多环芳烃对水生动物抗氧化酶的影响、机理及防治研究进展
- 格式:pdf
- 大小:296.65 KB
- 文档页数:4
多环芳烃降解菌的降解特性与降解途径研究一、本文概述多环芳烃(PAHs)是一类广泛存在于环境中的持久性有机污染物,主要来源于化石燃料的燃烧和工业生产过程。
由于其强致癌、致畸、致突变等特性,对生态环境和人体健康构成了严重威胁。
因此,研究和开发有效的多环芳烃降解技术具有重要的现实意义。
本文旨在深入探讨多环芳烃降解菌的降解特性与降解途径,以期为环境保护和污染治理提供理论支持和实践指导。
文章首先概述了多环芳烃的来源、分布和危害,以及当前多环芳烃降解技术的研究进展。
接着,详细介绍了多环芳烃降解菌的种类、分离筛选方法以及降解特性,包括降解菌对多环芳烃的降解效率、降解速率、降解产物等。
在此基础上,文章深入探讨了多环芳烃降解菌的降解途径和降解机制,包括生物转化过程、关键酶的作用、基因表达调控等。
文章还讨论了多环芳烃降解菌在实际应用中的潜力和限制因素,并提出了相应的改进措施和发展方向。
通过本文的研究,旨在全面理解多环芳烃降解菌的降解特性与降解途径,为开发高效、环保的多环芳烃降解技术提供理论依据和技术支持。
也为环境保护和污染治理领域的研究者提供有益的参考和启示。
二、多环芳烃降解菌的筛选与鉴定为了深入研究多环芳烃的降解特性与途径,首要的任务是从复杂的环境样本中筛选出具有多环芳烃降解能力的微生物。
本研究采用了多种方法相结合的策略,以确保筛选出高效且多样的降解菌。
富集培养:我们采集了可能含有降解菌的土壤和水体样本,并通过添加多环芳烃作为唯一碳源进行富集培养。
这种方法旨在选择那些能够利用多环芳烃作为生长碳源的微生物。
平板筛选:随后,将富集培养后的微生物涂布在多环芳烃为唯一碳源的固体培养基上。
经过一段时间的培养,观察菌落生长情况,筛选出能够在多环芳烃为唯一碳源条件下生长的菌落。
初步鉴定:对筛选出的菌落进行初步的形态学观察和生理生化特性分析,如革兰氏染色、运动性检测、碳源利用试验等,以初步判断其分类和特性。
分子生物学鉴定:为了更精确地确定筛选出的微生物的种属和遗传特性,我们采用了分子生物学方法,如16S rRNA基因测序。
微生物在多环芳烃降解应用中的机理及其研究趋势多环芳烃具有毒性、生物蓄积性和半挥发性,并能在环境中持久存在,在近几年受到了人们的高度重视。
微生物修复能处理费用低、效果好、污染物残留量低、不产生二次污染、能够保持或改善植物生长的土壤结构等,是去除环境中多环芳烃的主要途径。
阐述了多环芳烃的性质、来源、危害和微生物对它的降解机理等,并对今后的发展趋势进行了展望。
标签:微生物;多环芳烃;降解;研究趋势1 多环芳烃的来源1.1 天然源多环芳烃的天然来源主要是燃烧和生物的合成,如:森林和草原火灾、火山爆发及微生物的内源合成等,在这些过程中均会产生PAHs,未开采的煤、石油中也含有大量的多环芳烃。
1.2 人为源人为源是多环芳烃主要的来源,通过石油、煤炭、木材、垃圾焚烧和交通的直接排放等等,特别是化石燃料的燃烧是环境中PAHs的主要来源。
总之是随着工业生产的发展,多环芳烃大大地增加,每年因人类的活动会有成千上万吨的多环芳烃释放到地球环境系统中,远远超过了环境的自净能力。
2 多环芳烃的危害在世界范围内每年有约43000t PAHs释放到大气中,由于较高的亲脂性,多环芳烃可以通过食物链进入人体,对人类健康和生态环境具有很大的潜在危害,已引起各国环境科学家的极大重视。
多环芳烃最突出的特性是具有强致癌性、致畸性及致突变性。
当PAHs与-NO2、-OH、-NH2等发生作用时,会生成致癌性更强的PAHs衍生物。
另外,PAHs很容易吸收太阳光中可见(400-760nm)和紫外(290-400nm)区的光,对紫外辐射引起的光化学反应尤为敏感。
多环芳烃在其生成、迁移、转化和降解过程中,通过呼吸道、皮肤、消化道进入人体和动物体,即直接吸入被污染的气体;使用烟熏食物及饮用被污染水;皮肤直接与烟灰、焦油及各种石油产品等接触。
3 多环芳烃的降解机理3.1 降解多环芳烃的微生物自然界中存在的许多细菌、真菌及藻类都具有降解多环芳烃的能力。
一般来说,随着多环芳烃苯环数量的增加,降解速率会越来越低。
文章编号:1004-2490(2014)04-0372-13·综述·多环芳烃对水生动物毒性效应的研究进展收稿日期:2014-03-11基金项目:公益性行业(农业)科研专项项目(201203065)及上海市自然科学基金(12ZR4008800,13ZR1413100)资助作者简介:蒋闰兰(1990-),女,硕士研究生,主要研究方向:水生动物生态学通讯作者:禹娜,女,副教授,主要研究方向:水生动物生态学与动物系统学。
E-mail :nyu@bio.ecnu.edu.cn 蒋闰兰,肖佰财,禹娜,陈立侨(华东师范大学生命科学学院,上海200241)摘要:多环芳烃(PAHs )是广泛存在于水体环境中的一类持久性有机污染物,因其具有致癌、致畸和致突变性而备受关注。
本文简述了PAHs 的定义、分类、来源及其污染现状,并综述了PAHs 在水生生物体内蓄积、代谢规律及其对水生生物的毒性效应:在急性毒性层面综述了PAHs 对不同水生动物的毒性程度及急性致死效应;在亚急性及慢性毒性层面分别从分子水平、生理生化酶水平、细胞组织水平,综述了:PAHs 暴露对水生生物的分子毒性,导致DNA 单链断裂、PAHs-DNA 加合物的形成;PAHs 暴露对水生生物抗氧化酶系统(SOD 、CAT 、GPx 、GSH /GSSG )、外源性有机污染物代谢酶(EROD 、GST )活力的影响;PAHs 暴露引起的氧化应激、脂质过氧化、组织病理学变化等氧化损伤。
本综述目的是便于今后更深入地研究PAHs 对水生动物的毒性效应和毒性作用机制,进而更好的控制PAHs 污染,保护水生生物和水生生态环境。
关键词:多环芳烃;水生生物;蓄积;代谢;DNA 损伤;抗氧化酶;组织病理学中图分类号:Q 917.4文献标识码:A1多环芳烃的定义、分类和来源多环芳烃(Polycyclic aromatic hydrocarbons ,PAHs )是指分子由两个或两个以上苯环以稠环或非稠环方式连接而成的一类疏水性化合物[1]。
多环芳烃的致癌性机制研究进展芦静;贾玉巧;高艳荣;纪越;赵永东【摘要】Polycyclic arom atic hydrocarbon is a persistent organic pollutant that has been specially concerned by international com m unity, it is one of the earliest found environm ental pollutants w ith three-inducing im pact.It w idely exists in various environm ental m edia although the num ber is sm all,but w ith continuous generation ,m igration ,transform ation and degradation ,it enters hum an body through the w ays such as respiratory tract,digestive tract,and skin ,w hich greatly threatens hum an health .%多环芳烃是一类被国际社会特别关注的持久性有机污染物,是最早被发现的具有“三致作用”的环境污染物之一。
其广泛存在于多种环境介质中,虽然量少,但不断地生成、迁移、转化和降解,并通过呼吸道、消化道、皮肤等途径进入人体,极大地威胁着人类的健康。
【期刊名称】《中国疗养医学》【年(卷),期】2014(000)009【总页数】3页(P787-789)【关键词】多环芳烃;致癌性;机制【作者】芦静;贾玉巧;高艳荣;纪越;赵永东【作者单位】包头医学院公共卫生学院,014060;包头医学院公共卫生学院,014060;包头医学院公共卫生学院,014060;包钢第三职工医院,014060;包头医学院公共卫生学院,014060【正文语种】中文近年来,人们谈“癌”色变,有研究表明,80%以上的癌症病例极有可能是由于环境因素变化引起,在多种环境因子中,化学致癌物占大多数,其中常见的有多环芳烃(PAHs)、亚硝胺霉菌素等。
多环芳烃的微生物降解魏花朵河南大学环境与规划学院摘要:环境污染已成为当今世界所面临的一个重要问题。
应用生物降解能力使有害废物无害化或低毒害化,是当今环境治理的主要研究方向。
微生物作为生物界的主要降解类群,在水体污染、固体废弃物污染、重金属污染、化合物污染、石油及大气污染等治理过程中,均取得显著效果。
纯培养微生物的单一菌株及混合菌株的多环芳烃降解的研究已有很多年了。
为了更好地应用生物修复技术治理被多环芳烃污染的环境, 有必要对降解微生物、降解机制、环境影响因子等因素进行进一步的研究,从而选择出最优化的方案来治理污染环境。
关键词:多环芳烃微生物生物降解1环境污染治理的微生物学原理:微生物是肉眼不易看见、必须在电子显微镜或光学显微镜下才能看见的单细胞或简单多细胞或无细胞结构的微小生物的总称。
自然界中存在着丰富的微生物种群,在生物圈中着重充当分解者的角色。
微生物对物质的降解与转化,保证了自然界中正常的物质循环。
微生物对污染物的降解与转化是环境污染治理的基础。
由于微生物自身特点和代谢活动表现出在环境中的化学作用,决定了它对污染物具有强大的降解与转化能力。
1.1 微生物适合环境污染治理的特点微生物对污染物具有强大降解与转化能力,主要是因为微生物具有以下特点:1.1.1微生物个体微小,比表面积大,代谢速率快微生物的这个特点,使之具有惊人的代谢活性,有利于营养物的吸收和废物的排泄,有利于污染物的快速降解与转化。
1.1.2微生物种类多,分布广,代谢类型多样环境的多样性决定了微生物类型的多样性。
微生物种类多,代谢类型多样,为当今日益复杂的环境污染治理提供了更多的功能菌,对环境中形形色色的物质的降解转化,起着至关重要的作用。
1.1.3微生物繁殖快,易变异,适应性强微生物巨大的比表面积使之对生成条件下的变化具有极强的敏感性,加之微生物繁殖快、数量多,可在短时间内产生大量变异的后代,对进入环境中的“新”污染物,微生物可通过基因突变,改变原来的代谢类型而适应、降解之。
多环芳烃(PAHs)在淡水水体中的迁移转化规律1 概述多环芳烃( Polycyclic Aromatic Hydrocarbons ,简称PAHs)是指两个或两个以上苯环连在一起的一类化合物,具有高脂溶性和相对低的水溶性,具有“致癌、致畸和致基因突变”(目前已发现的致癌性多环芳烃及其衍生物超过400 种)作用的持久性有机污染物( Persistent Organic Pollutant s ,POPs) 。
这一类物质由于高毒性、低流动性和难降解性使其在环境保护领域备受关注。
美国EPA优先控制名单中确定了16种PAHs作为优先控制污染物,我国也将7 种多环芳烃列入“中国环境优先控制污染物”黑名单。
PAHs由于化石燃料燃烧、机动车、垃圾焚烧、精炼油、焦炭和沥青生产以及铝的生产等人类活动而广泛分布于环境中。
多环芳烃在环境中大多数是以吸附态和乳化态形式存在,一旦进入环境,便受到各种自然界固有过程的影响,发生变迁。
通过复杂的物理迁移、化学及生物转化反应,在大气、水体、土壤、生物体等系统中不断变化,改变分布状况。
处在不同状态、不同系统中的多环芳烃则表现出不同的变化行为。
多环芳烃进入大气后,可通过化学反应、降尘、降雨、降雪等过程进入土壤及水体中。
人们可以通过呼吸、饮食等多种途径摄入,对人类健康产生极大危害,因此研究多环芳烃在环境中的行为具有十分重要的意义。
多环芳烃在环境中,特别是水环境中的迁移转化和归宿也得到广泛关注。
本文着重探讨河流、湖泊等淡水水体中多环芳烃的迁移转化研究成果,并指出存在问题和今后努力的方向。
2 PAHs在淡水水体中的迁移转化规律2.1 PAHs 在大气-水体间迁移转化PAHs 在大气-水体间迁移转化方式有:气态湿沉降、携带PAHs 的颗粒物湿沉降与干沉降、水-气界面PAHs 交换。
李军等利用双膜理论计算多环芳烃在麓湖水面上的交换通量,除萘、苊、二氢苊的通量方向是从湖水到大气外,其它多环芳烃都是从大气进入水体。
微生物降解土壤中多环芳烃的研究进展多环芳烃(PAHs)是一类重要的环境污染物,广泛存在于土壤中。
由于其具有持久性、毒性和生物累积性,对环境和人类健康造成了重大威胁。
寻找高效的降解PAHs的技术具有重要的理论和实际意义。
微生物降解是一种自然而然的降解方式,已经被广泛用于处理PAHs污染。
研究表明,许多微生物能够利用PAHs作为碳源和能源,通过代谢途径将其降解为无害的产物。
这些微生物可以分为细菌、真菌和古菌等不同类群,具有不同的降解能力和机制。
细菌是最常见的PAHs降解微生物,具有多样性和广泛分布。
许多细菌展示了高效、特异性和全降解PAHs的能力。
立克次氏菌属(Pseudomonas)和芽孢杆菌属(Bacillus)是常见的PAHs降解菌属。
立克次氏菌属细菌通过芳香降解途径将PAHs降解为中间代谢产物,然后进一步释放二氧化碳和水。
芽孢杆菌属细菌则通过芳香降解和侧链降解途径将PAHs降解为中间代谢产物,并最终将其降解为无害的产物。
真菌也被发现具有降解PAHs的能力。
白腐真菌如白腐菌属(Phanerochaete)和白蚁真菌属(Termitomyces)被广泛用于处理PAHs污染。
这些真菌通过产生特殊的酶如多酚氧化酶和酪氨酸酮酸酶来降解PAHs。
这些酶能够氧化PAHs的结构,从而使其更易降解。
真菌还能与其他微生物如细菌共同协同降解PAHs。
古菌是一类在极端环境下生存的微生物,也被发现具有降解PAHs的能力。
许多热古菌如硫黄杜氏菌属(Sulfolobus)和盐古菌如卡氏古菌属(Haloarcula)都能够降解PAHs。
这些古菌通过产生特殊的酶如黄酮环酸脱氢酶和环丙烷脱氢酶来降解PAHs。
古菌能够在高温、高压和高盐等极端环境下生存,因此具有广阔的应用前景。
虽然微生物降解PAHs具有许多优势,但仍面临一些挑战。
一些PAHs具有高毒性和低生物可降解性,需要更高效和选择性的降解菌株。
PAHs降解过程中产生的中间代谢产物可能具有更高的毒性和生物累积性,需要进一步探究处理方法。
多环芳烃类污染物的来源、污染水平和分布归趋行为及其不同水平的生物效应发布时间:2023-01-16T09:22:25.771Z 来源:《科学与技术》2022年第16期8月作者:蔡红波[导读] 珠江三角洲地区水网密布,水量丰沛,是我国经济最发达地区之一。
然而近年来,随着经济的迅速发展,也带来了严重的环境污染问题。
蔡红波(佛山市玉凰生态环境科技有限公司广东佛山 528000)摘要:珠江三角洲地区水网密布,水量丰沛,是我国经济最发达地区之一。
然而近年来,随着经济的迅速发展,也带来了严重的环境污染问题。
工业废水和生活污水的大量排放,使珠江三角洲水质因有机物污染而日益恶化,多环芳烃是珠江三角洲水体中最普遍存在的微量有机物污染物。
通过对多环芳烃的来源、污染水平、分布归趋行为及其不同生物水平的生物效应的总结分析,以期对珠江三角洲地区多环芳烃的污染控制以及科学探究提供依据。
关键词:多环芳烃;污染水平;来源与分布归趋;生物效应;珠江三角洲1.引言多环芳烃(PAHs)是一类有毒、有害、难降解的有机污染物质。
PAHs主要经过工业废水、生活污水、大气沉降的输入进入水体环境。
由于其疏水亲脂的特性,PAHs倾向于吸附在溶解相的有机质中,最终沉降到水底沉积物中,并有可能通过食物链传递最终危害人体健康【1】。
大量的有毒有害物质通过工农业生产等途径排放进入环境,给环境健康和生态安全带来极大威胁【2】。
最近的研究已表明,PAHs 在珠江三角洲地区的大气、水体和沉积物中的浓度达到了较高的水平【3】。
2.珠江口PAHs的来源及污染水平多环芳烃类(PAHs)是三角洲河网支流中检测出的含量较低、毒害性大的化合物。
PAHs来源诊断指标表明,检测物中多环芳烃主要为二环、三环芳烃,表明河水中的多环芳烃主要受石化燃料燃烧的影响【5】。
罗孝俊等研究了珠江及南海北部海域表层沉积物中多环芳烃,发现多环芳烃的浓度范围在255.9~16670.3ng/g之间,整体污染水平处于中偏低下水平。
多环芳烃降解机理
多环芳烃(PAHs)是一类具有高稳定性、强疏水性和难降解性的有机污染物。
微生物降解是环境中PAHs污染去除的主要机制。
关于多环芳烃降解机理,目前的研究主要涉及以下
几个方面:
1. 生物降解途径:多环芳烃的生物降解主要通过两条途径进行,一是直接降解,即微生物直接作用于多环芳烃分子,使其降解为较小分子;二是共代谢降解,即微生物在代谢其他物质的过程中,间接地使多环芳烃得到降解。
2. 降解菌种筛选与鉴定:研究人员从环境中富集、筛选出具有降解多环芳烃能力的微生物菌株,通过生化试验、分子生物学手段对其进行鉴定。
目前已经分离出多种具有降解多环芳烃能力的细菌和真菌。
3. 降解酶及其作用:降解多环芳烃的微生物通过产生特定的降解酶,如脂肪酶、漆酶、过氧化物酶等,对多环芳烃进行氧化、还原、水解等反应,使其降解为较小分子。
4. 降解条件优化:为了提高多环芳烃的降解效率,研究人员探讨了不同条件下微生物降解多环芳烃的效果,如温度、pH、营养物质等因素,以期优化降解条件。
5. 厌氧降解:近年来,随着对厌氧微生物降解的认识加深,发现厌氧条件下的多环芳烃降解在环境中是广泛存在的。
厌氧微生物通过利用无机分子作为最终电子受体,降解转化多环芳烃。
6. 降解调控机制:研究多环芳烃降解过程中,微生物与底物之间的相互作用,以及微生物降解多环芳烃的调控机制,有助于进一步提高降解效率。
总之,多环芳烃降解机理涉及生物降解途径、降解菌种筛选、降解酶及其作用、降解条件优化、厌氧降解以及降解调控机制等多个方面。
进一步研究这些机理,有助于揭示微生物降解多环芳烃的内在规律,为治理环境中的多环芳烃污染提供科学依据。