RAID知识
- 格式:doc
- 大小:1.42 MB
- 文档页数:21
磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。
它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。
从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。
盘阵列的全称是:RedundanArrayofInexpensiveDisk,简称RAID技术。
它是1988年由美国加州大学Berkeley 分校的DavidPatterson教授等人提出来的磁盘冗余技术。
从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。
现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。
其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。
即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。
一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。
因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。
这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。
因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。
RAID卡知识点整理RAID 卡知识点整理⼀. RAID 参数功能⽐较:1)Perc5,6卡⽀持Drive 迁移(不同控制器间硬盘迁移)和漫游(同⼀个控制器下,漫游要在Offline下做),Perc4只⽀持漫游(同⼀控制器下,漫游要在Offline下做)PERC4 卡的raid 信息存在卡和硬盘上,换卡需要先清掉新卡⾥⾯的信息,再从硬盘读取, perc5 ,6只存在硬盘上⾯.更换卡直接从硬盘读取.RAID卡key的作⽤: 没有key ⽆法在BIOS⾥⾯设置成RAID模式,只能SCSI模式.2)电池充放电周期: approximately every 3 months电池充放电时间:Learn cycle discharge cycle: approximately 3 hoursLearn cycle charge cycle: approximately 4 hour3)SAS 6/iR 与SAS 5/iR ⽐较6/iR⽀持Expander:Support for up to 10 devices in a Virtual Disk (RAID 0) 6/iR ⽀持global HS: Maximum of 2 Global Hot spares 6/iR ⽀持OMSS 软件管理在线配置,5/iR只能进⼊ctrl+C配置界⾯.⼆. PERC3 ,PERC4 RAID 10配置⽅法:进⼊RAID选择new configuration,不要选easy configuration⽤空格健先选中两块做RAID1的硬盘,然后敲回车,再选中两块要做raid1的硬盘,再回车,如下图.这时按F10进⼊下图,确认SPAN=YES,选中accept或下图:配置RAID50与此类似,RAID50需要⾄少六块硬盘.三. Foreign的磁盘状态和处理(多个磁盘故障)1. 坏的盘体不在OS的VD上,OS仍然正常运⾏,并且系统安装有Open Manager Storage Management或者SAS Raid Storage Managera)Open Manager Storage Management⾥恢复1)在OS⾥打开OMSM,查看VD状态2)检查PD状态3)查看事件⽇志,检查磁盘掉线的先后顺序4)拔出最先掉线的磁盘5)清除Foreign配置6)确定清除配置7)确定磁盘恢复成Ready状态8)打开命令窗⼝执⾏omconfig命令将Ready的磁盘转换成VD丢失的磁盘.命令⾏格式如下:omconfig storage globalinfo action=service_replacemissingpdisk controller=0 vdisk=1 oldpdisk=0:0:3 newpdisk=0:0:3注意: OMSA5.0跟5.1以后版本参数的区别, 5.0使⽤adisk, 5.1使⽤pdisk OMSA5.0版本命令⾏omconfig storage globalinfo action=service_replacemissingadisk controller=id vdisk=id oldadisk=port:encl:slot newadisk=port:encl:slot OMSA5.1或以后版本omconfig storage globalinfo action=service_replacemissingpdisk controller=X vdisk=X oldpdisk=port:enclosure:slotnewpdisk=port:enclosure:slotcontroller id使⽤以下命令查看:omreport storage controller9)执⾏以上命令⾏以后Ready的磁盘恢复成为VD⾥Offline的磁盘10)将Offline的磁盘Force Online.11)选择Online,然后确定再次确定12)物理磁盘恢复到Online状态13)请到VD⾥检查VD的状态从Failed转成Degraded.14)请检查数据, 尽快备份数据. 确定备份好数据后, 直接热插⼊被拔出的盘体到原来的槽位, 磁盘会⾃动Rebuild2. 坏的盘体在OS的VD上,已经⽆法进⼊OS,或者系统没有安装OMSM/SRSM的情况下,在Raid BIOS⾥进⾏恢复1)重启机器, 在⾃检时会看到以下信息, 提⽰找到Foreign的配置2)先跳过PERC5卡的信息, 进⼊BMC的管理界⾯, 查看事件⽇志3)通过浏览事件⽇志找出并记录硬盘掉线的先后顺序如果⾮9代机器, 请使⽤32bit诊断程序读取IPMI信息获得⽇志. 或者使⽤BMC命令⾏⼯具获取⽇志; 如果BMC中⽆法找到硬盘掉线相关资料,请⼀定要使⽤LSI的MegaLogR ⼯具读取PERC5卡的TTY-LOG,具体操作请查看⽂章最后的附录4)重新启动机器进⼊Perc5 RAID BIOS⾥查看状态, VD已经Offline.5)检查虚拟磁盘VD的属性6)检查虚拟磁盘VD的状态, 记录下所有VD的参数.Drive ID, #, VD Size, Element Size, Read Policy, Write Policy7)检查硬盘的状态, 硬盘状态为Foreign, 注意硬盘有没有错误.8)清除Foreign的配置9)硬盘的状态转换成Ready10)删除Offline的VD11)重新创建VD12)注意重新创建的VD的配置要跟原来的VD⼀样, ⽽且不能选择Initialize.。
RAID卡知识点
一、RAID的概念
RAID(Redundant Array of Independent Disks,即独立磁盘冗余阵列)是一种由计算机系统管理者和磁盘阵列技术结合实现的配置策略。
RAID类型主要有0,1,2,3,4,5,6,10等,可以通过RAID技术来实
现数据的容错性、共享性、可用性和性能。
RAID技术最初是由IBM设计出来的,它定义了一组磁盘组织的模式,可以将多块硬盘组成一个磁盘阵列,以提高系统的性能和稳定性。
RAID
卡的核心功能是把多个硬盘组合成一个磁盘阵列,所有的硬盘都会被
RAID管理,并且可以被操作系统识别到,因此经常需要使用RAID卡来实
现RAID技术。
二、RAID卡的作用
RAID卡是一种独特的硬件设备,它可以将多块硬盘以RAID方式组合
成一个RAID磁盘阵列,并实现磁盘容错性、共享性、可用性和性能。
RAID卡一般分为两种:一种是内置RAID卡,另一种是插槽RAID卡。
内
置RAID卡是直接安装在计算机主板上的,它具有支持容错功能,但需要
安装系统才能实现RAID;而插槽RAID卡则插在插槽的空位,具有更高的
性能和更广泛的容错功能,可以支持多种RAID等级,且能够与计算机兼
容使用。
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。
RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。
RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。
常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。
RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。
然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。
RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。
RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。
然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。
RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。
当一个磁盘发生故障时,可以通过校验信息恢复数据。
然而,RAID 5的写入性能相对较低。
RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。
RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。
然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。
除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。
RAID技术知识普及介绍一、RAID 简介RAID 是Redundant Array of Inexpensive Disks 的缩写,直译为“ 廉价冗余磁盘阵列” ,也简称为“ 磁盘阵列” 。
后来RAID 中的字母I 被改作了Independent ,RAID 就成了“ 独立冗余磁盘阵列” ,但这只是名称的变化,实质性的内容并没有改变。
RAID 就是以多个磁盘组成并行工作的磁盘阵列的方式来提高数据存取的速度和安全两方面的能力。
RAID 技术最初都是建立在SCSI 系统基础上,后来Promise 公司第一次提出并研发了基于IDE 硬盘的RAID 产品,从而能以较低价格提供更高的性能和安全保证。
同时,RAID 系统的优点也是相当明显的。
首先,RAID 成本低,功耗小,传输速率高。
在RAID 中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID 可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。
这也是RAID 最初想要解决的问题。
因为当时CPU 的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。
RAID 最后成功了。
此外,RAID 可以提供容错功能。
这是使用RAID 的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC (循环冗余校验)码的话。
RAID 和容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。
最后,RAID 比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。
正是这些优点使得RAID 技术迅速普及,并成为2001 年的一个热点。
RAID 技术经过不断的发展,现在已拥有了从RAID 0 到 6 七种基本的RAID 级别。
另外,还有一些基本RAID 级别的组合形式,如RAID 1+0 (RAID 0 与RAID 1 的组合),RAID 5+0 (RAID 0 与RAID 5 的组合)等。
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。
二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。
常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。
1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。
2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。
当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。
然而,RAID 1并没有提高数据的读写性能。
3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。
奇偶校验位用于恢复损坏的数据。
RAID 5的读写性能较高,并且具有冗余备份功能。
然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。
4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。
RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。
三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。
RAID的基本知识
本文介绍RAID相关的一些基本知识。
一、RAID基本知识
磁盘阵列就是我们平常说的RAID,全称是“廉价的冗余磁盘阵列”。
主要RAID类型有RAID0,RAID1,RAID1+0,RAID5,RAID6,下面分别介绍。
RAID0:磁盘合并
将多个硬盘合并成一个大硬盘,提高硬盘的写功能。
RAID1:磁盘镜像
将一块(组)硬盘作为另一块(组)硬盘的镜像,同步写操作,牺牲50%的写功能,提高数据的安全性。
RAID1+0:镜像+合并
RAID5:奇偶校验
拿一块硬盘做奇偶校验,牺牲1块硬盘的写功能,可以坏1块硬盘,提高了数据的安全性。
RAID6:增强奇偶校验
牺牲2块硬盘的写功能,可以坏2块硬盘,提高了数据的安全性。
二、RAID故障解决
1、RAID卡坏了
RAID卡的信息应该是同时保存在RAID卡和硬盘中,所以RAID卡坏了后,换一个同型号的RAID卡,所有的阵列配置信息都在。
用同一型号的RAID卡来恢复RAID,我们在镇江机房实践成功过。
2、硬盘坏了
好的RAID卡,它的驱动里面有监控软件,可以在系统下监控并发现哪块盘坏了。
以前我们无法监控时,从盘镜像盘坏了,我们无法知道,直到主盘也坏了,我们才发现,这时候想要恢复数据,但两块盘都坏了,于是,数据损失了。
三、RAID FAQ
1、从RAID1组里面拿出一块硬盘,在别的机器上是否能读出?
答:1)能看到盘,但读不出数据;2)可以直接读数据;3)连盘都看不到。
RAID知识/组建全面解析说起RAID,相信大多数DIYer都听过这个名词,它会经常出现在各个主板包装、说明书上;但是要说对RAID技术非常熟悉的DIYer,却屈指可数。
早在多年前,RAID一直以来都是面向服务器用户,以提高服务器数据的安全性;不过现在经过了几年的发展,普通用户也有条件关注RAID,并且成了我们今后装机必须考虑的一件事情。
本文中,笔者将会深入浅出的为你讲述以下内容:1、什么是RAID?原理、种类等知识?2、普通用户是否适合组建RAID?3、实战RAID系统组建!●什么是RAID?RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列。
冗余磁盘阵列技术诞生于1987年,由美国加州大学伯克利分校提出。
RAID最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用,同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术,并且能适当的提升数据传输速度。
早期的RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。
1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE 硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。
从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。
在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性。
目前,IDE/SATA接口标准的硬盘都可以支持RAID技术,不过一般主板芯片组支持的主板只能支持SATA硬盘组建RAID。
早期一般都是SCSI卡提供SCSI RAID的支持那么为何叫做冗余磁盘阵列呢?冗余的汉语意思即多余,重复。
而磁盘阵列说明不仅仅是一个磁盘,而是一组磁盘。
这时你应该明白了,它是利用重复的磁盘来处理数据,使得数据的稳定性得到提高。
RAID如何实现数据存储的高稳定性呢?我们不妨来看一下它的工作原理。
RAID按照实现原理的不同分为不同的级别,不同的级别之间工作模式是有区别的。
整个的RAID结构是一些磁盘结构,通过对磁盘进行组合达到提高效率,减少错误的目的,不要因为这么多名词而被吓坏了,它们的原理实际上十分简单。
问了便于说明,下面示意图中的每个圆饼代表一个磁盘,竖的叫块或磁盘阵列,横称之为带区。
简单点说,RAID的功能就是把多个硬盘组合成为一个逻辑磁区,因此,操作系统只会把它当作一个硬盘。
RAID系统的类型有多种方式,如RAID-0,RAID-1,RAID-2,RAID-3,RAID-4,RAID-5,RAID-6,RAID-10,RAID-53等。
下面我们分别来看看这些RAID类型的区别以及用途:RAID 0将多个磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。
RAID 0亦称为带区集。
它是将多个磁盘并列起来,成为一个大磁盘。
在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。
所以,在所有的级别中,RAID 0的速度是最快的。
但是RAID 0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都会丢失。
RAID 1两组以上的N个磁盘相互作镜像,速度没有提高,但是允许N-1个磁盘损坏,可靠性最高。
RAID 1就是镜像。
其原理为在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。
当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。
因为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。
但无论用多少磁盘做RAID 1,仅算其中一半磁盘的容量,是所有RAID上磁盘利用率最低的一个级别。
RAID 2这是RAID 0的改良版,以汉明码(en:Hamming Code)的方式将数据进行编码后分割为独立的位元,并将数据分别写入硬盘中。
因为在数据中加入了错误修正码(ECC,Error Correction Code),所以数据整体的容量会比原始数据大一些,RAID2最少要三台硬盘方能运作。
RAID 3采用Bit-interleaving(数据交错存储)技术,它需要通过编码再将数据位元分割后分别存在硬盘中,而将同位元检查后单独存在一个硬盘中,但由于数据内的位元分散在不同的硬盘上,因此就算要读取一小段数据资料都可能需要所有的硬盘进行工作,所以这种规格比较适于读取大量数据时使用。
RAID 4它与RAID 3不同的是它在分割时是以区块为单位分别存在硬盘中,但每次的数据存取都必须从同位元检查的那个硬盘中取出对应的同位元数据进行核对,由于过于频繁的使用,所以对硬盘的损耗可能会提高(Block interleaving)。
RAID 5RAID Level 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。
它使用的是Disk Striping(硬盘分割)技术。
RAID 5 至少需要三颗硬盘,RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。
当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
RAID 5可以理解为是RAID 0和RAID 1的折衷方案。
RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。
RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。
同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低廉。
RAID 6同一阵列中容许两个硬盘同时失效(或是当一个失效后还来不及更换便有第二个失效)后.更换新硬盘时再由另两个正常硬盘将备份的资料建立在新的硬盘中.所以至少必须具备四或四个以上硬盘才能生效。
RAID 10、RAID 53和RAID 0+1这种RAIDxy的类型实际上就是RAID x与RAID y的组合方式。
比如说RAID 10就是RAID 1+0,即先组建两组RAID 1镜像,然后再将两组RAID 1镜像组建成为RAID 0;而RAID 53实际上就是RAID 5+3模式,很好理解。
需要注意到是,RAID 10并不等于RAID 0+1,实现的顺序不一样,功能也是不一样的。
JBOD严格的说,JBOD并不属于RAID的范畴,只是将多个磁盘空间合并成一个大的逻辑磁盘,不具有错误冗余机制。
资料的存放机制是由第一颗磁盘开始依序往后存放,即操作系统看到的是一个大磁盘(由许多小磁盘组成)。
但如果磁盘损毁,则该颗硬盘上的所有资料将无法救回。
若第一颗硬盘损坏,通常无法作救援(因大部分档案系统将档案表存在磁盘前端,即第一颗),失去档案表即失去一切资料。
JBOD在组建过程中,一般用英文Spanned。
在实际的应用中,RAID2~4并不存在,因为RAID5已经涵盖了所需的功能。
因此RAID2~4目前只有在研究领域有实作,而在实际应用上则以RAID 0、1、0+1、5或RAID6为主。
但是对于我们普通用户来说,用的最多的也就是RAID 0、1、0+1和RAID 5,所以本文我们将重点对这几个RAID类型进行讲解。
也许大家看完上一页的内容之后,还是觉得不太明白。
那么,下面就针对几个我们最常用的RAID模式用比较通俗的方式进行讲解,以加深大家对RAID系统的一个正确认识。
RAID 0——提高性能,无空间损失RAID 0是最基本的RAID模式,它的功能是将两块/多块硬盘合并成一块逻辑磁盘。
比如两块500GB的硬盘组建RAID 0,那么在系统中我们可以看到有一块1TB的逻辑磁盘,而并不能看到是两块物理硬盘。
RAID 0最大的优势就在于“便于分区管理”和“提高数据传输速度”:“便于分区管理”很容易理解,比如说两块500GB的硬盘组建RAID0,你不用考虑分区的时候单独分区只能小于500GB,也就是说你可以分两个区,第一个区800GB,第二个区200GB(硬盘实际容量有损失,在这里我们不做讨论)。
当然,RAID 0主要是为了提升数据传输速度而生的,它的原理是当系统下达指令后,会同时从每块硬盘调用/写入数据。
这样就可以利用每块块硬盘传输通道所提供的带宽。
相信看到这里大家都明白了,组建RAID 0系统的时候,理论上硬盘数量越多,传输速度提升就越大。
但是在实际使用中受限于系统IO总线和其他因素的一些影响,还是有一些衰减的,比如一个磁盘的效能是50MB/秒,两个磁盘的RAID 0效能约96MB/秒,三个磁盘的RAID 0也许是130MB/秒而不是150MB/秒。
所以,两个磁盘的RAID 0最能明显感受到效能的提升。
实际上,我们组建RAID系统的时候,并不一定要两块/多块容量相等的硬盘,可以用一块大硬盘和一块相对容量较小的硬盘组建RAID系统,很多JS都说需要两块一样大小的硬盘组建RAID实际上并不正确。
但是当硬盘容量不一样时,会按照容量最小的硬盘来计算,并且速度上也会以最小硬盘为标准。
比如说一块5400RPM的60G硬盘与一块7200RPM的80G硬盘组建RAID 0系统,结果的总容量是60×2=120GB,而理论速度只会达到5400RPM 硬盘的两倍。
所以说,如果条件允许,我们还是建议使用两块同型号的硬盘组建RAID系统。
虽然RAID 0可以提供更多的空间和更好的性能,但是整个系统是非常不可靠的,如果出现故障,无法进行任何补救。
所以,RAID 0一般只是在那些对数据安全性要求不高的情况下才被人们使用。
一般来说,RAID 0在组建的时候,英文名为Striped前面我们说道了RAID 0的具体工作原理和能够实现的功能,不过稍微对于数据的安全性要求较高的用户,都会选择RAID 1阵列方式。
RAID 1的主要功能是让数据更加安全,它的实现原理是在往一块硬盘写入数据的时候,同时也向另一块硬盘写入数据,也就是镜像功能。
组建RAID 1阵列的时候需要2块以上的硬盘,并且数量只能是偶数。
如2块、4块、6块、8块等,因为需要用做备份,在数据的安全性方面是最好的,但是只能利用到磁盘总容量的一半。
举例来说,使用两块80GB的SATA硬盘组建RAID 1系统,在操作系统下显示的总容量仍然是80GB,因为另外的80GB硬盘用做备份了。
如果这两块硬盘中的一块物理损坏,仍然可以从第二块备份硬盘中恢复回来。
同理,如果使用6块硬盘组建RAID 1系统,其中有3块用于存放数据,另外三块用于备份数据。