极坐标系与参数方程一轮复习(你值得拥有)
- 格式:docx
- 大小:477.91 KB
- 文档页数:16
专题八 极坐标方程参数方程与绝对值不等式第一讲 极坐标方程与参数方程1、极坐标与直角坐标的互化2.(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).练一练1.在直角坐标系xOy 中,圆C 的方程为22(1)1y x +-=,直线:4l x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)写出圆C 和直线l 的极坐标方程;2.在直角坐标系xOy 中,直线l 的直角坐标方程为y x =+曲线C 的参数方程为33cos 3sin x y φφ=+⎧⎨=⎩(φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和C 的极坐标方程;3.在极坐标系中,圆C 是以点C 11(2,)6π为圆心,2为半径的圆. (1)求圆C 的极坐标方程;4.在直角坐标系xOy 中,曲线1C的参数方程为,x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数).以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)写出曲线1C 的极坐标方程和曲线2C 的直角坐标方程;5.在直角坐标系xOy 中,直线l的参数方程为1222x y ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=. (1)写出直线l 的普通方程与曲线C 的直角坐标方程;6.在直角坐标系xOy 中,已知圆C :2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求圆C 和直线l 的极坐标方程;7.在直角坐标系xOy 中,曲线C 的参数方程为cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线lcos 14πθ⎛⎫+= ⎪⎝⎭.(1)写出曲线C 的极坐标方程及直线l 的直角坐标方程;8.在平面直角坐标系xOy 中,直线1C的参数方程为11x y ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线2C 是圆心在()1,2,半径为2的圆.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C 的直角坐标系方程与2C 的极坐标方程;9.已知曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),曲线2C 的参数方程为822x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求1C 和2C 的普通方程;10.在直角坐标系xOy 中,圆C 的方程为()2211x y +-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 16πρθ⎛⎫+=- ⎪⎝⎭. (1)求圆C 的极坐标方程与直线l 的直角坐标方程;11.在直角坐标系xOy 中,直线l 的参数方程是122x ty t=+⎧⎨=-⎩(t 为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为24cos 8sin 100ρρθρθ--+=.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;12.极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.已知圆:cos sin O ρθθ=+和直线:sin 42l πρθ⎛⎫-= ⎪⎝⎭. (1)求圆O 和直线l 的直角坐标方程;第二讲 绝对值不等式1、含绝对值的不等式|x |<a 与|x |>a 的解集2、|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .3、|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ②利用零点分段法求解.13.已知集合{}5A x x =∈<Z ,{}24xB x =≥,则A B =( )A .()2,5B .[)2,5C .{}2,3,4D .{}3,414.已知集合则{}{}240|2A x x x B x x =-<=<,,则AB =( )A .()02,B .()2,4-C .()()24-∞⋃+∞,,D .()()20-∞+∞,-,15.不等式12x -<的解集为________ 16.已知函数()|1||24|f x x x =-++. (1)求不等式()6f x >的解集;17.设()23f x x x =-++. (1)解不等式()7f x >;18.已知函数()121f x x x =++-. (1)求不等式()2f x ≥的解集;19.已知函数()|1||1|f x x x =--+. (1)解不等式|()|1f x >;20.已知函数()16f x x x =-+-. (1)解不等式()12f x >;21.已知函数()413f x x x =-+--. (1)解不等式()1f x ≤;22.已知函数()24f x x x =--+. (1)求不等式()1f x >的解集;。
极坐标系与参数方程♦知识梳理 、极坐标在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1) 圆心在极点,半径为r 的圆的极坐标方程是 _____ ;(2) ______________________________________________________________ 圆心在极轴上的点(a,0)处,且过极点0的圆的极坐标方程是 _________________________ (3)圆心在点(a,处且过极点的圆0的极坐标方程是 ___________ 。
2、直线的极坐标方程(1) 过极点且倾斜角为 的直线的极坐标方程是 __________ ;(2) _______________________________________________________ 过点(a,0),且垂直于极轴的直线的极坐标方程是 ___________________________________ 三、常见曲线的参数方程1、极坐标定义:M 是平面上一点,表示0M 的长度,是MOx ,则有序实数实数对(,),叫极径,叫极角;一般地,2、极坐标和直角坐标互化公式:COS2 2 x 2y sin或t tany (x 0)的象限由点(x, y )所[0,2 ), 0x y第一节 平面直角坐标系中的伸缩、平移变换知识点】点P(x,y)的对应点为P'(x',y')。
称 为平面直角坐标系中的伸缩变换 定义 2: 在平面内,将图形 F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移。
若以向量a 表示移动的方向和长度,我们也称图形 F 按向量a 平移. F 上任意一点P 的坐标为(x, y),向量a (h, k),平移后因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。
【典例1】(2014年高考辽宁卷(文))将圆x 2 + /= 1上每一点的横坐标保持不变,纵坐 标变为原来的 2 倍,得曲线 C. (I) 写出 C 的参数方程;(II )设直线1: 2x + y - 2二0与C 的交点为P i ,P 2,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P i P 2的中点且与I 垂直的直线的极坐标方程.练习:定义 1:设 P(x, y) 是平面直角坐标系中的任意一点,在变换x' x( y' y(00))的作用下,在平面直角坐标系中,设图形 的对应点为P(x, y )则有:即有:x x h, y y k在平面直角坐标系中,由 (x,y) (h,k) (x,y)xh x h 所确定的变换是一个平移变换。
极坐标系与参数方程一轮复习(你值得拥有)2极坐标系与参数方程◆ 知识梳理 一、极坐标1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。
2、极坐标和直角坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)xy yx xρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(,)x y 所在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1)圆心在极点,半径为r 的圆的极坐标方程是 ;(2)圆心在极轴上的点)0,(a 处,且过极点O 的圆的极坐标方程是 ; (3)圆心在点)2,(πa 处且过极点的圆O 的极坐标方程是 。
2、直线的极坐标方程(1)过极点且倾斜角为α的直线的极坐标方程是 ; (2)过点)0,(a ,且垂直于极轴的直线的极坐标方程是 ; 三、常见曲线的参数方程3第一节 平面直角坐标系中的伸缩、平移变换【知识点】定义1:设(,)P x y 是平面直角坐标系中的任意一点,在变换'(0):'(0)x x y y λλϕμμ=>⎧⎨=>⎩的作用下,点(,)P x y 的对应点为'(',')P x y 。
称ϕ为平面直角坐标系中的伸缩变换。
定义2: 在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移。
若以向量a 表示移动的方向和长度,我们也称图形F 按向量a平移.在平面直角坐标系中,设图形F 上任意一点P 的坐标为),(y x ,向量),(k h a =,平移后的对应点为),(y x P '''.则有:),(),(),(y x k h y x ''=+即有: x x hy y k'=+⎧⎨'=+⎩,在平面直角坐标系中,由x x hy y k '=+⎧⎨'=+⎩所确定的变换是一个平移变换。
极坐标与参数⽅程 1基础知识1、极坐标系四要素:极点,极轴,⻆度单位,正⽅向2、极坐标与直⻆坐标的互化直化极:极化直:3、常⽅极坐标⽅程4、常⽅参数⽅程5、参数⽅程与普通⽅程的转化题型⽅:交点坐标问题例:(2013 课标I 卷23)已知曲线的参数⽅程为(为参数), 以坐标原点为极点,轴的正半轴为极轴建⽅极坐标系,曲线的极坐标⽅程为(I)把的参数⽅程化为极坐标⽅程;(II)求与交点的极坐标().例:(2015 课标II 卷23)在直⻆坐标系中,曲线(为参数,),其中在以为极点,轴正半轴为极轴的极坐标系中,曲线.(I)求与交点的直⻆坐标.练:(2016 课标I 卷23)在直⻆坐标系中,曲线的参数⽅程为(为参数,).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.(I)说明是哪⽅种曲线,并将的⽅程化为极坐标⽅程;(II)直线的极坐标⽅程为,其中满⽅若曲线与的公共点都在上,求练习:(2017 全国III 卷22)在直⻆坐标系中,直线的参数⽅程为(为参数). 直线的参数⽅程为(为参数), 设与的交点为,当变化时,的轨迹为曲线.(I)写出的普通⽅程;(II)以坐标原点为极点,轴正半轴为极轴建⽅极坐标系,设,为与的交点,求的极径.题型⽅:弦⽅问题上例:(2011 课标卷23)在直⻆坐标系中,曲线的参数⽅程为(为参数),是上的动点,点满⽅点的轨迹为曲线(I)求的⽅程;(II)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为与的异于极点的交点为求练习:(2016 ⽅⽅⽅三模23)在直⻆坐标系中,曲线的参数⽅程为(为参数),是上的动点,点满⽅点的轨迹为曲线(I)求的参数⽅程;(II)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为与的异于极点的交点为求练习:(2015 课标II 卷23)在直⻆坐标系中,曲线(为参数,),其中在以为极点,轴正半轴为极轴的极坐标系中,曲线.(I)求与交点的直⻆坐标;(II)若与相交于点与相交于点求的最⽅值.练习:(2015 课标I 卷23)在直⻆坐标系中,直线圆以坐标原点为极点,轴的正半轴为极轴建⽅极坐标系.(I)求的极坐标⽅程;(II)若直线的极坐标⽅程为设的交点为求的⽅积.。
极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。
1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。
极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
课题:极坐标与参数方程知识点一、极坐标1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ). 一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M 直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x x ≠04.常见曲线的极坐标方程曲线图形 极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径ρ=2r cos_θ⎝⎛⎭⎫-π2≤θ≤π2为r 的圆 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线 (1)θ=α(ρ∈R )或θ=π+α(ρ∈R ) (2)θ=α(ρ≥0)和θ=π+α(ρ≥0) 过点(a,0),与极轴垂直的直线 ρcos_θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)【典型例题】【例1】若点极坐标为,则点的直角坐标是( )A.B.C.D.【例2】点M 的直角坐标)1,3(-化成极坐标为( ) A.)65,2(π B.)32,2(π C.)35,2(π D.)611,2(π【例3】在极坐标系中,已知圆C 的方程为)4cos(2πθρ+=,则圆心C 的极坐标为( )A. )41(π-, B. )431(π, C. )42(π-, D. )432(π, 【例4】在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( )A .1B .2C .3D .4【举一反三】1.在极坐标系中,以极点为坐标原点,极轴为x 轴正半轴,建立直角坐标系,点M (2,6π)的直角坐标是( )A .(2,1)B 31)C .(13D .(1,2) 2.曲线的极坐标方程θρsin 4=化为直角坐标方程为( ) A.4)2(22=++y x B.4)2(22=-+y xC.4)2(22=+-y x D.4)2(22=++yx3.在极坐标系中,点2,3π⎛⎫-⎪⎝⎭到圆2cos ρθ=-的圆心的距离为( ) A .2 B .249π+C .299π+D .7知识点二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =g t 就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数) 圆 x 2+y 2=r 2⎩⎪⎨⎪⎧x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)【典型例题】【例1】把参数方程⎩⎨⎧==,sin ,cos 2ϕϕy x (ϕ为参数)化成普通方程是( )A. 1222=+y xB. 1222=+y xC. 1422=+y x D. 214x y 2+= 【例2】下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .3)B .31(,)42-C .1(,2)2- D .3) 【例3】已知直线l 的参数方程为:214x ty t=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=,则圆C 的圆心到直线l 的距离为 .【举一反三】1.参数方程4125x t y t =+⎧⎨=--⎩(t 为参数)化为普通方程为______________.2.曲线22cos :2sin x aC y a =+⎧⎨=⎩(a 为参数),若以点O(0,0)为极点,x 轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是____________.3.若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有一个公共点,则a = .【典型例题】1.极坐标方程cos ρθ=和参数方程123x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A .直线、直线B .圆、直线C .直线、圆D .圆、圆 6.已知直线l 的极坐标方程为2ρsin (θ-4π2A 的极坐标为)47,22(π,则点A 到直线l 的距离为( ) A .335 B.325 C .235 D .2253.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22)4πρθ=+B .22)4πρθ=-C .22cos()4πρθ=+D .22)4πρθ=- 4. 在极坐标系中,直线(3sin )2ρθθ-=与圆θρsin 4=的交点的极坐标为( )A.⎪⎭⎫⎝⎛62π, B.⎪⎭⎫⎝⎛32π, C.⎪⎭⎫⎝⎛64π, D.⎪⎭⎫⎝⎛34π,5.下列在曲线sin 2cos sin x y θθθ=⎧⎨=+⎩(θ为参数)上的点是( )A .1(,2)2-B .(2,3)C .31(,)42- D .(1,3)6.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( ).A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 7.坐标方程分别为和的两个圆的圆心距为_________.8.已知圆C 的极坐标方程为222sin 404πρρθ⎛⎫+--= ⎪⎝⎭,则圆C 的半径为___________. 9.若直线l 的极坐标方程是cos()24πρθ-=,圆C 的极坐标方程是4sin ρθ=.则l 与C 交点的极坐标为___________. 10.已知点的极坐标是(3,)4π,则它的直角坐标是 .11.在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 3sin 6ρθθ+=的距离为 .12.已知圆的极坐标方程为6sin ρθ=,圆心为M ,点N 的极坐标为(6,)6π,则||MN = .【课后练习】正确率:________1.圆5cos 3ρθθ=-的圆心是( ) A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 2.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .20x y +=2或1y = B .1x = C .20x y +=2或1x = D .1y = 3.在极坐标系中,点()1,0与点()2,π的距离为 ( )A.1B.3 21π+ 29π+4.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( ) A.1ρ= B.cos ρθ= C.1cos ρθ=-D.1cos ρθ= 5.曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的离心率是 ( )A .45 B 5 C .35D .346.过点(0,2)且与直线213x ty t =+⎧⎪⎨=+⎪⎩(t 为参数)互相垂直的直线方程为( )A .32x t y t⎧=⎪⎨=+⎪⎩ B.32x t y t ⎧=-⎪⎨=+⎪⎩ C.32x t y t ⎧=⎪⎨=-⎪⎩ D .23x ty t ⎧=⎪⎨=⎪⎩7.在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty t x 3(t 为参数),则1C 与2C 交点的直角坐标是 .8.已知圆C 的极坐标方程为2cos 23ρθθ=+,则圆心C 的一个极坐标为 . 9.曲线C:22cos 2sin x y αα=-+⎧⎨=⎩(α为参数),若以点()0,0O 为极点,x 轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是 .10.在极坐标系中,直线l 的方程为cos 5ρθ=,则点π43⎛⎫ ⎪⎝⎭,到直线l 的距离为 .11.在直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.若曲线22224⎧=-+⎪⎪⎨⎪=-+⎪⎩x y 经过曲线()2:sin 2cos 0C a a ρθθ=>的焦点,则实数a 的值为___________.12.已知直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数), 若12l l ⊥,则实数k = .13.直角坐标系xOy 中,圆C 的参数方程是3cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 .14.在极坐标系中,过圆θθρsin 22cos 6-=的圆心且与极轴垂直的直线的极坐标方程为_______.。
教学内容【知识结构】知识点一:极坐标1.极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。
3. 极坐标与直角坐标的互化当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间的互化关系.知识点三:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
知识点四:常见曲线的参数方程1.直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为:(为参数);其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。
(当在上方时,,在下方时,)。
(2)过定点,且其斜率为的直线的参数方程为:(为参数,为为常数,);其中的几何意义为:若是直线上一点,则。
2.圆的参数方程(1)已知圆心为,半径为的圆的参数方程为:(是参数,);特别地当圆心在原点时,其参数方程为(是参数)。
(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。
(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。
3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。
(2)参数的几何意义是椭圆上某一点的离心角。
如图中,点对应的角为(过作轴,交大圆即以为直径的圆于),切不可认为是。
2015年高考数学第一轮复习:极坐标与参数方程主编:宁永辉第一部分:极坐标知识点讲解一、极坐标系与极坐标:1、极坐标系:如下图所示:一条射线就是一个极坐标系。
其中射线的端点叫做极点,这条射线叫做极轴。
2、极坐标的表示:如下图所示:点到极点的距离叫做极径,其中极径用字母ρ表示;极径与极轴之间的夹角叫做极角,极角ρ。
用θ表示。
点P的极坐标为)(θ,二、极坐标与直角坐标的转换:1、极坐标与直角坐标的对应关系:如下图所示:2、极坐标转换为直角坐标:θρc o s =x ; θρs i n=y ; 例一:把下列的极坐标转换为直角坐标。
(1)、)3,2(π (2)、)32,3(π (3)、)2,4(π (4)、)23,3(π(5)、),4(π【解析】:(1)、12123c o s2=⨯=⋅=πx ;32323sin 2=⨯=⋅=πy ; 所以:极坐标)3,2(π转换为直角坐标)3,1(。
(2)、23)21(332cos3-=-⨯=⋅=πx ;23323332sin 3=⨯=⋅=πy ; 所以:极坐标)32,3(π转换为直角坐标)233,23(-。
(3)、因为:极角2πθ=;所以:点)2,4(π在y 轴正半轴上,对应的直角坐标为)4,0(; (4)、因为:极角23πθ=;所以:点)23,3(π在y 轴负半轴上,对应的直角坐标为)3,0(-;(5)、因为:极角),4(π;所以:点),4(π在x 轴的负半轴上,对应的直角坐标为)0,4(-; 3、直角坐标转换为极坐标坐标: 22y x +=ρ; 22s i n y x y +=θ;22c o s yx x +=θ;xy=θt a n例二:把下列的直角坐标转换为极坐标。
(1)、)3,3( (2)、)3,1(- (3)、)2,2(- (4)、)2,6(- (5)、)0,2(- (6)、)6,0( (7)、)3,0(- (8)、)0,2(【解析】:(1)、32)3(322=+=ρ,33tan =θ,点)3,3(为第一象限角,6πθ=。
课时1 坐标系1.平面直角坐标系设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面上取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.由极径的意义可知ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角. (2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ(-π2≤θ<π2)圆心为(r ,π2),半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R ) 或θ=π+α(ρ∈R ) 过点(a,0),与极轴垂直的直线ρcos θ=a (-π2<θ<π2)过点(a ,π2),与极轴平行的直线ρsin_θ=a (0<θ<π)1.求在极坐标系中,过点(2,π2)且与极轴平行的直线方程.2.在极坐标系中,已知两点A 、B 的极坐标分别为(3,π3)、(4,π6),求△AOB (其中O 为极点)的面积.3.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.题型一极坐标与直角坐标的互化例1(1)以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,求线段y=1-x(0≤x≤1)的极坐标方程.(2)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,求曲线C1和C2交点的直角坐标.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x=ρcos θ及y=ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.(1)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程.(2)求在极坐标系中,圆ρ=2cos θ垂直于极轴的两条切线方程.题型二求曲线的极坐标方程例2 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出曲线C 的方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.思维升华 求曲线的极坐标方程的步骤:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin 3πθ⎛⎫- ⎪⎝⎭=-32与极轴的交点,求圆C 的极坐标方程.题型三 极坐标方程的应用例3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.思维升华 (1)已知极坐标系方程讨论位置关系时,可以先化为直角坐标方程;(2)在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.(2015·广州调研)在极坐标系中,求直线ρsin(θ+π4)=2被圆ρ=4截得的弦长.在用方程解决直线、圆和圆锥曲线的有关问题时,将极坐标方程化为直角坐标方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用.A 组 专项能力提升(时间:50分钟)1.(2015·广东)已知直线l 的极坐标方程为2ρsin 4πθ⎛⎫- ⎪⎝⎭=2,点A 的极坐标为7224π⎛⎫ ⎪⎝⎭,,求点A到直线l 的距离.2.在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ(cos θ+sin θ)=1与ρ(sin θ-cos θ)=1的交点的极坐标.3.在极坐标系中,已知圆ρ=3cos θ与直线2ρcos θ+4ρsin θ+a =0相切,求实数a 的值.4.在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4对称的曲线的极坐标方程.5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos(θ-π6)上的动点,求PQ的最大值.6.在极坐标系中,O 是极点,设A (4,π3),B (5,-5π6),求△AOB 的面积.B 组 专项能力提升(时间:30分钟)7.已知P (5,2π3),O 为极点,求使△POP ′为正三角形的点P ′的坐标.8.在极坐标系中,判断直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系.9.在极坐标系中,已知三点M 23π⎛⎫⎪⎝⎭,-、N (2,0)、P 236π⎛⎫⎪⎝⎭,.(1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.10.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为 ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.课时2 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ(φ为参数) 双曲线x 2a -y 2b 2=1 ,(a >0,b >0) ⎩⎪⎨⎪⎧ x =a sec φ,y =b tan φ(φ为参数) 抛物线y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数)1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.2.已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s(s 为参数)垂直,求k 的值.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,求PF 的值.4.已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t ,y =3t (t 为参数),求直线l 与曲线C 相交所截的弦长.题型一 参数方程与普通方程的互化例1 (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.(2)在平面直角坐标系中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A ,B 两点,求AB 的长.思维升华 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.题型二 参数方程的应用例2 已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ02πθ⎛⎫≤≤ ⎪⎝⎭和⎩⎨⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1与C 2的交点坐标.题型三 极坐标方程和参数方程的综合应用例3 (2015·课标全国Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求AB 的最大值.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△P AB 面积的最大值.1.将参数方程化为普通方程是解决问题的一般思路,体现了化归思想.2.将参数方程化为普通方程时,要注意两种方程的等价性,不要增解;确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.A 组 专项基础训练(时间:50分钟)1.求直线⎩⎨⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角.3.已知直角坐标系xOy 中,直线l 的参数方程:⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B两点,求AB 的长.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数.6.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.B 组 专项能力提升(时间:30分钟)7.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ. (1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.8.已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.9.已知直线l 的参数方程为⎩⎨⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin(θ-π6).(1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin(θ-π6)的公共点,求3x +y 的取值范围.10.在平面直角坐标系xOy 中,动圆x 2+y 2-42x cos θ-4y sin θ+7cos 2θ-8=0 (θ∈R ,θ为参数)的圆心轨迹为曲线C ,点P 在曲线C 上运动.以O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为2ρcos 3πα⎛⎫+ ⎪⎝⎭=35,求点P 到直线l 的最大距离.。
极坐标系与参数方程◆ 知识梳理 一、极坐标1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。
2、极坐标和直角坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)xy yx xρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(,)x y 所在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1)圆心在极点,半径为r 的圆的极坐标方程是 ;(2)圆心在极轴上的点)0,(a 处,且过极点O 的圆的极坐标方程是 ;(3)圆心在点)2,(πa 处且过极点的圆O 的极坐标方程是 。
2、直线的极坐标方程(1)过极点且倾斜角为α的直线的极坐标方程是 ; (2)过点)0,(a ,且垂直于极轴的直线的极坐标方程是 ; 三、常见曲线的参数方程第一节 平面直角坐标系中的伸缩、平移变换【知识点】定义1:设(,)P x y 是平面直角坐标系中的任意一点,在变换'(0):'(0)x x y y λλϕμμ=>⎧⎨=>⎩的作用下,点(,)P x y 的对应点为'(',')P x y 。
称ϕ为平面直角坐标系中的伸缩变换。
定义2: 在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为 图形F 的平移。
若以向量a ρ表示移动的方向和长度,我们也称图形F 按向量a ρ平移. 在平面直角坐标系中,设图形F 上任意一点P 的坐标为),(y x ,向量),(k h a =ρ,平移后的对应点为),(y x P '''.则有:),(),(),(y x k h y x ''=+即有: x x hy y k '=+⎧⎨'=+⎩,在平面直角坐标系中,由x x hy y k'=+⎧⎨'=+⎩所确定的变换是一个平移变换。
因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。
【典例1】(2014年高考辽宁卷(文))将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (I)写出C 的参数方程;(II )设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 练习:1.将点)2,2(-P 变换为点)1,6(-'P 所用的伸缩变换公式是 ( )A.⎪⎩⎪⎨⎧='='yy x x 231 B.⎪⎩⎪⎨⎧='='y y x x 321 C.⎪⎩⎪⎨⎧='='y y x x 213 D.⎩⎨⎧='='y y x x 232.在同一直角坐标系中,将直线22x y -=变成直线2''4x y -=,则满足图象变换的伸缩变换公式是______________.3.在平面直角坐标系中将曲线1:22=+y x C 按照变换'4:3'2x x y y ϕ=⎧⎪⎨=⎪⎩得到的曲线'C 的方程为___________。
4.已知曲线1cos :()sin x C y θθθ=⎧⎨=⎩为参数.若把曲线1C 上各点的横坐标压缩为原来的12,纵坐标压缩为原来的,得到曲线2C ,则曲线2C 的参数方程为________,普通方程为___________。
【典例2】把圆221:(3)(1)4C x y ++-=先向下平移1个单位长度,再向右平移3个单位长度后得到圆2C ,求圆2C 的普通方程。
练习:1. 点)3,2(-P 先向左平移3个单位长度,再向上平移2个单位长度后得到点'P 的坐标是_________。
2. 抛物线24x y =先向右平移1个单位长度,再向上平移1个单位长度后得到的抛物线的顶点坐标是_________。
3. 将曲线22:240C x y x y +-+=先向左平移1个单位长度,再向下平移2个单位长度后得到的曲线的方程是_________。
第二节 极坐标与直角坐标互化【知识点】cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(,)x y 所在象限确定. 练习一:把下列点的极坐标化为直角坐标(1)(3,)4π ; (2)2(2,)3π ; (3) (4,)2π;(4)(,)2π ; (5)7)6π ; (6)5(1,)4π; 练习二:把下列点的直角坐标化为极坐标 (1) ;(2)(0, ; (3) 1(0,)2; (4)(3,0) ; (5)(3, ; (6)(2,-- ; 考点二:曲线的极.坐标方程与直.角坐标方程的互化 练习一:把下列曲线的极坐标方程化为直角坐标方程(1)cos 2sin 10ρθρθ-+=: ; (2: ; (3: ;(4)2sin ρθ=: ; (5)4cos 2sin ρθθ=-: ; (6)4cos ρθ=: ; (7): ; (8: ;;; 注意:极....:直线0θθ=或射线0θθ= →直:y kx =(或y kx =(0x ≥)或y kx =(0x ≤)练习二:把下列曲线的直.角坐标方程化为极.坐标方程:(1)20x y -+=: ; (2: ;(3: ;(4)22326x y +=: ;(5)2260x y x ++=: ;(6)22(3)4x y -+=: ; 高考再现1.(2013年高考辽宁卷(文))在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立极坐标系.圆1C ,直线2C的极坐标方程分别4sin ,cos 4πρθρθ⎛⎫=⋅-= ⎪⎝⎭(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t at R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.2.(2014年高考广东卷(文))在极坐标系中,曲线C 1与C 2的方程分别为22cos sin ρθθ=与cos 1ρθ=。
以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.3.(2014年高考陕西卷(文))在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρ sin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.4. (2015年高考湖南卷(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.第三节 参数方程与普通方程互化【知识点】常见曲线的参数方程把参数方程化为普通方程的常用方法:(1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数;(2)三角法:利用三角恒等式消去参数,如平方关系22sin cos 1αα+=; (3)整体消元法:根据参数方程本身的结构特征,从整体上消去。
练习一:把下列曲线的直角坐标(普通)方程化为参数坐标方程(1:C ;(2)22:134x y C +=,:C ; (3)22:2)(1)4C x y -+-=(,:C ; (4)22:42110C x y x y ++--=,:C ; (5)22:40C x y y +-=,:C ; (6(7)直线l 过点; 练习二:把下列参数方程化为直角坐标方程(普通方程....) (1)52:12x t C y t=+⎧⎨=+⎩(t:参数),:C ;(2)112:()2x t C t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数:C ; (3t :参数),:C; (4)2:3x C y θθ⎧=+⎪⎨=-⎪⎩(θ:参数),:C ;(5)2cos :x t C y t=⎧⎪⎨=⎪⎩(t :参数),:C ;(6)5cos :4sin x C y αα=⎧⎨=⎩(α:参数),:C ;(7)2:2x p C y p⎧=⎨=⎩(p :参数),:C ;(8)3sin 4cos :4sin 3cos x C y θθθθ=+⎧⎨=-⎩(θ:参数),:C ;◆高考再现1 .(2013年高考广东卷(文))已知曲线C 的极坐标方程为2cos ρθ=.以极点 为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程__________。
2 .(2013年高考湖南(文11))在平面直角坐标系xoy 中,若直线121,:x s l y s=+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____3 .(2013年高考陕西卷(文15))圆锥曲线 (t 为参数)的焦点坐标是_____4. (2014年高考湖南卷(文))在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.5.(2013年高考课标Ⅰ卷(文)) 已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).6.(2014年高考新课标卷2(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,θ∈⎣⎢⎡⎦⎥⎤0,π2.(I)求C 的参数方程;22x t y t ⎧=⎨=⎩(II )设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.7. (2015年高考广东卷(文))在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .第四节 极坐标和参数方程的综合应用考点一:曲线上的动点到直线距离的最值问题 常用参数方程和三角恒等变换的知识解决。
步骤:(1)利用曲线的参数方程把曲线上的动点P 的坐标设出来;(2)利用点到直线的距离公式求出曲线上的动点P 到直线l 的距离d ; (3)利用辅助角公式sin cos )a x b x x ωωωϕ±=±(其中tan b aϕ=),把第(2)步求出的距离d 的右边化为|sin()|A x k d tωϕ++=(0t ≠)的模式。