2019届高考理数7.3二元一次不等式(组)与简单的线性规划
- 格式:doc
- 大小:106.74 KB
- 文档页数:10
[基础题组练]1.不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )解析:选C.用特殊点代入,比如(0,0),容易判断为C.2.(2019·开封市高三定位考试)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是( )A.132 B.116 C .32D .64解析:选C.作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max =⎝⎛⎭⎫12-5=32,故选C.3.(2018·高考北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D.若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D.4.(2019·长春市质量检测(二))已知动点M (x ,y )满足线性条件⎩⎪⎨⎪⎧x -y +2≥0,x +y ≥0,5x +y -8≤0,定点N (3,1),则直线MN 斜率的最大值为( )A .1B .2C .3D .4解析:选C.不等式组表示的平面区域为△ABC 内部及边界,如图所示,数形结合可知,当M 点与B 点重合时,MN 的斜率最大.由⎩⎪⎨⎪⎧5x +y -8=0,x +y =0,得B (2,-2).MN 斜率的最大值为1+23-2=3.5.(2019·陕西省质量检测(一))若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:法一:由约束条件可知可行域的边界分别为直线y =1,x +y =0,x -y -2=0,则边界的交点分别为(-1,1),(3,1),(1,-1),分别代入z =x -2y ,得对应的z 分别为-3,1,3,可得z 的最大值为3.法二:作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0并平移,由图可知,当直线过点(1,-1)时,z 取得最大值,即z max =1-2×(-1)=3. 答案:36.(2019·广东茂名模拟)已知点A (1,2),点P (x ,y )满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,O 为坐标原点,则z =OA →·OP →的最大值为________.解析:由题意知z =OA →·OP →=x +2y ,作出可行域如图阴影部分,作直线l 0:y =-12x ,当l 0移到过A (1,2)的l 的位置时,z 取得最大值,即z max =1+2×2=5.答案:57.(2019·石家庄市质量检测(二))设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -3≤0,x +y ≥3,y -2≤0,则y +1x的最大值为________.解析:作出可行域,如图中阴影部分所示,而y +1x 表示区域内的动点(x ,y )与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点C (1,2)时,斜率最大,为2-(-1)1-0=3.答案:38.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图中阴影部分所示,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1. 所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).[综合题组练]1.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A.通解 作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.优解 在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧綈q 正确.故选A.2.(2019·重庆六校联考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D.画出约束条件所表示的可行域,如图中阴影部分所示.令z =0,画出直线y =ax ,a =0显然不满足题意.当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与x +y -2=0平行,此时a =-1;当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则需使直线y =ax 与2x -y +2=0平行,此时a =2.综上,a =-1或2.3.(2019·安徽合肥一模)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千克B .360千克C .400千克D .440千克解析:选 B.设生产甲产品x 件,生产乙产品y 件,利润z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,z =2x +y ,作出⎩⎪⎨⎪⎧x ≥0,y ≥0,2x +3y ≤480,6x +y ≤960表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N )时,z 取得最大值,为360.4.(综合型)实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 坐标为(7,9),显然点B到直线x +2y -4=0的距离最大,此时z max =21.答案:21。
1.会从实际情境中抽象出二元一次不等式组。
2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
热点题型一 二元一次不等式(组)表示平面区域例1、 (1)在平面直角坐标系xOy 中,不等式组⎩⎪⎨⎪⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若直线y =kx +1将区域D 分成面积相等的两部分,则实数k 的值是________。
解析:(1)不等式组对应的平面区域如图,对应的区域为正方形ABCD , 其中A (0,1),D (1,0), 边长AD =2,则正方形的面积S=2×2=2,故选B。
(2)区域D如图中的阴影部分所示,直线y=kx+1经过定点C(0,1),如果其把区域D划分为面积相等的两个部分,则直线y=kx+1只要经过AB的中点即可。
【提分秘籍】平面区域面积问题的解题思路(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解。
若为不规则四边形,可分割成几个三角形分别求解再求和即可。
(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解。
【举一反三】已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2解析:先作出不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤4对应的平面区域,如图:要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,热点题型二 求线性目标函数的最值例2、设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为( )A .8B .7C .2D .1解析:作出约束条件表示的可行域如图中阴影部分所示,作直线y =-12x ,平移直线y =-12x ,当直线y =-12x +z 2经过点C 时在y 轴上的截距z2取得最大值,即z 取得最大值,由⎩⎪⎨⎪⎧ x -y -1=0,x -3y +3=0得⎩⎪⎨⎪⎧x =3y =2,即C (3,2),代入z =x +2y 得z max =3+2×2=7,故选B 。
§7.3 二元一次不等式(组)与简单的线性规划考纲解读考点 内容解读 要求高考示例常考题型 预测热度1.平面区域 问题①会从实际情境中抽象出二元一次不等式组;②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组理解2016浙江,3;2016山东,4; 2015课标Ⅰ,15;2014课标Ⅰ,9 选择题 填空题★★★2.线性规划 问题会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决理解2017课标全国Ⅱ,5; 2017课标全国Ⅰ,14; 2017课标全国Ⅲ,13; 2016课标全国Ⅲ,13选择题 填空题★★★分析解读 1.多考查线性目标函数的最值问题,兼顾面积、距离、斜率等问题.2.能用线性规划的方法解决重要的实际问题,使收到的效益最大,耗费的人力、物力资源最少等.3.应重视数形结合的思想方法.4.本节在高考中主要考查与平面区域有关的范围、距离等问题以及线性规划问题,分值约为5分,属中低档题.五年高考考点一 平面区域问题1.(2016山东,4,5分)若变量x,y 满足{x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A.4B.9C.10D.12 答案 C2.(2016浙江,3,5分)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域{x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=( ) A.2√2 B.4 C.3√2 D.6答案 C3.(2014课标Ⅰ,9,5分)不等式组{x +y ≥1,x -2y ≤4的解集记为D.有下面四个命题:p 1:∀(x,y)∈D,x+2y ≥-2, p 2:∃(x,y)∈D,x+2y ≥2, p 3:∀(x,y)∈D,x+2y ≤3, p 4:∃(x,y)∈D,x+2y ≤-1.其中的真命题是( )A.p 2,p 3B.p 1,p 2C.p 1,p 4D.p 1,p 3 答案 B4.(2015课标Ⅰ,15,5分)若x,y 满足约束条件{x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为 .答案 3教师用书专用(5—6)5.(2013山东,6,5分)在平面直角坐标系xOy 中,M 为不等式组{2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A.2B.1C.-13D.-12答案 C6.(2013安徽,9,5分)在平面直角坐标系中,O 是坐标原点,两定点A,B 满足|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =2,则点集{P|OP⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( ) A.2√2 B.2√3 C.4√2 D.4√3 答案 D考点二 线性规划问题1.(2017浙江,4,5分)若x,y 满足约束条件{x ≥0,x +y -3≥0,x -2y ≤0,则z=x+2y 的取值范围是( )A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞) 答案 D2.(2017山东,4,5分)已知x,y 满足约束条件{x -y +3≤0,3x +y +5≤0,x +3≥0,则z=x+2y 的最大值是( )A.0B.2C.5D.6 答案 C3.(2015陕西,10,5分)某企业生产甲、乙两种产品均需用A,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如下表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A(吨) 3 2 12 B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元 答案 D4.(2017课标全国Ⅰ,14,5分)设x,y 满足约束条件{x +2y ≤1,2x +y ≥−1,x -y ≤0,则z=3x-2y 的最小值为 .答案 -55.(2017课标全国Ⅲ,13,5分)若x,y 满足约束条件{x -y ≥0,x +y -2≤0,y ≥0,则z=3x-4y 的最小值为 .答案 -16.(2016课标全国Ⅲ,13,5分)若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .答案32教师用书专用(7—26)7.(2017北京,4,5分)若x,y 满足{x ≤3,x +y ≥2,y ≤x,则x+2y 的最大值为( )A.1B.3C.5D.9 答案 D8.(2017天津,2,5分)设变量x,y 满足约束条件{2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z=x+y 的最大值为( )A.23B.1C.32D.3答案 D9.(2016天津,2,5分)设变量x,y 满足约束条件{x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z=2x+5y 的最小值为( )A.-4B.6C.10D.17答案 B10.(2016北京,2,5分)若x,y 满足{2x -y ≤0,x +y ≤3,x ≥0,则2x+y 的最大值为 ( )A.0B.3C.4D.5 答案 C11.(2015天津,2,5分)设变量x,y 满足约束条件{x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z=x+6y 的最大值为( )A.3B.4C.18D.40答案 C12.(2015山东,6,5分)已知x,y 满足约束条件{x -y ≥0,x +y ≤2,y ≥0.若z=ax+y 的最大值为4,则a=( )A.3B.2C.-2D.-3 答案 B13.(2015北京,2,5分)若x,y 满足{x -y ≤0,x +y ≤1,x ≥0,则z=x+2y 的最大值为( )A.0B.1C.32D.2答案 D14.(2015福建,5,5分)若变量x,y 满足约束条件{x +2y ≥0,x -y ≤0,x -2y +2≥0,则z=2x-y 的最小值等于( )A.-52B.-2C.-32D.2答案 A15.(2015广东,6,5分)若变量x,y 满足约束条件{4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z=3x+2y 的最小值为( )A.4B.235C.6D.315答案 B16.(2014天津,2,5分)设变量x,y 满足约束条件{x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z=x+2y 的最小值为( )A.2B.3C.4D.5答案 B17.(2014北京,6,5分)若x,y 满足{x +y -2≥0,kx -y +2≥0,y ≥0,且z=y-x 的最小值为-4,则k 的值为( )A.2B.-2C.12D.-12答案 D18.(2014安徽,5,5分)x,y 满足约束条件{x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z=y-ax 取得最大值的最优解不唯一···,则实数a 的值为( )A.12或-1 B.2或12C.2或1 D .2或-1 答案 D19.(2014广东,3,5分)若变量x,y 满足约束条件{y ≤x,x +y ≤1y ≥−1,,且z=2x+y 的最大值和最小值分别为m 和n,则m-n=( )A.5B.6C.7D.8 答案 B20.(2013天津,2,5分)设变量x,y 满足约束条件{3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z=y-2x 的最小值为( )A.-7B.-4C.1D.2答案 A21.(2013北京,8,5分)设关于x,y 的不等式组{2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A.(-∞,43) B.(-∞,13) C.(-∞,-23) D.(-∞,-53)答案 C22.(2013湖南,4,5分)若变量x,y 满足约束条件{y ≤2x,x +y ≤1,y ≥−1,则x+2y 的最大值是( )A.-52B.0C.53D.52答案 C23.(2015浙江,14,4分)若实数x,y 满足x 2+y 2≤1,则|2x+y-2|+|6-x-3y|的最小值是 . 答案 324.(2013广东,13,5分)给定区域D:{x +4y ≥4,x +y ≤4,x ≥0,令点集T={(x 0,y 0)∈D|x 0,y 0∈Z,(x 0,y 0)是z=x+y 在D 上取得最大值或最小值的点},则T中的点共确定 条不同的直线. 答案 625.(2013浙江,13,4分)设z=kx+y,其中实数x,y 满足{x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k= .答案 226.(2013江苏,9,5分)抛物线y=x 2在x=1处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x,y)是区域D 内的任意一点,则x+2y 的取值范围是 . 答案 [-2,12]三年模拟A 组 2016—2018年模拟·基础题组考点一 平面区域问题1.(2018四川凉山州模拟,8)已知点M 的坐标(x,y)满足不等式组{2x +y -4≥0,x -y -2≤0,y -3≤0,N 为直线y=-2x+2上任一点,则|MN|的最小值是( )A.√55B.2√55C.1D.√172答案 B2.(2017河北衡水中学摸底联考,7)若A 为不等式组{x ≤0,y ≥0,y -x ≤2表示的平面区域,则当z 从-2连续变化到1时,动直线y=-x+z 扫过A 中的那部分区域的面积为( )A.1B.1.5C.0.75D.1.75 答案 D3.(2016广东广州模拟,6)在平面直角坐标系中,不等式组{x ≤2,|y -2|≤x 表示的平面区域的面积是( )A.8√2B.8C.4√2D.4答案 D考点二 线性规划问题4.(2018辽宁鞍山铁东二模,5)设x,y 满足约束条件{x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z=3x+y 的最大值为( )A.-3B.4C.2D.5答案 B5.(人教A 必5,三,3-3-2,1,变式)已知实数x,y 满足{y ≤x,x +y ≤1,y ≥−1,则目标函数z=2x-y-1的最大值为( )A.5B.4C.12D.-3答案 B6.(2018湖北荆州一模,8)已知实数x 、y 满足{x -2y +1≥0,x ≤2,x +y -1≥0,则z=2x-2y-1的最小值是 .答案 -537.(2017广东惠州调研,14)已知x 、y 满足不等式组 {x +2y -3≤0,x +3y -3≥0,y ≤1,则z=2x+y 的最大值是 .答案 6B 组 2016—2018年模拟·提升题组(满分:40分 时间:30分钟)一、选择题(每小题5分,共15分)1.(2018广东茂名二模,7)实数x,y 满足条件{x +y -4≤0,x -2y +2≥0,x ≥0,y ≥0,则(12)x -y的最大值为( )A.116B.12C.1D.2答案 D2.(2017河北石家庄二模,10)在平面直角坐标系中,不等式组{x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x 、y 满足上述约束条件,则z=x+y+1x+3的最小值为( )A.-1B.-5√2+17C.13D.-75答案 D3.(2016山东三校4月联考,5)已知变量x,y 满足约束条件{x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z=ax+y(其中a>0)仅在点(1,1)处取得最大值,则a 的取值范围为( ) A.(0,2) B.(0,12) C.(0,13) D.(13,12)答案 B二、填空题(每小题5分,共10分)4.(2017湖南永州模拟,15)若x,y 满足约束条件{3x +y -6≤0,x +y ≥2,y ≤2,则x 2+y 2的最小值为 .答案 25.(2017河北衡水中学3月模考,15)已知点P(x,y)的坐标满足{x ≤0,y >x,y <2x +1,则x+yx +y 的取值范围为 .答案 (-√2,1]三、解答题(共15分)6.(2018云南玉溪模拟,18)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各加工原料多少箱?解析 设甲车间加工原料x 箱,乙车间加工原料y 箱,获利为z 元. 根据题意,得约束条件{x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,x 、y ∈N.可行域为图中阴影部分(含边界)内的整点,目标函数z=(7×40)x+(4×50)y=280x+200y, 即y=-75x+z200,作直线y=-75x 并平移,当直线经过点A(15,55)时,z 取最大值.所以当x=15,y=55时,z 取最大值.即当甲车间加工原料15箱、乙车间加工原料55箱时获利最大.C 组 2016—2018年模拟·方法题组方法1 二元一次不等式(组)表示平面区域问题的解法1.(2018云南玉溪模拟,6)已知不等式组{y ≤−x +2,y ≤kx -1,y ≥0所表示的平面区域为面积等于14的三角形,则实数k 的值为( )A.-1B.-12C.12D.1答案 D2.(2017河北武邑调研,9)设不等式组{x +y ≤4,y -x ≥0,x -1≥0表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r 2(r>0)经过区域D 内的点,则r 的取值范围是( )A.[2√2,2√5]B.[2√2,3√2]C.[3√2,2√5]D.(0,2√2)∪(2√5,+∞) 答案 A3.(2017山西五校3月联考,15)不等式组{y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x=a(a>1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z=ax+y 的最大值为 . 答案 9方法2 与平面区域有关的范围、距离问题的求法4.(2017广东六校联盟联考,7)如果点P 在不等式组{2x -y +2≥0,x +y -2≥0,x -3≤0表示的平面区域内,点Q 在曲线x 2+(y+2)2=1上,那么|PQ|的最小值为( )A.4√5-1 B.2√2-1C.2D.√10-1答案 B5.(2018四川德阳模拟,15)若平面区域{x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条平行直线之间,且这两条平行直线间的最短距离是3√55,那么这两条平行直线的斜率是 . 答案 2或12方法3 线性规划问题的求解策略及其实际应用6.(2018广东东莞模拟,7)已知{x -y ≥0,3x -y -6≤0,x +y -2≥0,则z=22x+y 的最小值是 ( )A.1B.16C.8D.4答案 C7.(2017河北唐山调研,18)某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品质量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如下表:每件A 产品 每件B 产品研制成本、搭载试验费用之和(万元) 20 30产品质量(千克) 10 5 预计收益(万元) 80 60已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载质量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.解析 设搭载A 产品x 件,B 产品y 件,预计收益为z 万元,则z=80x+60y,由题意知,{20x +30y ≤300,10x +5y ≤110,x ∈N,y ∈N,作出可行域,如图阴影部分(包含边界)内的整点.作出直线:80x+60y=0并平移,由图可知,当直线经过点M 时,z 取到最大值.由{20x +30y =300,10x +5y =110解得{x =9,y =4,即M(9,4).所以z max =80×9+60×4=960.所以搭载9件A 产品,4件B 产品,才能使总预计收益达到最大,最大预计收益为960万元.。
7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。
§7.3二元一次不等式(组)与简单的线性规划考纲解读分析解读 1.多考查线性目标函数的最值问题,兼顾面积、距离、斜率等问题.2.能用线性规划的方法解决重要的实际问题,使收到的效益最大,耗费的人力、物力资源最少等.3.应重视数形结合的思想方法.4.本节在高考中主要考查与平面区域有关的范围、距离等问题以及线性规划问题,分值约为5分,属中低档题.五年高考考点一平面区域问题1.(2016山东,4,5分)若变量x,y满足则x2+y2的最大值是()A.4B.9C.10D.12答案C2.(2016浙江,3,5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()3.(2014课标Ⅰ,9,5分)不等式组的解集记为D.有下面四个命题:p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1.其中的真命题是()A.p2,p3B.p1,p2C.p1,p4D.p1,p3答案B4.(2015课标Ⅰ,15,5分)若x,y满足约束条件则的最大值为.答案3教师用书专用(5—6)5.(2013山东,6,5分)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.-D.-答案C6.(2013安徽,9,5分)在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=·=2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A.2B.2C.4D.4答案D考点二线性规划问题1.(2017浙江,4,5分)若x,y满足约束条件则z=x+2y的取值范围是()2.(2017山东,4,5分)已知x,y满足约束条件则z=x+2y的最大值是()A.0B.2C.5D.6答案C3.(2015陕西,10,5分)某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如下表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案D4.(2017课标全国Ⅰ,14,5分)设x,y满足约束条件则z=3x-2y的最小值为.答案-55.(2017课标全国Ⅲ,13,5分)若x,y满足约束条件则z=3x-4y的最小值为.答案-16.(2016课标全国Ⅲ,13,5分)若x,y满足约束条件则z=x+y的最大值为.答案教师用书专用(7—26)7.(2017北京,4,5分)若x,y满足则x+2y的最大值为()A.1B.3C.5D.9答案D8.(2017天津,2,5分)设变量x,y满足约束条件则目标函数z=x+y的最大值为()A. B.1C. D.39.(2016天津,2,5分)设变量x,y满足约束条件则目标函数z=2x+5y的最小值为()A.-4B.6C.10D.17答案B10.(2016北京,2,5分)若x,y满足则2x+y的最大值为()A.0B.3C.4D.5答案C11.(2015天津,2,5分)设变量x,y满足约束条件则目标函数z=x+6y的最大值为()A.3B.4C.18D.40答案C12.(2015山东,6,5分)已知x,y满足约束条件若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案B13.(2015北京,2,5分)若x,y满足则z=x+2y的最大值为()A.0B.1C. D.2答案D14.(2015福建,5,5分)若变量x,y满足约束条件则z=2x-y的最小值等于()A.-B.-2C.-D.2答案A15.(2015广东,6,5分)若变量x,y满足约束条件则z=3x+2y的最小值为()A.4B.C.6D.答案B16.(2014天津,2,5分)设变量x,y满足约束条件则目标函数z=x+2y的最小值为()A.2B.3C.4D.5答案B17.(2014北京,6,5分)若x,y满足且z=y-x的最小值为-4,则k的值为()A.2B.-2C.D.-18.(2014安徽,5,5分)x,y满足约束条件若z=y-ax取得最大值的最优解,则实数a的值为()A.或-1B.2或C.2或1D.2或-1答案D19.(2014广东,3,5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m-n=()A.5B.6C.7D.8答案B20.(2013天津,2,5分)设变量x,y满足约束条件则目标函数z=y-2x的最小值为()A.-7B.-4C.1D.2答案A21.(2013北京,8,5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2.求得m的取值范围是()A. B.C. D.答案C22.(2013湖南,4,5分)若变量x,y满足约束条件则x+2y的最大值是()A.-B.0C.D.答案C23.(2015浙江,14,4分)若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是.答案324.(2013广东,13,5分)给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.答案625.(2013浙江,13,4分)设z=kx+y,其中实数x,y满足若z的最大值为12,则实数k=.答案2若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.答案三年模拟A组2016—2018年模拟·基础题组考点一平面区域问题1.(2018四川凉山州模拟,8)已知点M的坐标(x,y)满足不等式组N为直线y=-2x+2上任一点,则|MN|的最小值是()A. B. C.1D.答案B2.(2017河北衡水中学摸底联考,7)若A为不等式组表示的平面区域,则当z从-2连续变化到1时,动直线y=-x+z 扫过A中的那部分区域的面积为()A.1B.1.5C.0.75D.1.75答案D3.(2016广东广州模拟,6)在平面直角坐标系中,不等式组表示的平面区域的面积是()A.8B.8C.4D.4答案D考点二线性规划问题4.(2018辽宁鞍山铁东二模,5)设x,y满足约束条件则z=3x+y的最大值为()A.-3B.4C.2D.5答案B5.(人教A必5,三,3-3-2,1,变式)已知实数x,y满足则目标函数z=2x-y-1的最大值为()A.5B.4C.D.-3答案B6.(2018湖北荆州一模,8)已知实数x、y满足则z=2x-2y-1的最小值是.7.(2017广东惠州调研,14)已知x、y满足不等式组则z=2x+y的最大值是.答案6B组2016—2018年模拟·提升题组(满分:40分时间:30分钟)一、选择题(每小题5分,共15分)1.(2018广东茂名二模,7)实数x,y满足条件则的最大值为()A. B. C.1D.2答案D2.(2017河北石家庄二模,10)在平面直角坐标系中,不等式组(r为常数)表示的平面区域的面积为π,若x、y满足上述约束条件,则z=的最小值为()A.-1B.-C.D.-答案D3.(2016山东三校4月联考,5)已知变量x,y满足约束条件若目标函数z=ax+y(其中a>0)仅在点(1,1)处取得最大值,则a的取值范围为()A.(0,2)B.C.D.答案B二、填空题(每小题5分,共10分)4.(2017湖南永州模拟,15)若x,y满足约束条件则x2+y2的最小值为.答案25.(2017河北衡水中学3月模考,15)已知点P(x,y)的坐标满足则的取值范围为.答案(-,1]三、解答题(共15分)原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各加工原料多少箱?解析设甲车间加工原料x箱,乙车间加工原料y箱,获利为z元.根据题意,得约束条件可行域为图中阴影部分(含边界)内的整点,目标函数z=(7×40)x+(4×50)y=280x+200y,即y=-x+,作直线y=-x并平移,当直线经过点A(15,55)时,z取最大值.所以当x=15,y=55时,z取最大值.即当甲车间加工原料15箱、乙车间加工原料55箱时获利最大.C组2016—2018年模拟·方法题组方法1二元一次不等式(组)表示平面区域问题的解法1.(2018云南玉溪模拟,6)已知不等式组所表示的平面区域为面积等于的三角形,则实数k的值为()A.-1B.-C.D.1答案D2.(2017河北武邑调研,9)设不等式组表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D内的点,则r 的取值范围是()A.[2,2]B.[2,3]C.[3,2]D.(0,2)∪(2,+∞)3.(2017山西五校3月联考,15)不等式组表示的平面区域为Ω,直线x=a(a>1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z=ax+y的最大值为.答案9方法2与平面区域有关的范围、距离问题的求法4.(2017广东六校联盟联考,7)如果点P在不等式组表示的平面区域内,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为()A.-1B.2-1C.2D.-1答案B5.(2018四川德阳模拟,15)若平面区域夹在两条平行直线之间,且这两条平行直线间的最短距离是,那么这两条平行直线的斜率是.答案2或方法3线性规划问题的求解策略及其实际应用6.(2018广东东莞模拟,7)已知则z=22x+y的最小值是()A.1B.16C.8D.4答案C7.(2017河北唐山调研,18)某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品质量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如下表:已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载质量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.解析设搭载A产品x件,B产品y件,预计收益为z万元,则z=80x+60y,由题意知,作出可行域,如图阴影部分(包含边界)内的整点.作出直线:80x+60y=0并平移,由图可知,当直线经过点M时,z取到最大值.由解得即M(9,4).所以z max=80×9+60×4=960.所以搭载9件A产品,4件B产品,才能使总预计收益达到最大,最大预计收益为960万元.。