙实际做了多少个?
例题4 五(1)班全体同学做数学竞赛题,第一次及格人数是不及格人数的3倍多4人,第二次及格人数增加5人,使及格的人数是不及格人数的6倍。
五(1)班有多少人?
分析
第二次及格人数增加5人,也就是不及格人数减少5人。
若不及格人数减少5人,及格人数也减少5×3=15人,那么及格人数仍是不及格人数的3倍多4人。
可事实上及格的人数不但没有减少15人,反而增加了5人,因此多了(15+5+4)人不我出了(6-3)倍。
所以第地次不及格的人数是(15+5+4)÷(6-3)=8人,全班8×(1+6)=56人。
练习四
1,有两筐水果,甲筐水果的个数是乙筐的3倍,如果从乙筐中拿5个放进甲筐,这时甲筐的水果恰好是乙筐的5倍。
原来两筐各有多少个水果?
2,某车间有两个小组,A组的人数比B组人数的2倍多2人。
如果从B组中抽10人去A组,则A组的人数是B组的4倍。
原来两组各有多少人?
3,五(1)班上学期体育达标的人数比未达标人数的5倍多2人,今年又有2倍同学达标,这样,达标的人数正好是未达标人数的7倍。
这个班共有多少个同学?
例题5 用绳子测井深,把绳了三折来量,井外余16分米;把绳子四折来量,井外余4分米。
求井深和绳长。
分析从图中可以看出:把绳子三折来量,井外余16分米,也就是绳长比井深的3倍还多16×3=48分米;把绳子四折来量,井外余4分米,也就是绳长比井深的4倍还多4×4=16分米。
把这两种情况进行对比便可知道:48-16=32分米正好就是井深。
因此,绳长是32×3+48=144分米。
练习五
1,用一根绳子量大树的周长,把绳子2折后正好绕大树2圈;若把绳子3折后,绕大树一圈还余30厘米。
求大树的周长和绳长。
2,有一根绳子和一根竹竿,把绳子对折后比竹竿长2为,把绳子四折后比竹竿短2米。
竹竿长几米?绳子长几米?
3,用一个杯子向一个空瓶里倒水,如果倒进3杯水,连瓶共重440克;如果倒进7杯水,连瓶共重600克。
一杯水重多少克?空瓶重多少克?。