香港理工大学2D_3D_掌纹数据集_计算机图形_科研数据集
- 格式:pdf
- 大小:418.63 KB
- 文档页数:7
一种三维图像的配准方法成员Paul Jbesl、IEEE,以及NeilD.McKay摘要:本文介绍了一种多方面、表示独立的三维图像的精确计算方法,包括自由曲线和曲面。
该方法处理所有6个自由程度是基于迭代最近点(ICP)算法,这需要一个去找到一个几何实体到一个给定点的最接近点的过程。
ICP算法总是单调收敛到局部的最近平均距离,而经验表明在最初的几次迭代收敛速度快。
因此,给定一组充足的初始旋转和平移为一个特定类的对象具有一定的“图像复杂度”,通过测试每个初始配准可以在全局围内最大限度地减少平均距离的所有六个自由程度。
例如,一个给定的“模型”的图像和感测到的“数据”的图像表示模型的图像的主要部分,它通过测试一个初始的平移和一个相对较小的旋转设置允许给定的模型复杂度来配准几分钟。
这种方法的一个重要应用是配准从不固定的刚性物体与一种理想的形状检验前的几何模型监测到数据。
所描述的方法也是有用的,用于决定的基本问题,如不同的几何表示的重叠(图像等价),以及用于估计未知的点集运动的对应关系。
实验结果表明基于点集,曲线和曲面上的配准算法的能力。
关键词-自由型曲线匹配,自由形态表面匹配,运动估计,姿态估计,四元数,三维配准。
一、引言全局和局部图像匹配度量自由曲线曲面以及点集的匹配,在[ 3 ]中描述了一种试图将计算机视觉中的一个关键问题的描述形式化和统一化的尝试:在传感器坐标系给出的三维数据,它描述了一个数据的图像可能对应一个模型的图像,并给出了在一个模型中的坐标系统中的模型的形状用不同的几何形状表示,估计最佳的旋转和平移对齐,或配准,模型图像和数据的图像距离最小化,从而允许通过一个均方距离度量的等价的形状。
许多应用的关键的利害关系是下面的问题:从一系列图像的分割区域匹配的B样条曲面是在计算机辅助设计(CAD)的一个子集的模式吗?本文提供了一个解决这个自由曲面匹配问题的方案,正如在[ 3 ]和[ 5 ]中定义的一种特殊的情形一样,一个简单的,统一的方法,概括到N 维的,提供的解决方案1)不对应点集匹配问题2)自由曲线的匹配问题。
深度学习的多视角三维重建技术综述目录一、内容概览 (2)1.1 背景与意义 (2)1.2 国内外研究现状 (3)1.3 研究内容与方法 (5)二、基于单目图像的三维重建技术 (6)2.1 基于特征匹配的三维重建 (7)2.1.1 SIFT与SURF算法 (8)2.1.2 PCA与LDA算法 (10)2.2 基于多视图立体视觉的三维重建 (11)2.3 基于深度学习的三维重建 (12)2.3.1 立体卷积网络 (14)2.3.2 多视图几何网络 (15)三、基于双目图像的三维重建技术 (17)3.1 双目立体视觉原理 (19)3.2 基于特征匹配的双目三维重建 (20)3.3 基于深度学习的双目三维重建 (21)3.3.1 双目卷积网络 (22)3.3.2 GANbased双目三维重建 (23)四、基于多视角图像的三维重建技术 (25)4.1 多视角几何关系 (26)4.2 基于特征匹配的多视角三维重建 (27)4.2.1 ORB特征在多视角场景中的应用 (28)4.2.2 ALOHA算法在多视角场景中的应用 (29)4.3 基于深度学习的多视角三维重建 (30)4.3.1 三维卷积网络(3DCNN)在多视角场景中的应用 (32)4.3.2 注意力机制在多视角场景中的应用 (33)五、三维重建技术在深度学习中的应用 (35)5.1 三维形状描述与识别 (36)5.2 三维物体检测与跟踪 (37)5.3 三维场景理解与渲染 (39)六、结论与展望 (40)6.1 研究成果总结 (41)6.2 现有方法的局限性 (42)6.3 未来发展方向与挑战 (44)一、内容概览多视角数据采集与处理:分析多视角三维重建的关键技术,如相机标定、图像配准、点云配准等,以及如何利用深度学习方法提高数据采集和处理的效率。
深度学习模型与算法:详细介绍深度学习在多视角三维重建中的应用,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等,以及这些模型在多视角三维重建任务中的优势和局限性。
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
以下是computer vision:algorithm and application计算机视觉算法与应用这本书中附录里的关于计算机视觉的一些测试数据集和源码站点,我整理了下,加了点中文注解。
Computer Vision:Algorithms and ApplicationsRichard Szeliski在本书的最好附录中,我总结了一些对学生,教授和研究者有用的附加材料。
这本书的网址/Book包含了更新的数据集和软件,请同样访问他。
C.1 数据集一个关键就是用富有挑战和典型的数据集来测试你算法的可靠性。
当有背景或者他人的结果是可行的,这种测试可能甚至包含更多的信息(和质量更好)。
经过这些年,大量的数据集已经被提出来用于测试和评估计算机视觉算法。
许多这些数据集和软件被编入了计算机视觉的主页。
一些更新的网址,像CV online(/rbf/CV online), (/), and Computer Vision online (/ ), 有更多最新的数据集和软件。
下面,我列出了一些用的最多的数据集,我将它们让章节排列以便它们联系更紧密。
第二章:图像信息CUReT: Columbia-Utrecht 反射率和纹理数据库Reflectance and Texture Database, /CA VE/software/curet/(Dana, van Ginneken, Nayar et al. 1999).Middlebury Color Datasets:不同摄像机拍摄的图像,注册后用于研究不同的摄像机怎么改变色域和彩色registered color images taken by different cameras to study how they transform gamuts and colors, /color/data/Chakrabarti, Scharstein, and Zickler 2009).第三章:图像处理Middlebury test datasets for evaluating MRF minimization/inference algorithms评估隐马尔科夫随机场最小化和推断算法,/MRF/results/ (Szeliski, Zabih, Scharstein et al. 2008).第四章:特征检测和匹配Affine Covariant Features database(反射协变的特征数据集)for evaluating feature detector and descriptor matching quality and repeatability(评估特征检测和描述匹配的质量和定位精度), /~vgg/research/affine/(Miko-lajczyk and Schmid 2005; Mikolajczyk, Tuytelaars, Schmid et al. 2005).Database of matched image patches for learning (图像斑块匹配学习数据库)and feature descriptor evaluation(特征描述评估数据库),http://cvlab.epfl.ch/~brown/patchdata/patchdata.html(Winder and Brown 2007; Hua,Brown, and Winder 2007).第五章;分割Berkeley Segmentation Dataset(分割数据库)and Benchmark of 1000 images labeled by 30 humans,(30个人标记的1000副基准图像)along with an evaluation,/Research/Projects/CS/vision/grouping/segbench/(Martin, Fowlkes, Tal et al. 2001).Weizmann segmentation evaluation database of 100 grayscale images with ground truth segmentations,http://www.wisdom.weizmann.ac.il/~vision/Seg Evaluation DB/index.html(Alpert, Galun, Basri et al. 2007).第八章:稠密运动估计The Middlebury optic flow evaluation(光流评估)Web site,/flow/data/(Baker, Scharstein, Lewis et al. 2009).The Human-Assisted Motion Annotation database,(人类辅助运动数据库)/celiu/motionAnnotation/(Liu, Freeman, Adelson et al. 2008)第十章:计算机摄像学High Dynamic Range radiance(辐射)maps, /Research/HDR/(De-bevec and Malik 1997).Alpha matting evaluation Web site, / (Rhemann, Rother, Wanget al. 2009).第十一章:Stereo correspondence立体对应Middlebury Stereo Datasets and Evaluation, /stereo/(Scharstein and Szeliski 2002).Stereo Classification(立体分类)and Performance Evaluation(性能评估)of different aggregation(聚类)costs for stereo matching(立体匹配),http://www.vision.deis.unibo.it/spe/SPEHome.aspx(Tombari, Mat-toccia, Di Stefano et al. 2008).Middlebury Multi-View Stereo Datasets,/mview/data/(Seitz,Curless, Diebel et al. 2006).Multi-view and Oxford Colleges building reconstructions,/~vgg/data/data-mview.html .Multi-View Stereo Datasets, http://cvlab.epfl.ch/data/strechamvs/(Strecha, Fransens,and Van Gool 2006).Multi-View Evaluation, http://cvlab.epfl.ch/~strecha/multiview/ (Strecha, von Hansen,Van Gool et al. 2008).第十二章:3D重建HumanEva: synchronized video(同步视频)and motion capture (动作捕捉)dataset for evaluation of articulated human motion, /humaneva/Sigal, Balan, and Black 2010).第十三章:图像渲染The (New) Stanford Light Field Archive, /(Wilburn, Joshi,Vaish et al. 2005).Virtual Viewpoint Video: multi-viewpoint video with per-frame depth maps,/en-us/um/redmond/groups/ivm/vvv/(Zitnick, Kang, Uytten- daele et al. 2004).第十四章:识别查找一系列的视觉识别数据库,在表14.1–14.2.除了那些,这里还有:Buffy pose classes, /~vgg/data/buffy pose classes/ and Buffy stickmen V2.1, /~vgg/data/stickmen/index.html(Ferrari,Marin- Jimenez, and Zisserman 2009; Eichner and Ferrari 2009).H3D database of pose/joint annotated photographs of humans,/~lbourdev/h3d/(Bourdev and Malik 2009).Action Recognition Datasets, /projects/vision/action, has point-ers to several datasets for action and activity recognition, as well as some papers.(有一些关于人活动和运动的数据库和论文)The human action database athttp://www.nada.kth.se/cvap/actions/包含更多的行动序列。
香港理工大学的多光谱掌纹数据库(The Hong Kong Polytechnic University (PolyU) MultispectralPalmprint Database )数据介绍:Palmprint is a unique and reliable biometric characteristic with high usability. With the increasing demand of highly accurate and robust palmprint authentication system, multispectral imaging has been employed to acquire more discriminative information and increase the antispoof capability of palmprint.The Biometric Research Centre (UGC/CRC) at The Hong Kong Polytechnic University has developed a real time multispectral palmprint capture device which can capture palmprint images under blue, green, red and near-infrared (NIR) illuminations, and has used it to construct a large-scale multispectral palmprint database. To advance research and to provide researchers working in the area of multispectral recognition with a platform to compare the effectiveness of various multispectral palmprint recognition algorithms, we intend to publish our multispectral palmprint database, making it freely available for academic, noncommercial uses.关键词:香港理工大学,多光谱,掌纹,UGC/CRC,图像,PolyU,Multispectral,Palmprint,UGC/CRC,image,数据格式:IMAGE数据详细介绍:The Hong Kong Polytechnic University (PolyU)Multispectral Palmprint DatabaseOverview:Palmprint is a unique and reliable biometric characteristic with high usability. With the increasing demand of highly accurate and robust palmprint authentication system, multispectral imaging has been employed to acquire more discriminative information and increase the antispoof capability of palmprint.The Biometric Research Centre (UGC/CRC) at The Hong Kong Polytechnic University has developed a real time multispectral palmprint capture device which can capture palmprint images under blue, green, red and near-infrared (NIR) illuminations, and has used it to construct a large-scale multispectral palmprint database. To advance research and to provide researchers working in the area of multispectral recognition with a platform to compare the effectiveness of various multispectral palmprint recognition algorithms, we intend to publish our multispectral palmprint database, making it freely available for academic, noncommercial uses.The outlook of the multispectral palmprint image acquisition device. Description of the PolyU multispectral palmprint Database:Multispectral palmprint images were collected from 250 volunteers, including 195 males and 55 females. The age distribution is from 20 to 60 years old. We collected samples in two separate sessions. In each session, the subject was asked to provide 6 images for each palm. Therefore, 24 images of each illumination from 2 palms were collected from each subject. In total, the database contains 6,000 images from 500 different palms for one illumination. The average time interval between the first and the second sessions was about 9 days.Each folder is named as “nnnn”. “nnnn” represents the identity of the person (range from 1 to 500). In each folder, the first 6 images (1_mm) were captured in the first session and the latter 6 images (2_mm) were captured in the second session, "mm" represents the image index for give session (range from 1 to 6). “Blue.rar”, "Green.rar", "Red.rar" and "NIR.rar" contains all the ori ginalpalmprint images collected with our device by blue, green, red and NIRillumination. We also provide the extracted ROI images using our ROI extraction algorithm described in [1]. ROI images are contained in “ROI Database.rar”.Related Publication:1. David Zhang, Zhenhua Guo, Guangming Lu, Lei Zhang, and WangmengZuo, "An Online System of Multi-spectral Palmprint Verification", IEEETransactions on Instrumentation and Measurement, vol. 59, no. 2, pp.480-490, 2010.2. Dong Han, Zhenhua Guo, and David Zhang, "Multispectral PalmprintRecognition using wavelet-based Image Fusion", InternationalConference on Signal Processing, pp. 2074-2077, 2008.3. David Zhang, Wai-kin Kong, Jane You and Michael Wong, "On-linepalmprint identification", IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 25, no. 9, pp. 1041-1050, 2003.4. Zhenhua Guo, David Zhang, Lei Zhang, Wangmeng Zuo, Guangming Lu“Empirical Study of Light Source Selection for Palmprint Recognition”,Pattern Recognition Letters (2010), doi: 10.1016/j.patrec.2010.09.026The Announcement of the CopyrightAll rights of the PolyU multispectral palmprint Database are reserved. The database is only available for research and noncommercial purposes. Commercial distribution or any act related to commercial use of this database is strictly prohibited. A clear acknowledgement should be made for any public work based on the PolyU multispectral palmprint Database. A citation to "PolyU multispectral palmprint Database,.hk/~biometrics/MultispectralPalmprint/MSP.htm” and our related works must be added in the references. A soft copy of any released or public documents that use the PolyU multispectral palmprint Database must be forwarded to: cslzhang@.hkDownloading Steps:Download ZIP to your local disk. Then, fill in the application forms. Send the application form to cslzhang@.hk. The successful applicants will receive the passwords for unzipping the files downloaded.Multispectral Palmprint Database:MSpalmprint Database.zip ROI Database.zipApplication FormContact Information:Lei ZHANG, Associate ProfessorBiometric Research Centre (UGC/CRC)The Hong Kong Polytechnic UniversityHung Hom, Kowloon, Hong KongE-mail: cslzhang@.hk数据预览:点此下载完整数据集。
动(漫)画专业实训室建设方案专业实训室建设方案一、建设意义目前在国家各项政策的大力扶持下,中国动画产业发展迅速。
国产动画片数量大幅增加。
2006年国产电视动画片产量已经超过8万分钟。
动画质量日益提高,《三毛流浪记》、《蓝猫系列》、《Q版三国》、《勇闯天下》等一大批优秀国产动画片相继问世。
与之相适应的国产动画播映体系逐步完善,动画黄金时段播出国产动画片的政策取得了积极效果。
国产动画片开始走出国门,动画企业的市场意识不断强化,运营能力不断提高,已开始取得良好的市场回报,国产动画产业链正在形成,国产动画产业已经迎来了新的繁荣时期。
尽管如此,目前国内动漫游戏产业无论在人才还是技术基础上仍然薄弱,据不完全统计,目前全国动漫游戏从业者不到1万人,只及韩国的1/3。
而事实上,全国影视动漫游戏产业人才总需求约在20万人左右,游戏动漫人才总需求量也在15万人左右,每年的动漫游戏类专业毕业生仅有几千人,人才严重缺乏,象北京、上海、杭州、广州、宁波这样的国家重点动漫游戏产业基地,绝大多数动漫游戏生产企业仍停留在加工性质,真正原创的能力严重不足。
甚至在广州、宁波很多企业通过吸收学员一边培训一边生产的模式发展自己的人才,这显然影响企业生产专业化的发展,企业事专业的生产单位,学校才是专业的培训场所,在这种大的环境下,近年来众多高校也纷纷设立动漫游戏相关专业,尽管如此,由于缺乏经验及师资,多数学校也是停留在理论和经典教材学习,对学生的实际能力的培训极为缺乏。
特别是在当今动漫游戏生产技术已经进入无纸数码化、去鼠标化变革的时代,很多学校连一个动漫游戏无纸化创作实训室都没有,学校只是学习一个概念和软件技术,毕业出来后到生产企业仍旧要一段长时间的培训。
在这种情况下,建立动漫专业实训室具有及其重要的意义。
我们的目标是在实用性的基础上建设一个教学为主、生产为辅的教学生产相结合的实训教学实验室。
功能涵盖从传统手工动画到无纸动画整个工艺,逐步建设并达到国内先进性的标准。
Advances in Education 教育进展, 2012, 2, 77-81doi:10.4236/ae.2012.24016 Published Online October 2012 (/journal/ae.html)Evaluation Studies of 2D and Glasses-Free 3D Contentsfor Education——Case Study of Automultiscopic Display Used for School Teachingin Hong KongHerbert Lee1, Hareton Leung2, Adela Lau3, Kai-Pan Mark41Institute of Applications in Academia and Industry (IAAI), Hong Kong2Department of Computing, Hong Kong Polytechnic University, Hong Kong3Inter-Disciplinary Program Office, Hong Kong University of Science and Technology, Hong Kong4Department of Information Systems, City University of Hong Kong, Hong KongEmail: herbert@, cshleung@.hk, adela@ust.hk, markkp@.hkReceived: Jul. 20th, 2012; revised: Jul. 25th, 2012; accepted: Aug. 20th, 2012Abstract: Although previous research has shown promising results on 3D in education, the standard method of viewing 3d content would not be practical in Hong Kong as many students need to wear two pairs of glasses due to nearsightedness. In order to explore the result of using 3D technology in primary school edu- cation, three universities in Hong Kong collaborate with IAAI to present a study of using the automultiscopic LCD display for 3D teaching on General Studies in a primary school in Hong Kong. Significant findings support that pupils learn science topics in better in 3D than in 2D.Keywords: Automultiscopic Displays; 3D in Education; E-Learning, Knowledge Management; Myopia2D教学与裸眼3D教学比较——在香港小学使用裸眼3D进行教学的案例研究李应樵1,梁金能2,刘秀梅3,麦启彬41工业和学术应用学会(IAAI),香港2香港理工大学计算机系,香港3香港科技大学跨学科课程事务处,香港4香港城市大学信息系统专业,香港Email: herbert@, cshleung@.hk, adela@ust.hk, markkp@.hk收稿日期:2012年7月20日;修回日期:2012年7月25日;录用日期:2012年8月20日摘要:虽然之前的研究结果显示3D教育的前景十分广阔,但是观看3D内容的标准方式在香港实行起来并不实际,原因是现在许多学生患近视眼,日常生活中就需要佩戴眼镜,如果这些学生观看非裸眼3D影片则需要同时叠戴两幅眼镜。
香港理工大学2D_3D_掌纹数据集(The Hong Kong Polytechnic University (PolyU) 2D_3D_PalmprintDatabase)数据介绍:Palmprint has proved to be one of the most unique and stable biometric characteristics. Almost all the current palmprint recognition techniques capture the two dimensional (2D) image of the palm surface and use it for feature extraction and matching. Although 2D palmprint recognition can achieve high accuracy, the 2D palmprint images are relatively easy to be counterfeited and much three dimensional (3D) depth information is lost in the imaging process. 3D Palmprint is a good choice to overcome these flaws.关键词:香港理工大学,2D,3D,掌纹,UGC/CRC,PloyU,2D,3D,palmprint,UGC/CRC,数据格式:IMAGE数据详细介绍:The Hong Kong Polytechnic University (PolyU)2D_3D_Palmprint DatabaseOverview:Palmprint has proved to be one of the most unique and stable biometric characteristics. Almost all the current palmprint recognition techniques capture the two dimensional (2D) image of the palm surface and use it for feature extraction and matching. Although 2D palmprint recognition can achieve high accuracy, the 2D palmprint images are relatively easy to be counterfeited and much three dimensional (3D) depth information is lost in the imaging process. 3D Palmprint is a good choice to overcome these flaws.The Biometric Research Centre (UGC/CRC) at The Hong Kong Polytechnic University has developed a real time 3D palmprint capture device, and has used it to construct a large-scale 3D palmprint database. To advance research and to provide researchers working in the area of 3D palmprint recognition a platform to compare the effectiveness of 3D palmprint recognition algorithms, we intend to publish our 3D palmprint database, making it freely available for academic, noncommercial uses.(a) The outlook of the 3D palmprint image acquisition device; (b) The device is being used to collect 3D palmprint image samples.Description of the PolyU 3D Palmprint Database:The PolyU 3D Palmprint Database contains 8000 samples collected from 400 different palms. Twenty samples from each of these palms were collected in two separated sessions, where 10 samples were captured in each session, respectively. The average time interval between the two sessions is one month. Each sample contains a 3D ROI (region of interest) and its corresponding 2D ROI. Each 3D ROI is recorded by a binary file which contains 128*128 float values denoting the depth infromation of the palmprint to a reference plane, where each 2D ROI is recorded by a BMP format image file. The 3D ROIs are stored in the folder, "Sub3D", and labeled as "Sub3D_I_M_N.dat" or"Sub3D_II_M_N.dat", where "I" indicates the first session, "II" indicates the second session, "M" is the unique palm identifier (range from 1 to 550, some numbers are absent), and "N" is the index of each palm (range from 0 to 9).The 2D ROIs are stored in the folder "Sub2D", and labeled as"Sub2D_I_M_N.bmp" or "Sub2D_II_M_N.bmp" which are one-to-one corresponding to their 3D ROIs.Related Publication:1. W. Li, D. Zhang, L. Zhang, G. Lu, and J. Yan, "Three DimensionalPalmprint Recognition with Joint Line and Orientation Features", IEEETransactions on Systems, Man, and Cybernetics, Part C, In Press.2. W. Li, L. Zhang, D. Zhang, G. Lu, and J. Yan, “Efficient Joint 2D and3D Palmprint Matching with Alignment Refinement”, in: Proc. CVPR2010.3. D. Zhang, G. Lu, W. Li, L. Zhang, and N. Luo, "Palmprint RecognitionUsing 3-D Information", IEEE Transactions on Systems, Man, andCybernetics, Part C: Applications and Reviews, Volume 39, Issue 5, pp.505 - 519, Sept. 2009.4. W. Li, D. Zhang, and L. Zhang, "Three Dimensional PalmprintRecognition", IEEE International Conference on Systems, Man, andCybernetics, 2009.5. D. Zhang, G. Lu, W. Li, L. Zhang, and N. Luo, "Three DimensionalPalmprint Recognition using Structured Light Imaging", 2nd IEEEInternational Conference on Biometrics: Theory, Applications andSystems, BTAS 2008, pp. 1-6.The Announcement of the CopyrightAll rights of the PolyU 3D Palmprint Database are reserved. The database is only available for research and noncommercial purposes. Commercial distribution or any act related to commercial use of this database is strictly prohibited. A clear acknowledgement should be made for any public work based on the PolyU 3D Palmprint Database. A citation to "PolyU 3D Palmprint Database, .hk/~biometrics/2D_3D_Palmprint.htm”and our related works must also be added in the references. A soft copy of any released or public documents that use the PolyU 3D Palmprint Database must be forwarded to: cslzhang@.hkDownloading Steps:This PolyU 3D Palmprint Database is made publicly available and can be obtained from this website. It is totally free for academic, noncommercial purposes. Any person or organization that wishes to use the database must agree to the terms of the agreement and fill in the agreement forms. Then, send the application form to cslzhang@.hk. The successful applicants will receive their login accounts and passwords to download the database. Moreover, to facilitate checking the 3D palmprint ROI visually, we developed a tool, which is available here. C and Matlab code for reading the 3D palmprint ROI is available here.2D+3D Palmprint ROI.zipIf you want to use our 2D palmprint database (IEEE PAMI 2003), you cango here.Application FormContact Information:Lei ZHANG, Associate ProfessorBiometric Research Centre (UGC/CRC)The Hong Kong Polytechnic UniversityHung Hom, Kowloon, Hong KongE-mail: cslzhang@.hk数据预览:点此下载完整数据集。