2016年福建公务员考试行测数量关系:解答工程问题有妙招
- 格式:doc
- 大小:19.50 KB
- 文档页数:2
行测数量关系常见题型与答题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的一个模块。
但其实,只要我们掌握了常见的题型和有效的答题技巧,就能在这一部分取得不错的成绩。
下面,我将为大家详细介绍行测数量关系中常见的题型以及对应的答题技巧。
一、工程问题工程问题是数量关系中比较常见且容易掌握的一类题型。
其核心公式为:工作总量=工作效率×工作时间。
在解题时,我们通常需要根据题目所给条件,先确定工作总量、工作效率和工作时间这三个量中的已知量和未知量,然后通过设未知数、列方程来求解。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
两人合作需要多少天完成?我们设工作总量为 1(也可以设为甲、乙工作时间的最小公倍数30),那么甲的工作效率就是 1/10,乙的工作效率就是 1/15。
两人合作的工作效率为 1/10 + 1/15 = 1/6,所以两人合作完成这项工程需要的时间为 1÷(1/6) = 6 天。
答题技巧:对于工程问题,当题目中给出的工作时间的数值是具体的量时,我们往往将工作总量设为时间的最小公倍数,这样可以方便计算工作效率。
二、行程问题行程问题也是行测数量关系中的高频考点,主要包括相遇问题、追及问题、流水行船问题等。
相遇问题的核心公式为:相遇路程=速度和×相遇时间;追及问题的核心公式为:追及路程=速度差×追及时间;流水行船问题中,顺水速度=船速+水速,逆水速度=船速水速。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇。
A、B 两地相距多远?根据相遇问题的公式,相遇路程=(5 + 3)×2 = 16 千米,即 A、B 两地相距 16 千米。
再如:甲、乙两人同向而行,甲在乙前面 10 千米处,甲的速度为 4 千米/小时,乙的速度为 6 千米/小时,乙多久能追上甲?根据追及问题的公式,追及时间= 10÷(6 4)= 5 小时。
2016国家公务员行测考试:工程问题介绍及题型分析为了各位考生更好的备战2016国家公务员考试,华图教育根据历年考试经验与习题分析认为工程问题仍然是2016国家公务员考试中常考的问题之一,华图教育撰文介绍工程问题的基础情况以及考查形式,希望各位考生可以举一反三、有所收获。
一、基础知识(一)工程问题的基本数量关系工作总量=工作效率工作时间常考考点:正反比的应用,(1)当工作总量一定时,工作效率与工作时间成反比;(2)当工作效率一定时,工作总量与工作时间成正比;(3)当工作时间一定时,工作总量与工作效率成正比。
2016国家公务员行测考试:工程问题介绍及题型分析(2)2016国家公务员行测考试:工程问题介绍及题型分析(2)(1)当已知工作效率或工作时间的实际值,往往设工作总量为特值,就设工作总量为工作效率或工作时间的最小公倍数即可。
例:一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。
甲、乙、丙三人共同完成该工程需多少天?A.8天B.9天C.10天D.12天解析:设工作总量为30,18,15的最小公倍数=90,则甲的效率为3,甲、乙效率之和为5,乙、丙效率之和为6,从而易知,那么,甲、乙、丙合作的天数=90 (3+6)=10。
故选C。
(2)当已知工作效率的比例关系,就设工作效率为其最简比所代表的实际值。
例:甲乙丙三个工程队完成一项工作的效率比为2:3:4。
某项工程,乙先做了1/3后,余下交由甲与丙合作完成,3天后完成工作。
问完成此项工程共用了多少天?A:6B:7C:7D:9解析:设甲的效率为2,乙的效率为3,丙的效率为4,乙先做了1/3后,则甲丙合作完成剩余的2/3,所代表的实际量=(2+4)*3=18,则1/3所代表的实际量=9,则实际乙自己工作1/3所用时间=9/3=3天,则该工程总计3+3=6天完工。
故选A.2、比例法:正反比的应用。
例:对某工程队修水渠,原计划要18小时完成,改进工作效率后只需12小时就能完成,已知后来每小时比原计划每小时多修8米,问这段水渠共多少米?解析:先后时间之比=18:12=3:2,可得先后效率之比=2:3,则由题意可得1份=8米,2份就是16米,所以水渠共=16 18=288(米)。
行测数量关系常见题型与答题技巧在公务员考试的行政职业能力测验(简称行测)中,数量关系一直是让众多考生感到头疼的模块。
但只要我们掌握了常见的题型和有效的答题技巧,就能在考试中轻松应对,提高得分。
一、常见题型1、工程问题工程问题是研究工作效率、工作时间和工作总量之间关系的问题。
通常会给出不同人员或团队完成某项工作的时间,要求计算工作效率或完成工作所需的时间。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?答题技巧:工程问题一般采用“设工作总量为1”的方法,然后根据工作效率=工作总量÷工作时间,求出各自的工作效率,再根据合作时间=工作总量÷合作工作效率来计算。
2、行程问题行程问题主要涉及速度、时间和路程之间的关系。
包括相遇问题、追及问题、流水行船问题等。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇,A、B 两地相距多远?解题技巧:对于相遇问题,路程=(甲的速度+乙的速度)×相遇时间;追及问题,路程差=(快的速度慢的速度)×追及时间;流水行船问题,顺水速度=船速+水速,逆水速度=船速水速。
3、利润问题利润问题与商品的成本、售价、利润、利润率等有关。
常见的例子:某商品进价为 100 元,按 20%的利润率定价,然后打9 折出售,该商品的利润是多少?答题要点:利润=售价成本,售价=定价×折扣,利润率=利润÷成本×100% 。
4、排列组合问题排列组合问题是研究从给定元素中选取若干元素进行排列或组合的方式。
例如:从 5 个不同的元素中选取 3 个进行排列,有多少种排列方式?解题思路:排列用 A 表示,组合用 C 表示。
排列时考虑顺序,组合不考虑顺序。
要准确区分是排列还是组合问题,然后运用相应的公式进行计算。
5、容斥问题容斥问题是研究集合之间重叠部分的问题。
行测数量关系技巧:比例法解工程问题行测数量关系技巧:比例法解工程问题公务员考试中,工程问题是近年来的热门考题,考察频率也比拟高。
广阔考生在解工程问题的时候,几乎都能想到方程法和特值法,但是对于比例法,很多考生并不容易想到。
在这里教大家利用比例法解决工程问题。
一、工程问题中的正反比例当工作总量W一定时,效率P和时间t成反比例;当效率P一定时,时间t与工作总量W成正比例;当时间t一定时,效率P与工作总量W成正比例。
工程问题当中的正反比例法是指:当工作总量一定时,工作效率与工作时间成反比,工作效率比可得到工作时间之比,再根据实际提早的天数或推延的天数采用比例法进展求解。
或者,工作时间之比可得到工作效率之比,在根据前后效率只差采用比例法进展求解。
例1:对某批零件进展加工,原方案要18小时完成,改良工作效率后只需12小时就能完成,后来每小时比原方案每小时多加工8个零件,问这批零件共有多少个?【解析】288。
先后时间之比=18:12=3:2,可得先后效率之比=2:3,那么由题意可得1份=8个零件,2份就是16零件,所以零件总数=16×18=288(个)。
例2:某工程由小张、小王两人合作刚好可在规定的时间内完成。
假如小张的工作效率进步20%,那么两人只需用规定时间的就可完成工程;假如小王的工作效率降低25%,那么两人就需延迟2.5小时完成工程。
问规定的时间是多少?A.20 hB.24 hC.26 hD.30 h【解析】答案:A。
“小张的工作效率进步20%”,可设特值为由5进步到6,“两人只需用规定时间的”,根据工作总量不变,效率与时间成反比,得出两人的效率之和由9进步到10,那么小王的效率为4。
“小王的工作效率降低25%”,就是由4降低到3,那么两人的效率之和由9降低到8,还是根据工作总量不变,效率与时间成反比,时间由8份变成9份,“延迟2.5小时”就是9-8=1份,由此推出规定时间8份是2.5×8=20(小时)。
最全汇总>>>福建公务员历年真题通过最新福建公务员考试资讯、大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。
福建中公教育整理了福建省考资料大全供考生备考学习。
需要更多指导,请选择在线咨询一对一解答。
工程问题:在日常生活中,做某一件事、制造某种产品、完成某项任务等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本关系是:我们研究这三个量之间关系的问题就是工程问题。
考试中所有的工程问题都离不开这个公式的运用,那针对我们公务员考试中的工程问题,我们怎么去运用这个公式呢?在公务员考试中工程问题主要有两种题型:基本工程问题和交叉合作问题。
本文主要讲解基本工程问题。
这类工程问题主要是与后面的交替合作问题相区别,也就是说除了交替合作的工程问题,其它的我们都归结为基本工程问题,基本工程问题很简单,考试中主要有两种方法需要大家去掌握。
1、比例法确定比例关系,把比例看成份数,份数做差对应实际量。
当题目中有某一量不变时,就要想到运用比例法。
根据这个式子我们可以得到三个比例关系:工作总量一定时,工作时间之比等于工作效率之比的反比例。
工作时间一定时,工作总量之比等于工作效率之比。
工作效率一定时,工作总量之比等于工作时间之比。
第一个比例关系考的最多,后面两个比例关系基本不考。
例1. 对某批零件进行加工,原计划要18小时完成,改进工作效率后只需要12小时就能完成,已知后来每小时比原计划每小时多加工8个零件,问这批零件共有多少个?最全汇总>>>福建公务员历年真题【中公分析】工作总量是一定的,前后效率有变化,那就要用比例法,原时间:改进效率后时间=18:12=3:2,则原效率:改进后效率=2:3,效率之差是1,对应的实际量是8,原效率就是,又原工作时间是18,总的零件数= 个。
工程问题是行测数量关系中的必考题目,这类题型我们在小学时候就有接触,但是时间久了,很多记忆已经比较模糊了,对于解题方法已经不是那么清晰了。
所以一些考生看到这类题型,有些畏难,今天新西南教育就带大家回顾一下工程问题的一些解法——特值法。
特值法在工程问题尤其是在多者合作这类题中应用比较广泛,那特值法在多者合作中怎么用呢?大家一起来看一下。
应用一:【例1】收割一块稻田,丈夫单独收割需要3天完成,妻子单独收割需要6天完成,夫妻两人共同收割,则需要( )天完成。
A.2B.3C.6D.9【解析】A。
设工作总量为3和6的最小公倍数6,则丈夫的效率为2,妻子的效率为1,故夫妻两人共同收割需要6÷(2+1)=2天完成。
在这道题中,题干给出了完成同一项任务的两个时间,解题的方法是把工作总量特值为这两个时间的最小公倍数,进而求出工作效率。
这就是特值法的第一种应用:当题干中给了完成这项工程的若干时间,把工作总量特值为若干时间的最小公倍数,进而求出效率。
但是要注意的是若干时间一定是某个人单独完成或者是几个人从头到尾合作完成的时间。
打铁趁热,我们用一道题来练习一下。
应用二:【例2】某市有甲、乙、丙三个工程队,工作效率比为3∶4∶5。
甲队单独完成A工程需要25天,丙队单独完成B工程需要9天。
若三个工程队合作,完成这两项工程需要多少天?A.6B.7C.8D.10【解析】D。
设甲乙丙的工作效率分别为3、4、5,A工程的工作量为3×25=75,B工程的工作量为5×9=45,共需要(75+45)÷(3+4+5)=10天完成这两项工程。
在这道题中,题干中给出了几个人的效率比,我们是对效率进行了特值,进而求出了工作总量。
特值法的第二种应用就是:当题干中给出效率之比或推导出效率之间的关系,把效率特值为最简比的数值,进而求出工作总量。
同样的,我们用一道题来巩固一下第二种特值法。
应用三:【例3】建筑公司安排100名工人去修某条路,工作2天后抽调走30名工人,又工作了5天后再抽调走20名工人,总共用时12天修完。
公务员行测答题技巧:为工程问题量身定做的特值法行测经常会考到一些工程问题,小编为大家提供公务员行测答题技巧:为工程问题量身定做的特值法,请大家好好复习,多做题以便复习好这类题目!公务员行测答题技巧:为工程问题量身定做的特值法一、当知道两个或者两个以上的时间时,我们可以设工作总量为时间的最小公倍数。
例1、一项工程,甲干需要4天,乙干需要6天,请问二人合作需要多少天?A. 2B. 2.4C. 2.5 D .3二、若知道或可求出工作效率比,则将效率最简比的数值设为效率。
例3、甲、乙、丙三个工程队完成一项工作的效率比为2:3:4。
某项工程,乙先做了三分之一后,余下的由甲与丙合作完成,3天后完成工作,问完成此工程共用了多少天?A.6B.7C.8D.9解析:因为已经知道效率比,我们就设甲乙丙三人的效率分别为2、3和4。
则甲和丙3天完成了三份之二,说明三分之二的工程量为(2+4)×3=18,则三分之一的工程量为9,乙需要做3天,则一共需要3+3=6天可以完成。
故选A。
三、若一项工程由很多人一起做,则设每人每天的工作量为1。
例4、有20人修筑一条公路,假话15天完成,动工3天后抽出5人指数,留下的人继续修路。
如果没人工作效率不变,那么修完这段公路实际用多少天?A.16B.17C.18D.19解析:在这里我们设每人每天的工作效率为1,则可以列方程为20×15=20×3+15×x,解得x=16,共需要16+3=19天。
故选D。
来源:中公教育行测数量关系:方程是否真的让人无奈众所周知,公务员考试其实数量很多题都可以用方程解决,但是方程有时候耗时长,数字难算,所以被很多考生打入冷宫,乃至于有些题就算知道方程能解,但是由于找不到其他代替的办法,干脆就放弃。
方程真的这么没用么?小编在此来分析一下。
方程法的步骤,无非就是设列解,其实啊,如果设的好,等量关系找的快,方程未必这么不堪。
那么,什么是设的好呢?在设未知数过程中,不一定求谁就设谁,而是要设基础量,何为基础量呢,就是可以借助它更好的把其他未知量表示出来的量,设未知数的原则就是方便计算。
2016公务员考试行测备考:巧解工程问题公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。
觉的题型有:数字推理、数学运算等。
了解公务员成绩计算方法,可以让你做到心中有数,高效备考。
公务员行测题库帮助您刷题刷出高分来!>>>我想看看国考课程。
公务员行测考试要求考生能够快速准确地答题,这就要求大家在做题时要注重一些技巧,不仅要会做题,还要在很短的时间内选出正确的答案。
今天中公教育专家就为大家讲解行测考试中非常重要的一个题型——工程问题。
工程问题基本公式为:工作总量=工作效率×时间。
数学表达式为W=P×T,其中W为工作总量,P为工作效率,T为工作时间。
当W是定值时,P与T成反比,当P一定时,W与T 成正比,当T一定时,W与P成正比,解工程问题时一般采用特值思想,设特值时一般设最小公倍数。
例1.甲、乙、丙三个工程队完成一项工作的效率比为2:3:4。
某项工程,乙先做了1/3后,余下交由甲丙合作完成,3天后完成工作。
问完成此工程共用了多少天?A.6B.7C.8D.9中公解析:设甲乙丙的效率为2,3,4,则甲丙合作完成了18的工作总量,18是工作总量的2/3,则乙的工作总量为9,乙工作了3天,所以总共花费了6天,因此选A。
例2.一项工程由甲、乙、丙三个工程队共同完成需要15天,甲队与乙队的工作效率相同,丙队3天的工作量与乙队4天的工作量相当。
三队同时开工2天后,丙队被调往另一工地,甲乙两队留下继续工作。
那么,开工22天后,这项工程:A.已经完工B.余下的量需要甲乙两队共同工作1天C.余下的量需要乙丙两队共同工作1天D.余下的量需要甲乙丙三队共同完成1天中公解析:丙队3天的工作量与乙队4天的工作量相当,根据计算公式可以得到:丙的工作效率和乙的工作效率之比为4:3,由此可得甲乙丙的工作效率之比为3:3:4,所以设甲的工作效率为3,乙为3,丙为4,则工作总量为(3+3+4)15=150,三队共同完成2天,完成了20个工作量。
工程问题也是数学运算的常考题型,在复习过程中,考生应重点掌握工程问题涉及的基本概念,并学会对计算公式的灵活运用。
国家公务员考试中,工程问题主要考查二人合作型、多人合作型和水管问题。
其中,二人或者多人合作的工程问题考查的比较多,教育专家研究认为,这类问题解题关键是找到二人或者多人的工作效率和。
下面,专家就针对工程问题题型进行全面讲解。
一、工程问题基本概念及关系式工程问题中涉及到工作量、工作时间和工作效率三个量。
工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。
一般来说,可设总量为“1”;部分工作量用分数表示。
工作时间:指完成工作的所需时间,常见的单位一般为小时、天。
这里需要注意“单位时间”这个概念。
当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。
工作效率:指工作的快慢,也就是单位时间里所完成的工作量。
工作效率的单位一般是“工作量/天”或“工作量/小时”。
工作量、工作时间、工作效率三个量之间存在如下基本关系式:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率。
解决基本的工程问题时,要明确所求,找出题目中工作量、工作时间、工作效率三量中的已知量,再利用公式求出未知量。
二、工程问题常考题型(一)二人合作型例题:有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:A.16天B.15天C.12天D.10天(二)多人合作型例题:甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。
两项工程同时开工,耗时16天同时结束。
问丙队在A工程中参与施工多少天?A.6B.7C.8D.9解析:本题答案选A。
公务员行测数学运算之速解工程问题华图教育周德让在各种公务员考试的行测数学运算模块中,“工程问题”一般都是必不可少的考点,那么当遇见这种问题的时候,考生朋友们应该如何快速地求解出来呢?首先我们应该熟练的运用工程问题的核心公式:工作总量=时间×效率。
其次要根据不同的题型按照不同的求解方法:工程问题的题型有多种,每种题型都有它特殊的解题方法和套路,我们在复习的时候可以针对不同的题型采取不同的解题技巧,我们归纳总结历年来涉及到的试题,总结出工程问题的出题类型主要有以下几类:一是给定时间型,这种类型的题目特征是只给定了时间,其解题技巧我们通过一道例题进行理解:【例1】一项工程由甲单独做需要15天做完,乙单独做需要12天做完,二人合作4天后,剩下的工程由甲单独做,还需要( )天完成。
A.6B.8C.9D.5针对这种类型的题目,我们的核心方法是赋值法,具体而言是赋值工作总量为时间的最小公倍数,之后将效率表示出来。
比如这道例题我们将总量赋值为15和12的最小公倍数为60,那么其效率就为:甲4,乙5。
两人合作4天完成的工作量为(5+4)*4=36,剩余工作量为60-36=24,那么由甲独做,还需要24/4=6天,答案为A。
二是给定效率性。
这种类型的题目特征是给定了效率之比,我们也通过一道例题来理解其解题技巧。
【例2】甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程,两项工程同时开工,耗时16天同时结束。
问丙队在A工程中参与施工多少天?A.6 B.7C.8D.9针对这种类型的题目,我们的核心方法是直接效率为其比例数。
例如本题中我们直接赋值其效率为甲6、乙5、丙4.之后可以按照整体法来求解,将三个工程看成一个整体教给三个人去做,那么效率之和为6+5+4=15,工作时间为16,那么工作总量为16*15=240.由于A、B两项工作的工作量相同,那么没项工作的具体量即为120.设丙在A工程中参入施工x天,则可列方程120=6*16+4x,x=6,答案为A。
最全汇总>>>福建公务员历年真题通过最新福建公务员考试资讯、大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。
福建中公教育整理了福建省考资料大全供考生备考学习。
需要更多指导,请选择在线咨询一对一解答。
工程问题在国家公务员行测考试中是非常常见的一种题型,基本上每年都会出现,而同学们在备考工程问题的时候往往会比较迷茫,不知道用什么方法去解决,或者说不能够快速准确地解决,那么中公教育专家今天就为大家带来一种最实用的方法——比例思想。
工程问题的核心公式:工作总量=工作效率×工作时间核心正反比关系:总量一定时,效率与时间成反比效率一定时,总量与时间成正比时间一定时,总量与效率成正比比例思想的核心:比例思想的核心可以用8个字来概括:份数思想,特值手法。
比如已知某班的男女学生人数之比为3:4,份数思想指的就是将男生看成3份,女生看成4份,总人数看成7份,而这里的3份、4份与7份就是特值,份数思想贯穿整个比例思想。
如果题目告诉我们该班总人数为35人,则可知7份代表35人,一份也就代表5人,男生有3份,也就是15人,女生有4份也就是20人中公.教育版权。
正反比:在工程问题当中经常会涉及到正反比例,弄清楚工程问题当中的正反比例关系也是解决问题的关键所在,所以广大考生一定要牢记上面的核心公式和正反比关系。
例如:甲和乙工作效率之比为3:4,甲完成一项任务需要12小时,那么乙做同样的任务需要多长时间完成?中公解析:甲和乙的工作效率之比为3:4,在完成相同任务的情况下,所用的时间与效率成反比,所以甲乙所用的时间之比为4:3,即甲要用4份的时间,乙要用3份的时间,甲的4份代表的是12小时,也就是一份代表3小时,乙需要3份的时间,也就是9小时。
小结:广大考生会发现,利用比例思想能够很快分析出题干中的总量、效率、时间存在什么样的关系,进而快速解题。
公务员行测数量关系题如何快速提高做题速度在公务员行测考试中,数量关系题一直是让众多考生感到头疼的部分。
不仅题目难度较大,而且在有限的考试时间内要迅速准确地解答出来,更是一项巨大的挑战。
然而,通过合理的方法和有效的训练,我们是可以显著提高做题速度的。
要想提高数量关系题的做题速度,首先要对常见的题型和解题方法有清晰的了解。
数量关系题大致可以分为行程问题、工程问题、利润问题、排列组合问题、概率问题、几何问题等。
每种题型都有其特定的解题思路和公式,比如行程问题中的相遇追击公式、工程问题中的工作效率公式等。
我们要通过系统的学习和练习,熟练掌握这些公式和解题方法,做到在看到题目时能够迅速判断出题型,并运用相应的方法进行求解。
在掌握了基本的题型和方法之后,我们需要进行大量的练习。
练习的目的不仅是为了熟悉题型和方法,更是为了提高解题的速度和准确率。
在练习的过程中,要注意控制时间,模拟考试的紧张氛围。
一开始可能无法在规定时间内完成所有题目,但随着练习的增多,解题速度会逐渐提高。
同时,要对做错的题目进行认真分析,找出错误的原因,是因为对知识点的掌握不够牢固,还是解题方法运用不当,或者是计算失误等。
针对这些问题进行有针对性的改进,避免在以后的考试中犯同样的错误。
提高阅读和理解题目的能力也是加快做题速度的关键。
很多时候,我们在数量关系题上花费了过多的时间,不是因为不会做,而是因为没有读懂题目或者理解错了题意。
因此,在平时的练习中,要注重培养自己快速准确地理解题目的能力。
可以通过多读一些数学类的文章和题目,提高自己的阅读速度和理解能力。
在阅读题目时,要抓住关键信息,学会提炼题目中的有用数据和条件,摒弃无关的干扰信息。
学会运用一些解题技巧也能够有效地提高做题速度。
比如,代入排除法就是一种非常实用的技巧。
当我们在面对一些选择题时,如果通过常规方法计算比较复杂,可以将选项逐一代入题目中进行验证,从而快速得出答案。
还有数字特性法,根据题目中给出的条件,判断答案所应具备的数字特性,如奇偶性、整除性等,从而缩小答案的范围,提高解题的效率。
公务员⾏测:⼯程问题解题⽅法及例题详解 在⽇常⽣活中,做某⼀件事,制造某种产品,完成某项任务,完成某项⼯程等等,都要涉及到⼯作量、⼯作效率、⼯作时间这三个量,它们之间的基本数量关系是⼯作量=⼯作效率×时间 在数学中,探讨这三个数量之间关系的应⽤题,我们都叫做“⼯程问题” 举⼀个简单例⼦ ⼀件⼯作,甲做10天可完成,⼄做15天可完成.问两⼈合作⼏天可以完成? ⼀件⼯作看成1个整体,因此可以把⼯作量算作1.所谓⼯作效率,就是单位时间内完成的⼯作量,我们⽤的时间单位是“天”,1天就是⼀个单位,再根据基本数量关系式,得到所需时间=⼯作量÷⼯作效率 =6(天) 两⼈合作需要6天 这是⼯程问题中最基本的问题,这⼀讲介绍的许多例⼦都是从这⼀问题发展产⽣的 为了计算整数化(尽可能⽤整数进⾏计算),如第三讲例3和例8所⽤⽅法,把⼯作量多设份额.还是上题,10与15的最⼩公倍数是30.设全部⼯作量为30份.那么甲每天完成3份,⼄每天完成2份.两⼈合作所需天数是30÷(3+ 2)= 6(天) 数计算,就⽅便些∶2.或者说“⼯作量固定,⼯作效率与时间成反⽐例”.甲、⼄⼯作效率的⽐是15∶10=3∶2.当知道了两者⼯作效率之⽐,从⽐例⾓度考虑问题,也 需时间是 因此,在下⾯例题的讲述中,不完全采⽤通常教科书中“把⼯作量设为整体1”的做法,⽽偏重于“整数化”或“从⽐例⾓度出发”,也许会使我们的解题思路更灵活⼀些 ⼀、两个⼈的⼯程问题 标题上说的“两个⼈”,也可以是两个组、两个队等等的两个集体 例1 ⼀件⼯作,甲做9天可以完成,⼄做6天可以完成.现在甲先做了3天,余下的⼯作由⼄继续完成.⼄需要做⼏天可以完成全部⼯作? 答:⼄需要做4天可完成全部⼯作 解⼆:9与6的最⼩公倍数是18.设全部⼯作量是18份。
甲每天完成2份,⼄每天完成3份.⼄完成余下⼯作所需时间是(18- 2 × 3)÷ 3= 4(天) 解三:甲与⼄的⼯作效率之⽐是6∶ 9= 2∶ 3 甲做了3天,相当于⼄做了2天.⼄完成余下⼯作所需时间是6-2=4(天)例2 ⼀件⼯作,甲、⼄两⼈合作30天可以完成,共同做了6天后,甲离开了,由⼄继续做了40天才完成.如果这件⼯作由甲或⼄单独完成各需要多少天? 解:共做了6天后, 原来,甲做 24天,⼄做 24天, 现在,甲做0天,⼄做40=(24+16)天 这说明原来甲24天做的⼯作,可由⼄做16天来代替.因此甲的⼯作效率 如果⼄独做,所需时间是 如果甲独做,所需时间是 答:甲或⼄独做所需时间分别是75天和50天 例3 某⼯程先由甲独做63天,再由⼄单独做28天即可完成;如果由甲、⼄两⼈合作,需48天完成.现在甲先单独做42天,然后再由⼄来单独完成,那么⼄还需要做多少天? 解:先对⽐如下: 甲做63天,⼄做28天; 甲做48天,⼄做48天 就知道甲少做63-48=15(天),⼄要多做48-28=20(天),由此得出甲的 甲先单独做42天,⽐63天少做了63-42=21(天),相当于⼄要做 因此,⼄还要做28+28= 56 (天) 答:⼄还需要做 56天 例4 ⼀件⼯程,甲队单独做10天完成,⼄队单独做30天完成.现在两队合作,其间甲队休息了2天,⼄队休息了8天(不存在两队同⼀天休息)问开始到完⼯共⽤了多少天时间? 解⼀:甲队单独做8天,⼄队单独做2天,共完成⼯作量 余下的⼯作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天) 答:从开始到完⼯共⽤了11天 解⼆:设全部⼯作量为30份.甲每天完成3份,⼄每天完成1份.在甲队单独做8天,⼄队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天) 解三:甲队做1天相当于⼄队做3天 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)⼯作量.相当于⼄队要做2×3=6(天)⼄队单独做2天后,还余下(⼄队)6-2=4(天)⼯作量。
⾏测数量关系技巧:⼯程问题 掌握⽅法做事永远都是事半功倍,国考的时候也是这样的,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:⼯程问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:⼯程问题 ⾏测数量关系⼯程问题考查点⽐较多,如何解决这类型问题呢?也是很多⼈头疼的事情,今天⼩编就给⼤家分享⼯程问题的解法。
⼀、基本公式 ⼯作总量=⼯作效率×⼯作时间 ⼆、解题⽅法 1、已知完成⼯作总量的多个⼯作时间,设⼯作总量为1。
2、已知各效率的⽐例关系,设⼯作效率为最简⽐的数值。
三、技巧应⽤ 例.甲⼯程队与⼄⼯程队的效率之⽐为4:5,⼀项⼯程由甲⼯程队先单独做6天,再由⼄⼯程队单独做8天,最后甲、⼄两个⼯程队合作4天刚好完成,如果这项⼯程由甲⼯程队或⼄⼯程队单独完成,则甲⼯程队所⽤的天数⽐⼄⼯程队所需天数多多少天?A.3B.4C.5D.6 【答案】C。
解析:此题为⼯程问题,由题⼲描述甲⼯程队与⼄⼯程队的效率之⽐为4:5,可设效率为最简⽐,即甲的效率为4,⼄的效率为5。
已知效率,⼜由⼀项⼯程由甲⼯程队先单独做6天,再由⼄⼯程队单独做8天,最后甲、⼄两个⼯程队合作4天刚好完成可知,甲⼄两队分三个阶段完成这项⼯程以及每个阶段所⽤的时间。
阶段⼀:甲单独做6天,完成⼯作量为4×6=24;阶段⼆:⼄单独做8天,完成的⼯作量为5×8=40;阶段三:甲⼄两队合作4天完成的⼯作量为(4+5)×4=36。
⼯作总量为各阶段的⼯作量之和: 国考⾏测技巧:“主题词”巧解主旨观点题 主旨观点题在⾏测考试当中的地位举⾜轻重,⼀⽅⾯是因为其题⽬数量较多,⽐重较⼤;另⼀⽅⾯是在很多其他题型中都会涉及到理解主旨和归纳概括的能⼒,例如:逻辑填空、可能性推理中的削弱与加强题型,甚⾄包括⼀些申论题⽬。
所以如果我们能够将主旨观点题做好,不仅能使我们在⾔语与表达的题⽬中取得⼀个⽐较稳定的分数,还可以在其他题型当中得到⼀定的提升。
2016国家公务员考试行测备考:工程问题三大技巧是考试的重点,是近年来考试中最重要、最常考的之一,需要考生重点掌握。
工程类问题涉及的公式只有一个:工作总量=工作效率×工作时间,所有的考题围绕此公式展开。
中公教育专家通过分析发现,近年来工程问题的难度有所上升,然而其解题步骤仍然较为固定,一般而言分为3步:1.设工作总量为时间条件公倍数;2.求效率;3.求题目所问。
即使是较为复杂的工程问题,运用这一解题步骤也可解出。
例1、同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?()(2011年国家公务员考试行测试卷第77题)A、6B、7C、8D、9答案:B。
中公解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,A、B管加满水需要90分钟,A管加满水需160分钟,因此把水量设为1440份。
(2)分别求出A、B工作效率:A、B管每分钟进水量=16份,A每分钟进水量=9份,因此B每分钟进水量=7份。
(3)求题目所问。
由于B效率为7份,因此B管每分钟的进水量必定是7的倍数,四个选项,只有B选项是7的倍数,因此可直接选出B选项。
例2、一条隧道,甲用20天的时间可以挖完,乙用10天的时间可以挖完,现在按照甲挖一天,乙再接替甲挖一天,然后甲再接替乙挖一天…如此循环,挖完整个隧道需要多少天?()(2009年国家公务员考试行测试卷第110题)A、14B、16C、15D、13答案:A。
中公解析:套用工程类问题的解题步骤:(1)设工作总量为完成工作所需时间的最小公倍数,甲、乙完成工作各需20天、10天,因此设工作总量为20。
(2)分别求出甲、乙工作效率:甲效率=1,乙效率=2。
(3)求题目所问。
题目要求让甲、乙轮流挖,一个循环(甲乙两人各挖1天)共完成工作量1+2=3。
如此6个循环后可以完成工作量18,还剩余2,需要甲挖1天,乙挖半天。
2016国家公务员考试行测备考:巧用特值思想解工程问题是历年中的高频考点之一,需要考生重点掌握。
其核心公式为:工作量=工作时间×效率,所考题目均以此公式为基础。
近年来,工程问题的考查主要以特值方法为主,即:对于题干中“已知时间,求时间”,通常设工作总量为时间的最小公倍数,化繁为简,变未知为已知。
下面专家为大家举例说明。
例1.一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天。
甲、乙、丙三人共同完成该工程需( )A.8天B.9天C.10天D.12天【中公解析】C。
设工作总量为90,则P甲=3,P甲+P乙=5,P乙+P丙=6,可得出:P甲+P乙+P丙=9。
则所求时间t=90÷9=10天。
例2.某工厂的一个生产小组,当每个工人在自己的工作岗位上工作时,9小时可以完成一项生产任务。
如果交换工人甲和乙的工作岗位,其他人的工作岗位不变时,可提前1小时完成任务;如果交换工人丙和丁的工作岗位,其他人的工作岗位不变时,也可提前1小时完成任务。
如果同时交换甲和乙、丙和丁的工作岗位,其他人的工作岗位不变,可以提前多少小时完成这项任务?( )A.1.6B.1.8C.2.0D.2.4【中公解析】B。
设工作总量为72,则原工作效率为8,若甲乙交换岗位,工作效率为9,效率提高1;若丙丁交换岗位,工作效率也为9,效率提高1;根据题意可推出,同时交换甲和乙、丙和丁的工作岗位,效率为10,所用时间为72÷10=7.2小时,故可提前9-7.2=1.8小时。
【题目类型及规律】工程问题,注意效率能相加,时间不能相加。
例3.某项工程,小王单独做需15天完成,小张单独做需10天完成。
现在两人合做,但中间小王休息了5天,小张也休息了若干天,最后该工程用11天完成。
则小张休息的天数是( )A.6B.2C.3D.5【中公解析】D。
设工程总量为30,则小王的效率为2,小张的效率为3。
小王休息了5天,则工作了6天,工作量=6×2=12,所以小张的工作量=30-12=18,工作天数=18÷3=6,则休息了11-6=5天,所以答案选D。
公务员考试行测数量关系:解答工程问题有妙招工程问题一直是公考的必考题型,解题方法有赋值法和方程法,但是,什么题目用方程法,什么题目用赋值法,哪些题目必须同时用方程法和赋值法,众考生经常混淆。
如何快速地确定题型并选择相应的方法解题,中公教育带领大家一起学习。
【例1】要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成。
若两人一起折,需要多少分钟完成?( )
A.10
B.15
C.16
D.18
【解析】本题求工作时间,需要知道工作总量和甲乙的工作效率和,但是这两个值都没有给出,因此可以对工作总量赋值,从而可以确定甲、乙的工作效率,进而求出两人一起折需要多长时间。
在赋值时,遵循简化计算的原则,赋工作总量为各工作时间的最小公倍数。
因此本题的解题过程为:设工作总量(即纸飞机总数)为 90,则甲、乙的效率分别为3、2,可知甲乙的效率和为5,则两人一起折,需要时间为,选择D选项。
【例2】同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米。
若单独打开A管,加满水需2小时40分钟。
则B管每分钟进水多少立方米?( )
A.6
B.7
C.8
D.9
【解析】本题虽然也有工作时间,但是还有具体数值(A管比B管多进水180立方米)的限制,因此用方程法解题更易理解、解题更快速。
设A、B水管每分钟的进水量分别为x、y 立方米,根据题意可列出方程,解得x=9、y=7,选择B选项。
【例3】三个快递员进行一堆快件的分拣工作,乙和丙的效率都是甲的1.5倍。
如果乙和丙一起分拣所有的快件,将能比甲和丙一起分拣提前36分钟完成。
问如果甲乙丙三人一起工作,需要多长时间能够完成所有快件的分拣工作?( )
A.1小时45分
B.2小时
C.2小时15分
D.2小时30分
【解析】根据题意可知甲、乙、丙的效率比为1:1.5:1.5,题目中给出了效率比,就可以对效率进行赋值,赋最小的整数,因此赋甲、乙、丙的效率分别为2、3、3。
题目求工作时间,除工作效率外还需要知道工作总量,可以设快件总量为x,则可以得到方程,解得x=1080,则三人一起工作,所需时间为,即为2小时15分钟,选择C选项。
通过以上例题,我们可以总结出,当题目中只给出了工作时间,没有其他量时,对工作总量赋值,赋各工作时间的最小公倍数;如果除了工作时间,还有具体数值的限制,则可以用方程法解题;如果题目中有工作效率比,则对工作效率赋值,赋最小的正整数。
近年来,
公务员考试数量关系模块越来越侧重对方法、技巧的考查,因此,众位考生一定要对常考的解题方法烂熟于心。