两个总体参数的假设检验
- 格式:ppt
- 大小:2.27 MB
- 文档页数:52
第58讲:两个正态总体参数的假设检验(比较两个正态总体均值的检验)例1:通常认为男女的脉搏率是没有显著差异的. 现在随机地抽取年龄都是25岁的16位男子和13位女子, 测得他们的脉搏率如下:男: 61, 73, 58, 64, 70, 64, 72, 60, 65, 80, 55,72, 56, 56, 74, 65,女: 83, 58, 70, 56, 76, 64, 80, 68, 78, 108,76, 70, 97.问题:假设男女脉搏率都是服从正态分布, 这些数据能否认为男女脉搏率的均值相同?()()12221212122221,,,,,,,,,,,n n X X X N Y Y Y N X Y S S μσμσ∙∙∙ 12假设:是来自的样本是来自的样本,两样本相互独立.并记,分别为两样本的均值和方差.()012112.:,:,H H μμμαμ=≠检验假设显著水平22121.σσ当和已知时2212012,.~(0X Y X Y C H X Y N n n σσ∙--≥∙-+ 检验统计量拒绝域形式 当成立时,,).221212σσ-=+X YZ n n 记: 2α≥--Z z z 则检验拒绝域为:检验{}00002212122(1(),.σσ-=≥=-Φ-=+H P P Z z z x yz n n 其中:222122.σσσ当==但未知时2σ首先利用合样本给出参数的无偏估计量()()22112221211 .2wn S n SS n n -+-=+-1211-=+w X Y T S n n 可取检验统计量为:()21212211wX Y T t n n S n n α-=≥+-+检验拒绝域为:{}{}00120012||||2(2)||11--=≥=+-≥-=+H w P P T t P t n n t x yt P s n n 其中为::值——两样本精确t检验22123.σσ≠当且未知时221212.-=+X Y T S S n n 取检验统计量为:22221212.S S σσ以样本方差分,别代替,{}{}000||||2||,--=≥=≥H P P T t P Z P t 值为:(1)当两个样本量都很大时,利用中心极限定理{}/2||α≥T z 检验的拒绝域为:0221212~(01).-=+x y Z N t s sn n 其中: ,,12min(1,1),=--k n n (2)当两个样本为小样本时都很大时,统计量近似服从t 分布,自由度为22211222222112212(//)(/)(/)11+=+--S n S n k S n S n n n 或更精确的近似自由度{}/2||()α≥T t k 检验的拒绝域为: {}{}000||||2()||.--=≥=≥H P P T t P t k t P 值为: t ——两样本近似检验22112212221201,~(,),~(,),16,13,65.31,75.69,56.36,211.40,.X Y X N Y N n n x y s s H H μσμσμμμμ=======≠1212检验假设在例1中设分别表示男女的脉搏率,由已知数据计得:,::算221256.36,211.40,s s t ==注意到相差很大,采用不等方差的检验法,结论:拒绝原假设,认为男女脉搏率的均值不相同。
两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。