圆锥曲线题型总结归纳
- 格式:doc
- 大小:1.04 MB
- 文档页数:13
锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1•设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是()1/1C.圆D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为()A.5J+= 1 (yH0) -B.+ ∖ f ( X2,9)=1 (yH 0 )C错误!-错误!=1 G∙≠ 0) °D∙错误! + = 1 (y≠0)【注:检验去点】3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为()A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣⅛射线,注意一支与两支的判断】4•已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是()A↑∖PF i∖-∖PF2 I |=5B.∣ I PFll-I PF2∖ I =6C.∣∣PF1∣-∣PF2∣∣=7D.∣ I PF1∖-∖PF2∖ I =0 【注ι2a<∣Fι F2∣是双曲线】5•平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是()A.∖ f(x2, 1 6)- 错误! = l(xW-4) "B.错误!∙=l(xW∙3)C- = I(XM 4) 。
圆锥曲线题型总结圆锥曲线题型总结圆锥曲线是二维平面上的一类曲线,由圆锥与平面相交而得。
圆锥曲线的重要性在于它们广泛应用于数学、物理、工程等领域,在解决实际问题时具有重要的作用。
在学习圆锥曲线时,我们通常会遇到一些不同类型的题目,下面我将对常见的圆锥曲线题型进行总结并提供解题方法。
一、椭圆的题型1. 求椭圆的焦点和准线:椭圆的焦点可以通过求解直角三角形或利用椭圆方程的性质来得出,准线可以通过将椭圆的方程化为标准方程来得到。
2. 椭圆的离心率问题:椭圆的离心率是一个重要的特征,可以通过利用椭圆的定义和性质来求解。
3. 椭圆的对称性问题:椭圆具有关于x轴和y轴的对称性,通过利用这一性质可以得到一些关于椭圆对称性的结论。
4. 椭圆与直线的交点问题:通过直线方程与椭圆方程联立解方程组,可以求得椭圆与直线的交点。
二、双曲线的题型1. 求双曲线的焦点和准线:双曲线的焦点和准线可以通过双曲线方程的性质来求解,特别是焦点的坐标可以通过解方程组得出。
2. 双曲线的渐近线问题:双曲线具有两条渐近线,可以通过设定x或y趋于无穷大时双曲线方程的极限来求解渐近线的方程。
3. 双曲线与直线的交点问题:通过直线方程与双曲线方程联立解方程组,可以求得双曲线与直线的交点。
三、抛物线的题型1. 求抛物线的焦点和准线:抛物线的焦点和准线可以通过抛物线方程的性质来求解,特别是焦点的坐标可以通过解方程组得出。
2. 抛物线的对称性问题:抛物线具有关于其焦点或顶点的对称性,可以通过利用这一性质来求解抛物线的一些问题。
3. 抛物线与直线的交点问题:通过直线方程与抛物线方程联立解方程组,可以求得抛物线与直线的交点。
四、圆的题型1. 求圆的方程:圆的方程可以通过给定圆的半径和圆心坐标来得到,也可以通过给定圆上一点的坐标或两点的坐标来得到。
2. 圆与直线的位置关系问题:可以通过将直线方程代入圆的方程,求解方程组来判断圆与直线的位置关系。
3. 圆与圆的位置关系问题:可以通过将两个圆方程联合解方程组来判断圆与圆的位置关系。
目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
圆锥曲线大综合第一部分 圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m =+,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题 1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分 知识储备一. 与一元二次方程20(0)ax bx c a ++=≠相关的知识(三个“二次”问题)1. 判别式:24b ac ∆=-2.韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则12b x x a +=-,12c x x a⋅= 3.求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则1,22b x a-=二.与直线相关的知识1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式2.与直线相关的重要内容:①倾斜角与斜率:tan y θ=,[0,)θπ∈;②点到直线的距离公式:d =或d =(斜截式)3.弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:1212)AB x AB y =-==-或 4.两直线1111122222:,:l y k x b l y k x b =+=+的位置关系:① 12121l l k k ⊥⇔⋅=- ②121212//l l k k b b ⇔=≠且5. 中点坐标公式:已知两点1122(,),(,)A x y B x y ,若点(),M x y 线段AB 的中点,则1112,22x x y y x y ++== 三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知---—-—--这类问题一般可用待定系数法解决. 2.曲线的形状未知-———-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1〉r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法",即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M (x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。
2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。
圆锥曲线大题题型归纳梳理圆锥曲线中的求轨迹方程问题解题技巧求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。
【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。
【例2.】已知点P 在椭圆1422=+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 31=求动点M 的轨迹方程。
【例3.】已知圆),,(,)(:0236222B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【例4.】过点),(10的直线l 与椭圆1422=+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。
巩固提升1. 在平面直角坐标系xOy 中,点()(),,,,4010B A 若直线02++-m y x 上存在点P ,使得,PB PA 21=则实数m 的取值范围为_________________.2. 已知()Q P ,,24-为圆422=+y x O :上任意一点,线段PQ 的中点为,M 则OM 的取值范围为________________.3. 抛物线x y C 42:的焦点为,F 点A 在抛物线上运动,点P 满足,FA AP 2-=则动点P 的轨迹方程为_____________________.4. 已知定圆,)(:100422=++y x M 定点),,(40F 动圆P 过定点F 且与定圆M 内切,则动圆圆心P 的轨迹方程为____________________.5. 已知定直线,:2-=x l 定圆,)(:4422=+-y x A 动圆H 与直线l 相切,与定圆A 外切,则动圆圆心H 的轨迹方程为____________________6. 直线033=+-+t y tx l :与抛物线x y 42=的斜率为1的平行弦的中点轨迹有公共点,则实数t 的取值范围为_________________.7. 抛物线y x 42=的焦点为,F 过点),(10-M 作直线l 交抛物线于B A ,两点,以BF AF ,为邻边作平行四边形,FARB 求顶点R 的轨迹方程。
圆锥曲线的七种常考题型题型一:定义的应用 1、圆锥曲线的定义:(1)椭圆 (2)双曲线 (3)抛物线 2、定义的应用(1)寻找符合条件的等量关系 (2)等价转换,数形结合 3、定义的适用条件: 典型例题例1、动圆M 与圆C 1:()22136x y ++=内切,与圆C 2:()2214x y -+=外切,求圆心M 的轨迹方程。
例2、方程()()2222668x y x y -+-++=表示的曲线是题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由22x y 、分母的大小决定,焦点在分母大的坐标轴上。
2、双曲线:由22x y 、系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
典型例题例1、已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是例2、k 为何值时,方程15922=---ky k x 表示的曲线: (1)是椭圆;(2)是双曲线.题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解2、12PF m PF n ==,,22m n m n mn m n +-+,,,四者的关系在圆锥曲线中的应用 典型例题例1、椭圆x a yba b 222210+=>>()上一点P 与两个焦点F F 12,的张角α=∠21PF F ,求21PF F ∆的面积。
例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且6021=∠PF F ,31221=∆PF F S .求该双曲线的标准方程题型四:圆锥曲线中离心率,渐近线的求法1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值;2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围;3、注重数形结合思想不等式解法 典型例题例1、已知1F 、2F 是双曲线12222=-by a x (00>>b a ,)的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( )A. 324+B. 13-C.213+ D. 13+ 例2、双曲线)00(12222>>=-b a by a x ,的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B.(]13,C.(3,+∞)D.[)3,+∞例3、椭圆G :22221(0)x y a b a b+=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在点M 使120FM F M ⋅=. 求椭圆离心率e 的取值范围;例4、已知双曲线22221(00)x y a b a b-=>>,的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 (A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞题型五:点、直线与圆锥的位置关系判断 1、点与椭圆的位置关系点在椭圆内⇔12222<+b y a x点在椭圆上⇔12222=+b y a x点在椭圆外⇔12222>+by a x2、直线与圆锥曲线有无公共点或有几个公共点的问题:∆>0⇔相交∆=0⇔相切 (需要注意二次项系数为0的情况) ∆<0⇔相离3、弦长公式: =AB )(11212212x x k x x k -+=-+ak ∆+=21 =AB )(1111212212y y k y y k -+=-+ak ∆+=2114、圆锥曲线的中点弦问题: 1、韦达定理: 2、点差法:(1)带点进圆锥曲线方程,做差化简 (2)得到中点坐标比值与直线斜率的等式关系典型例题例1、双曲线x 2-4y 2=4的弦AB -被点M (3,-1)平分,求直线AB 的方程.例2、已知中心在原点,对称轴在坐标轴上的椭圆与直线l :x+y=1交于A,B 两点,C 是AB 的中点,若|AB|=22,O 为坐标原点,OC 的斜率为22,求椭圆的方程。
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】圆锥曲线与向量的结合——圆锥曲线题型总结一、AP=λPB解题方法总结如下:设直线AB与圆锥曲线C相交于点A、B,P为直线AB上的任意一点,A(x1,y1),B(x2,y2),则可以得到AP=λPB。
利用这个条件,可以构造两根之和与两根之积,消去x2,然后利用XXX定理求解。
例如,对于题目“设双曲线C:2-x^2/a^2=y^2/b^2(a>b)与直线l:x+y=1相交于两个不同的点A、B.设直线l与y轴的交点为P,且PA=5PB.求a的值.”,可以按照上述方法解题。
首先联立方程组,得到两个交点的坐标。
然后利用构造两根之和与两根之积的方法,消去x2,得到一个关于a的方程。
最后利用XXX定理求解,得到a的值。
二、PR/PQ的取值范围对于题目“已知x-1>0(x>1),设直线y=-2x+m与y轴交于点P,与双曲线C相交于点Q、R,且|PQ|<3/2|PR|,求PR/PQ的取值范围.”,可以采用向量的方法解题。
设向量PQ 为a,向量PR为b,则PR/PQ=|b|/|a|。
根据向量的定义,可以得到a和b的表达式。
然后根据题目中的条件,可以列出一个关于m的不等式。
最后,通过分析不等式的解集,可以得到PR/PQ的取值范围。
已知直线 $C:x-1=0$($x\neq 1$ 且 $x\neq -1$),设直线$y=x+m$($m>0$)与 $y$ 轴交于点 $P$,与轨迹 $C$ 相交于点 $Q$、$R$,且 $|PQ|<|PR|$,求 $m$ 的取值范围。
解法一:设 $Q(x_1,y_1)$,$R(x_2,y_2)$,联立$\begin{cases} 4x^2-y^2-4=PRx \\ 3x-2mx-m-4=0 \end{cases}$。
则可设 $x_2=-\lambda x_1$($\lambda>1$),即 $-x_1x_2=\lambda x_2^2$,此时$y_P=x_P+m$,$y_Q=x_Q+m$。
圆锥曲线常见七大题型(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(X1,Y1),(X2,Y2) ,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的情况讨论),消去四个参数。
(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点构成的三角形问题,常用正、余弦定理搭桥。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
对于<1>可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。
或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于<2>首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
最值问题的处理思路:1、建立目标函数。
用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x、y的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。
(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
直线和圆锥曲线常考题型运用的知识: 1、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。
2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,=342,则x 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值问题 题型八:角度问题 问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m +=始终有交点,求m 的取值范围解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点0±(,,则1例题2一点 设直线由2y y =⎧⎨=⎩即20k <由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d AB 。
AB=221kk=+d=21k+=k=±满足②式此时053x=。
题型三:动弦过定点的问题例题3、已知椭圆C:22221(0)x ya ba b+=>>且在x(I(II)异于点解:(I224xy+(II2)x+,由2yx=⎧⎨⎩根,12x∴-=的坐标为2128(k-同理,设直线A2N的斜率为k2,则得点N的坐标为222222(,1414k k++12(2),(2)p py k t y k t=+=-12122k kk k t-∴=-+,直线MN的方程为:121121y y y yx x x x--=--,∴令y=0,得211212x y x yxy y-=-,将点M、N的坐标代入,化简后得:4xt=又2t>,∴402t<<椭圆的焦点为0)4t∴=3t=故当t =时,MN 过椭圆的焦点。
题型四:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC解:(I) 2BC AC =,且OC AC∴=0ACBC =∴∠又 A (23,0)A (23,0)是椭圆的右顶点,(II)∴y -2(13)0k +3x =是方程的一个根,229183313Pk k x k --∴=+即2P x =同理可得:2Q x = ))P Q P Q y y kx k kx k -=-++=()P Q k x x +- 22P Q x x -=13P Q PQP Q y y k x x -==- 则直线PQ 的斜率为定值13。
题型五:共线向量问题例题5、设过点D(0,3)的直线交曲线M :22194x y +=于P 、Q 两点,且DP DQ l =uuu r uuu r ,求实数l的取值范围。
解:设P(x 1,y 1),Q(x 2,y 2),Q DP DQ l =uuu r uuu r\(x 1,y 1-3)=l (x 2,y 2-3)即12123(3)x x y y l l ì=ïïíï=+-ïïî 判别式法、韦达定理法、配凑法 设直线PQ 的方程为:3,0y kx k =+≠,由223y kx =+⎧⎨消y 整理后,得 P 1212()x x x x + ② 的距离为3。
(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。
解:(Ⅰ)设椭圆的半焦距为c,依题意c aa ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=。
(Ⅱ)设11()A x y ,,22()B x y ,。
(1)当AB x ⊥轴时,AB 。
(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,得223(1)4m k =+。
= (p>0)(Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。
(Ⅰ)依题意,点N 的坐标为N (0,-p ),可设A (x 1,y 1),B (x 2,y 2),直线AB的方程为y=kx+p,与x 2=2py 联立得⎨⎧=22py x 消去y 得x 2-2pkx-2p 2=0.由韦达定理得x 1+x 2=∴径的圆则O 'O '=∴令2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得 =.21222+⋅+k k p又由点到直线的距离公式得212kp d +=.从而,,2212212212122222+=+⋅+⋅+⋅=⋅⋅=∆k p k p k k p AB d S ABN(Ⅱ)假设满足条件的直线t 存在,其方程为y=a ,则以AC 为直径的圆的方程为,0))(())(0(11=-----y y p y x x x 将直线方程y=a 代入得设直线l 与以AC 为直径的圆的交点为P (x 2,y 2),Q (x 4,y 4),则有 2py =. 满足:PM +P 的坐标.解:((Ⅱ)1cos PN =-cos 2.PM PN MPN PM PN =- ① 因为不为椭圆长轴顶点,故P 、M 、N 构成三角形PMN中,4,MN =由余弦定理有2222cos .MN PM PN PM PN MPN =+- ② 将①代入②,得 22242(2).PM PN PM PN =+--故点P 在以M 、N 为焦点,实轴长为2213x y -=上.由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 即P点坐标为. 问题九:四点共线问题例题9、设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ(ⅡQ ,满足AP QB AQ PB =,证明:点解 (1)由题意:,,,AP PB AQ QB 均不为零,记AP AQ PBQB=,则λB ,Q 四点共线,从而AQ QB λ=11λ=- 121λ+121λ+从而22212241x x x λλ-=-,(1)2221221y y y λλ-=-,(2)又点A 、B 在椭圆C 上,即(1)+(2)×2并结合(3),(4)得424s y += 即点(,)Q x y 总在定直线220x y +-=上方法二设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB 均不为零。
且PA PB AQQB=又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==-- (1) 41x yλλ++ (2)24,=整理得设1F 、中O 为坐标原点),求直线l 的斜率k 的取值范围。
解:(Ⅰ)解法一:易知2,1,a b c ===所以())12,F F ,设(),P x y ,则 因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1解法二:易知2,1,a b c ===())12,F F ,设(),P x y ,则((22222211232x y x y x y ⎡⎤=+++-+-=+-⎢⎥⎣⎦(以下同解法一) (Ⅱ)显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,整理得:2214304k x kx ⎛⎫+++= ⎪⎝⎭ ∴121243,11k x x x x +=-⋅=∴OA OB x x ⋅=()4x x ++284k -=++=设椭圆E: 22221x y a b+=(a,b>0)过M (2) ,,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E: 22221x y a b+=(a,b>0)过M (2) ,,1)两点,所以2222421611a b a b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b ⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y +=(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥,设该圆的切线方程为y k x m =+解方程组221x y y kx m+==+⎧⎪⎨⎪得2x1x ⎧⎪⎪⎨⎪⎪⎩,1y y 使O 以2k 因为为r =y 与椭圆22184x y +=的两个交点为或(满足OA OB ⊥,综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥.因为12221224122812kmx xkmx xk⎧+=-⎪⎪+⎨-⎪=⎪+⎩,所以222 22212121222224288(84) ()()4()41212(12)km m k mx x x x x xk k k--+ -=+-=--⨯=+++, ==,①当k因为4k.②当k③当此时||AB综上,。