(精选试卷合集)吉林市达标名校八年级数学下学期期中试卷14份汇总合集
- 格式:doc
- 大小:2.79 MB
- 文档页数:122
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
2022-2023学年吉林省名校调研(省命题A)八年级(上)期中数学试卷一、选择题(每小题2分,共12分)1.下列图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边长,能组成三角形的是()A.2,3,6B.3,4,8C.5,6,10D.7,8,183.已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为()A.15B.16C.17D.184.若一个等腰三角形的顶角为110°,则它的一个底角的度数为()A.70°B.45°C.35°D.25°5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.SSA D.ASA6.观察图中的尺规作图痕迹,下列结论错误的是()A.AD=BDB.直线CD是线段AB的垂直平分线C.∠CAD=∠CBDD.四边形ADBC的面积为AB•CD二、填空题(每小题3分,共24分)7.(3分)正六边形的外角和是.8.(3分)在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是(只要写出一个即可).9.(3分)如图,AC=DB,AO=DO,CD=300m,则A、B两点间的距离为m.10.(3分)如图是战机在空中展示的轴对称队形,以飞机B、C所在直线为x轴,队形的对称轴为y轴,建立平面直角坐标系,若飞机E的坐标为(40,a),则飞机D的坐标为.11.(3分)如图,DE是△ABC的边AC的垂直平分线,垂足为E,DE交BC于点D,连接AD,若AB=4,△ABD的周长为10,则BC的长为.12.(3分)如图,在△ABC中,AB=AC=6,AD为边BC的中线.若∠BAC=120°,则AD的长为.13.(3分)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=度.14.(3分)如图,尺规作图痕迹与△ABC的边BC、AB分别交于点D、E,过点D作DF⊥AB于点F,在AC上取一点G,使DE=DG,若△ADG的面积为52,△AED的面积为38,则△DEF的面积为.三、解答题(每小题5分,共20分)15.(5分)如图,AC=EC,CB=CD,AB=ED,求证:△ACB≌△ECD.16.(5分)洪洪同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,AC与BD相交于点O,且OB=OD.已知AB=20米,请根据上述信息求标语CD的长度.17.(5分)如图,在△ABC中,AB=AC,BD是△ABC的角平分线,若∠A=80°,求∠BDC的大小.18.(5分)如图,点C、E在线段BF上,且BE=CF,CM∥DF,观察如图所示的尺规作图痕迹.求证:AC=DF.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③均是6×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中以AC为边,画一个等腰△ACD;(2)在图②中画△ABE,使△ABE与△ABC关于直线AB对称;(3)在图③中画△BAF,使△BAF与△ABC全等.20.(7分)如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F.(1)求证:BE垂直平分CD;(2)若点D是AB的中点,求证:△CBD是等边三角形.21.(7分)如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.(1)求证:△BFD≌△ACD;(2)求∠ABD的度数.22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG分别交AD、AC于点E、G,过点E作EF⊥AB于点F.(1)求证:EF=ED;(2)连接CE,写出图中的所有全等三角形.五、解答题(每小题8分,共16分)23.(8分)如图,线段AB上两点C、D,AC=BD,∠A=∠B,AE=BF,连接DE并延长至点M,连接CF并延长至点N,DM、CN交于点P,MN∥AB.(1)求证:△ADE≌△BCF;(2)求证:△PMN是等腰三角形.24.(8分)如图,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE.(1)求证:△ACD≌△BCE;(2)若CM=2,BE=3,求AE的长.六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,AB=AC,点D在边BC上(点D不与点B、点C重合),作∠ADE=∠B,DE交边AC于点E.(1)求证:∠BAD=∠CDE;(2)若DC=AB,求证:△ABD≌△DCE;(3)当∠B=50°,且△ADE是等腰三角形时,直接写出∠BDA的度数.26.(10分)如图,△ABC是等边三角形,AB=6,动点P沿折线AB﹣BC以每秒1个单位长度的速度向终点C运动;同时,动点Q沿折线CA﹣AB﹣BC以每秒2个单位长度的速度向终点C运动,连接PQ,设点P的运动时间为t(s)(0<t<12).(1)用含t的式子表示BP的长;(2)当△APQ是等边三角形时,求t的值;(3)当线段PQ在△ABC的某条边上时,求t的取值范围;(4)在(3)的条件下,当以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形时,直接写出t的值.2022-2023学年吉林省名校调研(省命题A)八年级(上)期中数学试卷(参考答案与详解)一、选择题(每小题2分,共12分)1.下列图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义直接判断即可.【解答】解:根据图形知,A选项图形是轴对称图形,故选:A.2.以下列各组线段为边长,能组成三角形的是()A.2,3,6B.3,4,8C.5,6,10D.7,8,18【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长之和大于最长的边即可.【解答】解:A.2+3<6,故不能组成三角形,故选项不符合题意;B.3+4<8,故不能组成三角形,故选项不符合题意;C.5+6>10,故能组成三角形,故选项符合题意;D.7+8<18,故不能组成三角形,故选项不符合题意.故选:C.3.已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为()A.15B.16C.17D.18【分析】根据等腰三角形的定义求周长即可得出答案.【解答】解:6+5+5=16,故选:B.4.若一个等腰三角形的顶角为110°,则它的一个底角的度数为()A.70°B.45°C.35°D.25°【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=110°,∠A+∠B+∠C=180°,∴∠B=∠C=35°,故选:C.5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.SSA D.ASA【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【解答】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA.故选:D.6.观察图中的尺规作图痕迹,下列结论错误的是()A.AD=BDB.直线CD是线段AB的垂直平分线C.∠CAD=∠CBDD.四边形ADBC的面积为AB•CD【分析】根据线段垂直平分线的性质和全等三角形的判定和性质定理即可得到结论.【解答】解:由作图知,CD垂直平分AB,∴AD=BD,AC=BC,∵CD=CD,∴△ACD≌△BCD(SSS),∴∠CAD=∠CBD,∵CD⊥AB,∴四边形ADBC的面积为AB•CD,故选项A,B,C正确;D错误,故选:D.二、填空题(每小题3分,共24分)7.(3分)正六边形的外角和是360°.【分析】根据任何多边形的外角和是360度即可求出答案.【解答】解:六边形的外角和是360°.故答案为:360°.8.(3分)在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是∠A=60°(只要写出一个即可).【分析】根据有一个角是60°的等腰三角形是等边三角形可得答案.【解答】解:在△ABC中,AB=AC,再添加∠A=60°可得△ABC是等边三角形,故答案为:∠A=60°.9.(3分)如图,AC=DB,AO=DO,CD=300m,则A、B两点间的距离为300m.【分析】根据题意和题目中的条件可以证得△AOB≌△DOC,从而可以得到AB=DC,然后根据CD=300m,即可求得AB的长度,本题得以解决.【解答】解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=300m,∴AB=300m,即A,B两点间的距离是300m,故答案为:300.10.(3分)如图是战机在空中展示的轴对称队形,以飞机B、C所在直线为x轴,队形的对称轴为y轴,建立平面直角坐标系,若飞机E的坐标为(40,a),则飞机D的坐标为(﹣40,a).【分析】根据轴对称的性质即可得到结论.【解答】解:∵飞机E(40,a)与飞机D关于y轴对称,∴飞机D的坐标为(﹣40,a),故答案为:(﹣40,a).11.(3分)如图,DE是△ABC的边AC的垂直平分线,垂足为E,DE交BC于点D,连接AD,若AB=4,△ABD的周长为10,则BC的长为6.【分析】利用线段垂直平分线的性质可得AD=DC,再根据已知可得AD+BD=6,从而可得AD+CD=6,即可解答.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,∵AB=4,△ABD的周长为10,∴AD+BD=10﹣4=6,∴AD+CD=6,∴BC=6,故答案为:6.12.(3分)如图,在△ABC中,AB=AC=6,AD为边BC的中线.若∠BAC=120°,则AD的长为3.【分析】根据等腰三角形的性质得出AD⊥BC,∠BAD=60°,根据含30°角的直角三角形的性质求解即可.【解答】解:∵AB=AC,AD为边BC的中线,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,在Rt△ABD中,∠B=90°﹣60°=30°,∴AD=AB=3,贵答案为:3.13.(3分)如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=135度.【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°.14.(3分)如图,尺规作图痕迹与△ABC的边BC、AB分别交于点D、E,过点D作DF⊥AB于点F,在AC上取一点G,使DE=DG,若△ADG的面积为52,△AED的面积为38,则△DEF的面积为7.【分析】由作图痕迹得AD平分∠BAC,过D点作DH⊥AC于H,如图,根据角平分线的性质得到DF=DH,再证明Rt△DEF≌Rt△DGH,Rt△DAF≌Rt△DAH,则S△DEF=S,S△DAF=S△DAH,所以38+S△DEF=52﹣S△DEF,然后解方程即可.△DGH【解答】解:由作图痕迹得AD平分∠BAC,过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),同理可得Rt△DAF≌Rt△DAH,∴S△DEF=S△DGH,S△DAF=S△DAH,∴S△ADE+S△DEF=S△ADG﹣S△DGH,即38+S△DEF=52﹣S△DEF,∴S△DEF=7.故答案为:7.三、解答题(每小题5分,共20分)15.(5分)如图,AC=EC,CB=CD,AB=ED,求证:△ACB≌△ECD.【分析】根据全等三角形的判定定理SSS证明即可.【解答】证明:在△ACB和△ECD中,,∴△ACB≌△ECD(SSS).16.(5分)洪洪同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,AC与BD相交于点O,且OB=OD.已知AB=20米,请根据上述信息求标语CD的长度.【分析】利用ASA得到三角形AOB与三角形COD全等,利用全等三角形对应边相等即可求出CD的长.【解答】解:∵AB∥OH∥CD,∴∠ABO=∠CDO,在△ABO和△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20米,答:标语CD的长为20米.17.(5分)如图,在△ABC中,AB=AC,BD是△ABC的角平分线,若∠A=80°,求∠BDC的大小.【分析】由AB=AC,CD平分∠ACB,∠A=80°,根据三角形内角和180°可求得∠ABC,在△DBC求得所求角度.【解答】解:∵AB=AC,BD平分∠ABC,∠A=80°,∴∠ABC=(180°﹣80°)÷2=50°,∠DBA==25°.∴∠BDC=∠A+∠DBA=80°+25°=105°.故答案为:105°.18.(5分)如图,点C、E在线段BF上,且BE=CF,CM∥DF,观察如图所示的尺规作图痕迹.求证:AC=DF.【分析】根据等式的性质得出BC=EF,进而利用SAS证明△ABC≌△DEF,利用全等三角形的性质和平行线的判定解答即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③均是6×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中以AC为边,画一个等腰△ACD;(2)在图②中画△ABE,使△ABE与△ABC关于直线AB对称;(3)在图③中画△BAF,使△BAF与△ABC全等.【分析】(1)根据等腰三角形的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)根据全等三角形的性质即可得到结论.【解答】解:(1)如图①△ACD,即为所求;(2)如图②△ABE,即为所求;(3)如图③△BAF,即为所求.20.(7分)如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F.(1)求证:BE垂直平分CD;(2)若点D是AB的中点,求证:△CBD是等边三角形.【分析】(1)先证Rt△EBC≌Rt△EBD(HL),即可得出BE是∠DBC的角平分线,再根据等腰三角形三线合一即可得证;(2)根据直角三角形斜边的中线等于斜边的一半可知CD=DB,又根据DB=BC,即可证明结论.【解答】证明:(1)∵∠ACB=90°,且DE⊥AB,∴∠EDB=∠ACB=90°,在Rt△EBC和Rt△EBD中,,∴Rt△EBC≌Rt△EBD(HL),∴∠CBE=∠DBE,∵BD=BC,∴△BDC是等腰三角形,∴BF⊥CD,CF=DF,∴BE垂直平分CD.(2)∵D是AB的中点,∠ACB=90°,∴DC=DB,又∵BD=BC,∴DC=DB=BC,∴△CBD是等边三角形.21.(7分)如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.(1)求证:△BFD≌△ACD;(2)求∠ABD的度数.【分析】(1)由AD为△ABC的高,得∠BDF=∠ADC=90°,即可根据直角三角形全等的判定定理“HL”证明Rt△BFD≌Rt△ACD;(2)由Rt△BFD≌Rt△ACD,得BD=AD,而∠ADB=90°,所以∠ABD=∠BAD=45°.【解答】(1)证明:∵AD为△ABC的高,∴AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BFD和Rt△ACD中,,∴Rt△BFD≌Rt△ACD(HL).(2)解:∵Rt△BFD≌Rt△ACD,∴BD=AD,∵∠ADB=90°,∴∠ABD=∠BAD=(180°﹣∠ADB)=×(180°﹣90°)=45°,∴∠ABD的度数是45°.22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG分别交AD、AC于点E、G,过点E作EF⊥AB于点F.(1)求证:EF=ED;(2)连接CE,写出图中的所有全等三角形.【分析】(1)由“AAS”可证△BEF≌△BED,可得EF=ED;(2)由三角形全等的性质即可求解.【解答】(1)证明:∵AB=AC,AD是BC边上的中线,∴ED⊥BC,∴∠BFE=∠BDE=90°,∵BG平分∠ABC,∴∠FBE=∠DBE,在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴EF=ED;(2)解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,BD=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴EF⊥AB,且EF=ED,在Rt△BEF和Rt△BED中,,∴Rt△BEF≌Rt△BED(HL),∵AD垂直平分BC,点E在AD上,∴EB=EC,在Rt△BED和Rt△CED中,,∴Rt△BED≌Rt△CED(HL),在△ABE和Rt△ACE中,,∴△ABE≌△ACE(SSS).五、解答题(每小题8分,共16分)23.(8分)如图,线段AB上两点C、D,AC=BD,∠A=∠B,AE=BF,连接DE并延长至点M,连接CF并延长至点N,DM、CN交于点P,MN∥AB.(1)求证:△ADE≌△BCF;(2)求证:△PMN是等腰三角形.【分析】(1)由AC=BD推导出AD=BC,即可根据全等三角形的判定定理“SAS”证明△ADE≌△BCF;(2)由△ADE≌△BCF,得∠ADE=∠BCF,由平行线的性质得∠M=∠ADE,∠N=∠BCF,所以∠M=∠N,即可由“等角对等边”证明△PMN是等腰三角形.【解答】(1)证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),(2)证明:∵△ADE≌△BCF,∴∠ADE=∠BCF,∵MN∥AB,∴∠M=∠ADE,∠N=∠BCF,∴∠M=∠N,∴PM=PN,∴△PMN是等腰三角形.24.(8分)如图,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE.(1)求证:△ACD≌△BCE;(2)若CM=2,BE=3,求AE的长.【分析】(1)先证出∠ACD=∠BCE,由SAS证明△ACD≌△BCE即可;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM,代入数值即可得到答案.【解答】(1)证明:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∵△ACD≌△BCE(SAS);(2)解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM=3+2×2=7.六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,AB=AC,点D在边BC上(点D不与点B、点C重合),作∠ADE=∠B,DE交边AC于点E.(1)求证:∠BAD=∠CDE;(2)若DC=AB,求证:△ABD≌△DCE;(3)当∠B=50°,且△ADE是等腰三角形时,直接写出∠BDA的度数.【分析】(1)根据三角形的内角和定理即可得到结论;(2)根据全等三角形的判定和性质定理即可得到结论;(3)分三种情况讨论:①当DA=DE时,②当AD=AE时,③当EA=ED时,根据三角形的内角和定理以及等腰三角形的判定定理即可得到结论.【解答】(1)证明:∠ADE=∠B,∠BAD+∠B=∠ADC,∠CDE+∠ADE=∠ADC,∴∠BAD=∠CDE;(2)证明:∵AB=AC,∴∠B=∠C,∵DC=AB,∠BAD=∠CDE;在△ABD和△DCE中,,∴△ABD≌△DCE(SAS);(3)解:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=∠B=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°;②当AD=AE时,∠AED=∠ADE=50°,∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.26.(10分)如图,△ABC是等边三角形,AB=6,动点P沿折线AB﹣BC以每秒1个单位长度的速度向终点C运动;同时,动点Q沿折线CA﹣AB﹣BC以每秒2个单位长度的速度向终点C运动,连接PQ,设点P的运动时间为t(s)(0<t<12).(1)用含t的式子表示BP的长;(2)当△APQ是等边三角形时,求t的值;(3)当线段PQ在△ABC的某条边上时,求t的取值范围;(4)在(3)的条件下,当以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形时,直接写出t的值.【分析】(1)分别求出点P在AB上运动和点P在BC上运动的表达式即可;(2)AP=AQ时,△APQ是等边三角形,列出关于t的方程求解即可;(3)当AP=AQ或CP=CQ时,求出t的值即可.【解答】解:(1)根据题意可得,①当0<t≤6时,点P在AB上运动,BP=6﹣t;②当6<t<12时,点P在BC上运动,BP=t﹣6;(2)当△APQ是等边三角形时,∵△APQ是等边三角形,∴AP=AQ,∴AQ=6﹣2t,AP=t∴6﹣2t=t,解得:t=2,∴当t=2s时,△APQ是等边三角形;(3)当点Q运动到点A时,2t=6,解得t=3;当点Р到点B时,t=6,此时点Q与点B重合,∴当3≤t<12,且t≠6时,线段PQ在△ABC的某条边上;(4)根据题意有,如图①,当P、Q都在AB上时,满足AQ=BP时,△CPQ是等腰三角形,AQ=2t﹣6,BP=6﹣t,2t﹣6=6﹣t,j解得:t=4;如图②,当P、Q都在BC上时,满足BQ=CP时,△CPQ是等腰三角形,BQ=2t﹣12,CP=12﹣t,2t﹣12=12﹣t,解得:t=8;∴当t=4或t=8时,满足以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形.。
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
人教版八年级(下)期中数学试卷(8)一.选择题(共15小题,满分45分,每小题3分)1.(3分)下列二次根式是最简二次根式的是()A.B.C.D.2.(3分)如图,▱ABCD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.28cm B.18cm C.10cm D.8cm3.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为()A.2m B.2.5m C.2.6m D.2.7m4.(3分)若二次根式有意义,则x的取值范围是()A.x<2B.x≠2C.x≤2D.x≥25.(3分)如图,点E、F、G在正方形ABCD对角线BD上,四边AHFI,EJCK,GLCM均为矩形,它们的周长分别记为:l1、l2、l3,则下列结论正确的是()A.l3<l2<l1B.l1=l2=l3C.l3<l2=l1D.l2=l3<l16.(3分)与是同类二次根式的是()A.B.C.D.7.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.C.4D.288.(3分)如图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A.若AO=OC,则ABCD是平行四边形B.若AC=BD,则ABCD是平行四边形C.若AO=BO,CO=DO,则ABCD是平行四边形D.若AO=OC,BO=OD,则ABCD是平行四边形9.(3分)直角三角形有一直角边长为11,另外两条边长是自然数,则周长是()A.132B.131C.123D.12110.(3分)已知是整数,则自然数m的最小值是()A.1B.2C.3D.411.(3分)(读诗解题)有诗曰:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士好奇,算出索长有几?”(注:一步合五尺)()A.12尺B.13.5尺C.14.5尺D.15.5尺12.(3分)如图,已知菱形ABCD中,过AD中点E作EF⊥BD,交对角线BD于点M,交BC的延长线于点F.连接DF.若CF=2,则AB的长是()A.3B.4C.4D.213.(3分)如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个14.(3分)下列说法中,错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形对角线的交点到一组对边的距离相等C.已知一次函数y=(a2+1)x﹣3,则随x的增大而增大D.函数y=2x+b的图像不经过第二象限,则b<015.(3分)如果一个三角形的三边长分别为1,k,3,则化简的结果是()A.﹣5B.1C.13D.19﹣4k二.解答题(共9小题,满分75分)16.(6分)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.17.(6分)若a=﹣,b=+,求:(1)+;(2)a2+b2﹣5ab.18.(7分)已知:如图,四边形ABCD是平行四边形,E、F是直线BD上的两点,且DE =BF,求证:AE=CF.19.(7分)在一块长12米,宽8米的长方形地块上,建造公共绿地(图中阴影部分),其余部分是小路,小路宽2米,修建方案如图所示,利用你所学的有关图形运动知识,求绿地面积.20.(8分)根据爱因斯坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式中的c是指光速(30万千米/秒),v是指宇宙飞船的速度.假定有一对亲兄弟,哥哥28岁,弟弟25岁.哥哥乘着飞船以光速的0.98倍作了五年的宇宙航行后返回地球,这五年是指地球上的五年,所以当哥哥回来时,弟弟的年龄是30岁,而哥哥的年龄却只有29岁.请你用该公式说明这结论.21.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).22.(10分)列方程解应用题:①一个暖瓶与一个水杯共38元,2个暖瓶与3个水杯共84元,问一个暖瓶与一个水杯分别是多少元?②甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(11分)如图,在矩形ABCD中,Q是BC的中点,P是AD上一点,连接PB、PC,E、F分别是PB、PC的中点,连接QE、QF.(1)求证:四边形PEQF是平行四边形.(2)①当点P在什么位置时,四边形PEQF是菱形?证明你的结论;②矩形ABCD的边AB和AD满足什么条件时,①中的菱形PEQF是正方形?(直接写出结论,不需要说明理由)24.(12分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用在(2)的条件下,连接CP,当k=时,若,GF=2,求CP 的长.。
八年级(下)期中数学试卷(解析版)一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠13.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形4.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=155.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:26.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米7.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.68.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.1310.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A. cm2B. cm2C. cm2D.()n cm2二、填空题:11.计算:(﹣2)3+(﹣1)0= .12.若实数a、b满足,则= .13.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)14.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.15.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(一)17.(5分)计算:(﹣)2+2×3.18.(5分)当x=时,求代数式x2+5x﹣6的值.19.(5分)已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD 的长.四、解答题(二)(本大题三小题,每小题8分,共24分)20.(8分)如图,平行四边形ABCD中,AD>AB(1)分别作∠ABC和∠BCD的平分线,交AD于E、F.(2)线段AF与DE相等吗?请证明.21.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.22.(8分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.五、解答题(三)(本题三小题,每小题9分,共27分)23.(9分)如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N (1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.24.(9分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.25.(9分)如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是,AB的长是.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是?八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥0且x≠1.故选D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形【考点】命题与定理.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选:D.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别.4.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理得出A、B、C能成直角三角形,DD不能够构成直角三角形;即可得出结论.【解答】解:∵92+402=412,∴a2+c2=b2,∴A能成直角三角形;∵52+52=(5)2,∴a2+b2=c2,∴B能构成直角三角形;∵32+42=52,∴C能构成直角三角形;∵112+122≠152,∴D不能够构成直角三角形;故选:D.【点评】本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.5.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2【考点】平行四边形的性质.【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,故选C.【点评】本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.6.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.7.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题);矩形的性质.【分析】先根据矩形的性质求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点评】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.8.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选C.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=15,故选B.【点评】本题考查了平行四边形性质,全等三角形的性质和判定的应用,关键是求出DE+CF 的长和求出OF长.10.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A. cm2B. cm2C. cm2D.()n cm2【考点】正方形的性质.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n﹣1阴影部分的和.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.【点评】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题:11.计算:(﹣2)3+(﹣1)0= ﹣7 .【考点】实数的运算;零指数幂.【分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣8+1=﹣7.故答案为:﹣7.【点评】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.12.若实数a、b满足,则= .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为013.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【考点】菱形的判定.【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.14.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3).【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BF C=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ODE≌△CBF是关键.15.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.【点评】本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3 .【考点】翻折变换(折叠问题).【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,A B=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(一)17.计算:(﹣)2+2×3.【考点】二次根式的加减法.【分析】先进行完全平方公式、二次根式的乘法运算,然后合并.【解答】解:原式=2+3﹣2+2=5.【点评】本题考查了二次根式的加减法,掌握运算法则是解答本题的关键.18.当x=时,求代数式x2+5x﹣6的值.【考点】二次根式的化简求值;代数式求值.【分析】可直接代入求值.【解答】解:当x=时,x2+5x﹣6=()2+5()﹣6=6﹣2+5﹣5﹣6=.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.19.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【考点】勾股定理.【分析】在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,=AB•CD=AC•BC,∵S△ABC∴CD===4.8.【点评】此题考查了勾股定理,以及三角形面积求法,熟练掌握勾股定理是解本题的关键.四、解答题(二)(本大题三小题,每小题8分,共24分)20.如图,平行四边形ABCD中,AD>AB(1)分别作∠ABC和∠BCD的平分线,交AD于E、F.(2)线段AF与DE相等吗?请证明.【考点】平行四边形的性质.【分析】由平行四边形ABCD的对边平行且相等、平行线的性质、角平分线的定义推知∠ABE=∠AEB,则AE=AB,∠DCF=∠DFC,则DF=DC,故AF=DE.【解答】解:AF与DE相等.理由如下:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC.∵AD∥BC,BE平分∠ABC,∴∠ABE=∠AEB,∴AE=AB.∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DCF=∠DFC,∴DF=DC,∴AF=DE.【点评】本题考查了平行四边形的性质.解题时,将所求的线段间的数量关系,转化为推知角、角关系,充分利用了等腰三角形的判定与性质.21.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM ⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.22.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.【考点】二次根式的混合运算.【分析】(1)利用二次根式的性质对他们的化简结果进行判断;(2)利用完全平方公式把原式变形为,然后根据二次根式的性质化简即可.【解答】解:(1)小李化简正确,小张的化简结果错误.因为=|﹣|=﹣;(2)原式===﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.五、解答题(三)(本题三小题,每小题9分,共27分)23.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)连接EC,根据题意可得出四边形EMCN为矩形,故MN=CE,再由SAS定理得出△ABE≌△CBE,进而可得出结论;(2)过点E作EF⊥AD,由直角三角形的性质可得出EF及AF的长,再由等腰直角三角形的性质得出DF的长,进而可得出结论.【解答】(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.【点评】本题考查的是正方形的性质,熟知正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角是解答此题的关键.24.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;含30度角的直角三角形.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.25.如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是10 ,AB的长是 5 .(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是?【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理;菱形的判定.【分析】(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.(4)BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,从而得到,然后求得t的值.【解答】(1)解:∵在Rt△ABC中,∠C=30°,∴AC=2AB,根据勾股定理得:AC2﹣AB2=BC2,∴3AB2=75,∴AB=5,AC=10;(2)EF与AD平行且相等.证明:在△DFC中,∠DF C=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF.∴四边形AEFD为平行四边形.∴EF与AD平行且相等.(3)解:能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∵AB=BC•tan30°=5×=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.(4)解:∵在Rt△CDF中,∠A=30°,∴DF=CD,∴CF=t,又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,∴,即:,解得:t=3,t=7(不合题意舍去),∴t=3.故当t=3时,△BEF的面积为2.故答案为:5,10;平行且相等;;3.【点评】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.。
2021年第二学期期中学业水平检测试卷八年级数学一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形2.(3分)计算的结果为()A.±3B.﹣3C.3D.93.(3分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定4.(3分)如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是()A.AC=BD B.AC⊥BD C.AO=CO D.AB=BC5.(3分)已知关于x的方程(m+1)x2﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣16.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差7.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为()A.10%B.15%C.20%D.25%8.(3分)设,则可以表示为()A.B.C.D.9.(3分)如图,在平行四边形ABCD中,点O是对角线AC上一点,连结BO,DO,△COD,△AOD,△AOB,△BOC的面积分别是S1,S2,S4,下列关于S1,S2,S3,S4的等量关系式中错误的是()A.S1+S3=S2+S4B.C.S3﹣S1=S2﹣S4D.S2=2S110.(3分)已知一元二次方程a(x﹣x1)(x﹣x2)=0(a≠0,x1≠x2)与一元一次方程dx+e =0有一个公共解x=x1,若一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0有两个相等的实数根,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x2﹣x1)2=d二、填空题:本大题有6个小题,每小题3分,共24分11.(3分)若二次根式有意义,则a的取值范围是.12.(3分)已知多边形的内角和等于外角和的两倍,则这个多边形的边数为.13.(3分)在平行四边形ABCD中,∠D=65°,过点C作CE⊥AB于E,则∠BCE的度数为.14.(3分)据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2.引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为个,方差为个2.15.(3分)已知一元二次方程2x2+bx+c=0的两个根为x1=1和x2=2,则b=c =.16.(3分)若,则a3﹣a+1=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(10分)计算:(1)4;(2).18.(12分)用适当方法解下列方程:(1)(3x﹣1)2=9;(2)x(2x﹣4)=(2﹣x)2;(3)=0.19.(10分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.20.(10分)设实数的整数部分为a,小数部分为b.(1)计算:;(2)求(2a+b)(2a﹣b)的值.21.(10分)为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?22.(10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连结CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连结CE.(1)求∠DCE的度数.(2)设BC=a,AC=b.①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根吗?说明理由.②若D为AE的中点,求的值.23.(10分)在平行四边形ABCD中,对角线AC,BD交于点O,且分别平分∠DAB,∠ABC.(1)请求出∠AOB的度数,写出AD,AB,BC之间的等量关系,并给予证明.(2)设点P为对角线AC上一点,PB=5,若AD+BC=16,四边形ABCD的面积为,求AP的长.参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.线段B.等腰三角形C.平行四边形D.等边三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、线段是轴对称图形,也是中心对称图形,故此选项符合题意;B、等腰三角形是轴对称图形,不是中心对称图形,故此选项不合题意;C、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;D、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)计算的结果为()A.±3B.﹣3C.3D.9【分析】根据=|a|进行计算即可.【解答】解:=3,故选:C.【点评】此题主要考查了二次根式的化简,关键是掌握=|a|.3.(3分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是()A.AC=BD B.AC⊥BD C.AO=CO D.AB=BC【分析】由平行四边形的性质容易得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO;故选:C.【点评】本题考查了平行四边形的性质;熟记平行四边形的对角线互相平分是解决问题的关键.5.(3分)已知关于x的方程(m+1)x2﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣1【分析】根据一元二次方程定义可得m+1≠0,再解可得答案.【解答】解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.【点评】此题主要考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.6.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【点评】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.7.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为()A.10%B.15%C.20%D.25%【分析】利用关系式:一月份的营业额×(1+增长率)2=三月份的营业额,设出未知数列出方程解答即可.【解答】解:设这两个月的营业额增长的百分率是x.200×(1+x)2=288,解得:x1=﹣2.2(不合题意舍去),x2=0.2,答:每月的平均增长率为20%.故选:C.【点评】此题考查一元二次方程的应用;得到三月份营业额的关系式是解决本题的关键.8.(3分)设,则可以表示为()A.B.C.D.【分析】首先把小数化为分数,为便于开方根据分数基本性质,分子分母同时扩大10倍,再根据二次根式的性质与化简,即可求得结论.【解答】解:======;故选:A.【点评】本题考查了二次根式的性质与化简,解决本题的关键是二次根式化简时把小数化为分数,注意尝试怎样拆分数据可简便运算.9.(3分)如图,在平行四边形ABCD中,点O是对角线AC上一点,连结BO,DO,△COD,△AOD,△AOB,△BOC的面积分别是S1,S2,S4,下列关于S1,S2,S3,S4的等量关系式中错误的是()A.S1+S3=S2+S4B.C.S3﹣S1=S2﹣S4D.S2=2S1【分析】根据平行四边形的性质和三角形的面积公式解答即可.【解答】解:∵平行四边形ABCD,∴S2:S1=OA:OC,S3:S4=OA:OC,S1+S3=S2+S4,S3﹣S1=S2﹣S4,即,但不能得出S2=2S1,故选:D.【点评】此题考查了平行四边形的性质.根据平行四边形的性质和三角形的面积公式解答是关键.10.(3分)已知一元二次方程a(x﹣x1)(x﹣x2)=0(a≠0,x1≠x2)与一元一次方程dx+e =0有一个公共解x=x1,若一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0有两个相等的实数根,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x2﹣x1)2=d【分析】由x=x1是方程a(x﹣x1)(x﹣x2)=0与dx+e=0的一个公共解,可得x=x1是方程a(x﹣x1)(x﹣x2)+(dx+e)=0的一个解.根据根与系数的关系得出x1+x1=﹣,整理后即可得出结论.【解答】解:∵关于x的一元二次方程a(x﹣x1)(x﹣x2)=0与关于x的一元一次方程dx+e=0有一个公共解x=x1,∴x=x1是方程a(x﹣x1)(x﹣x2)+(dx+e)=0的一个解.∵一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0,∴ax2﹣(ax1+ax2﹣d)x+ax1x2+e=0,∵有两个相等的实数根,∴x1+x1=﹣,整理得:d=a(x2﹣x1).故选:B.【点评】本题考查了方程的解与一元二次方程的根与系数的关系,明确方程的解的含义及根与系数的关系是解题的关键.二、填空题:本大题有6个小题,每小题3分,共24分11.(3分)若二次根式有意义,则a的取值范围是a<.【分析】直接利用二次根式的有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴1﹣2a>0,解得:a<.故答案为:a<.【点评】此题主要考查了二次根式有意义的条件,正确把握相关性质是解题关键.12.(3分)已知多边形的内角和等于外角和的两倍,则这个多边形的边数为6.【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=720,解得:n=6.故这个多边形的边数为6.故答案为:6.【点评】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.13.(3分)在平行四边形ABCD中,∠D=65°,过点C作CE⊥AB于E,则∠BCE的度数为25°.【分析】首先利用三角形内角和定理得出∠B的度数,再利用平行四边形的对角相等,进而得出答案,【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=65°,∵CE⊥AB,∴∠EBC=90°,∴∠BCE=180°﹣90°﹣65°=25°,故答案为:25°.【点评】此题主要考查了三角形内角和定理以及平行四边形的性质,正确掌握平行四边形的性质是解题关键.14.(3分)据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2.引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为9个,方差为 2.5个2.【分析】根据方差和平均数公式计算.【解答】解:日平均生产零件个数==9(个),S'2=[(x1+1﹣9)2+(x2+1﹣9)2+…+(x10+1﹣9)2]=[(x1﹣8)2+(x2﹣8)2+…(x10﹣8)2=2.5(个2)故答案为9,2.5【点评】本题考查了方差,熟练运用方差公式是解题的关键.15.(3分)已知一元二次方程2x2+bx+c=0的两个根为x1=1和x2=2,则b=﹣6c=4.【分析】根据根与系数的关系即可求解.【解答】解:∵一元二次方程2x2+bx+c=0的两个根为x1=1和x2=2,∴﹣=1+2,=1×2,解得b=﹣6,c=4.故答案为:﹣6;4.【点评】考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.16.(3分)若,则a3﹣a+1=.【分析】将a的值代入原式=a(a2﹣1)+1=a(a+1)(a﹣1)+1,再进一步计算可得.【解答】解:当时,原式=a(a2﹣1)+1=a(a+1)(a﹣1)+1=××+1=+1=,故答案为:.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的有关运算法则和性质.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(10分)计算:(1)4;(2).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=4﹣3﹣=;(2)原式=12﹣4+1+=13﹣4+2=13﹣2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(12分)用适当方法解下列方程:(1)(3x﹣1)2=9;(2)x(2x﹣4)=(2﹣x)2;(3)=0.【分析】(1)利用直接开平方法求解可得;(2)利用因式分解法求解可得;(3)整理后利用公式法求解可得.【解答】解:(1)∵(3x﹣1)2=9,∴3x﹣1=±3,解得;(2)∵x(2x﹣4)=(2﹣x)2,∴(x﹣2)(2x﹣x+2)=0,∴(x﹣2)(x+2)=0,∴x1=2,x2=﹣2;,则b2﹣4ac﹣88>0,∴,∴.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(10分)某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.【分析】(1)用加权平均数的计算方法计算平均用电量即可;(2)分别利用众数、中位数及极差的定义求解即可;(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.【解答】解:(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;(2)9度出现了3次,最多,故众数为9度;第3天的用电量是9度,故中位数为9度;(3)总用电量为22×9.6×36=7603.2度.【点评】本题考查了统计的有关概念及用样本估计总体的知识,题目相对比较简单,属于基础题,解题时注意有关的统计量都应带单位.20.(10分)设实数的整数部分为a,小数部分为b.(1)计算:;(2)求(2a+b)(2a﹣b)的值.【分析】(1)首先确定a、b的值,然后再利用绝对值的性质计算即可;(2)利用平方差计算,然后再代入a、b的值计算即可.【解答】解:∵2<<3,∴a=2,b=﹣2,(1)|b﹣|=|﹣2|=|﹣2|=||,∵()2=7,()2=,∴,∴|b﹣|=﹣;(2)(2a+b)(2a﹣b),=4a2﹣b2,=4×4﹣(﹣2)2,=16﹣(7+4﹣4)=16﹣11+4,=5+4.【点评】此题主要考查了实数的计算,以及实数的比较大小,关键是确定的整数部分和小数部分.21.(10分)为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?【分析】(1)一轮转发之后有(x+1)人参与,两轮转发之后有(1+x+x2)人参与,根据经过两轮转发后共有111个人参与了本次活动,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)分别求出三轮转发及四轮转发之后参与活动的人数,将其与10000比较后即可得出结论.【解答】解:(1)依题意,得:1+x+x2=111,整理,得:x2+x﹣110=0,解得:x1=10,x2=﹣11(不合题意,舍去).答:x的值为10.(2)三轮转发之后,参与人数为1+10+100+1000=1111(人),四轮转发之后,参与人数为1+10+100+1000+10000=11111(人).∵11111>10000,∴再经过两轮转发后,参与人数会超过10000人.【点评】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(10分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连结CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连结CE.(1)求∠DCE的度数.(2)设BC=a,AC=b.①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根吗?说明理由.②若D为AE的中点,求的值.【分析】(1)利用等腰三角形的性质结合三角形内角和定理得出答案;(2)①直接利用勾股定理得出AB的长,再利用配方法解方程得出答案;②直接利用勾股定理得出等式求出答案.【解答】解:(1)∵BC=BD,∴∠BCD=∠BDC,∵AC=AE,∴∠ACE=∠AEC,∵∠ACB=90°,∴∠BCD+∠ACE﹣∠DCE=90°,又∵在△DCE中,∠BDC+∠AEC+∠DCE=180°,则90°+2∠DCE=180°,∴∠DCE=45°.(2)①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根.理由如下:由勾股定理得:,∴解关于x的方程x2+2bx﹣a2=0,(x+b)2=a2+b2,得,∴线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根;②∵D为AE的中点,∴,由勾股定理得:,则b2﹣ab=0,故b﹣a=0,整理得:.【点评】本题考查了勾股定理、等腰三角形的性质、一元二次方程的解等知识点.解决本题的关键是熟练掌握和运用等腰三角形的性质及勾股定理.23.(10分)在平行四边形ABCD中,对角线AC,BD交于点O,且分别平分∠DAB,∠ABC.(1)请求出∠AOB的度数,写出AD,AB,BC之间的等量关系,并给予证明.(2)设点P为对角线AC上一点,PB=5,若AD+BC=16,四边形ABCD的面积为,求AP的长.【分析】(1)根据平行四边形的性质和角平分线的定义得出AD,AB,BC之间的等量关系即可;(2)分两种情况进行解答即可.【解答】解:(1)∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AC,BD分别平分∠DAB,∠ABC,∴,∴∠AOB=90°,AD,AB,BC之间的等量关系为AD=AB=BC.证明如下:∵AD∥BC,∴∠DAC=∠ACB,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠ACB=∠BAC,∴AB=BC,∴四边形ABCD为平行四边形,∴AD=BC,∴AD=AB=BC;(2)∵AD=BC,AD+BC=16,∴AD=BC=AB=8,①∠ABC>90°时,如图1,过点D作DE⊥AB,∵四边形ABCD的面积为,∴,∴,∴点E为AB的中点,,∴AD=BD=AB,∴△ABD为等边三角形,∴∠DAB=60°,∴∠BAC=30°,∴,而PB=5,∴OP=3,∴或②当∠ABC<90°时,如图2,按照上面的推理发现,所以这样的点P不存在,故排除.综上所述AP的长为.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质解答.。
2019-2020学年吉林省吉林市八年级(下)期末数学试卷一.选择题(共8小题,满分24分,每小题3分)1.要使式子有意义,则x的值可以是()A.2 B.0 C.1 D.92.下列各式属于最简二次根式的是()A.B.C.D.3.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁4.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,235.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④6.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm7.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分8.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k 的值为()A.k=2 B.k=4 C.k=15 D.k=36二.填空题(共6小题,满分18分,每小题3分)9.=.10.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有个.11.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围.12.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么6※3=.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A的坐标为(1,0),过点1A 1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁nDn的面积是.三.解答题(共10小题,满分78分)15.(5分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.16.(5分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.17.(6分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x=,y=.(写出x与y的一组整数值即可).18.(6分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO =S△FBO.19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.20.(8分)某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)条形图中存在错误的类型是,人数应该为人;(2)写出这20名学生每人植树量的众数棵,中位数棵;(3)估计这300名学生共植树棵.21.(9分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.22.(9分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.23.(11分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M 从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.24.(11分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年吉林省吉林市昌邑区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.2.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从乙和丙中选择一人参加比赛,∵S乙2<S丙2,∴选择乙参赛,故选:B.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.5.【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.6.【分析】根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【解答】解:∵D、E分别为AB、BC的中点,∴DE=AC=5,同理,DF=BC=8,FE=AB=4,∴△DEF的周长=4+5+8=17(cm),故选:D.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.7.【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.8.【分析】根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【解答】解:将点P(5,3)向左平移4个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=4.故选:B.【点评】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.二.填空题(共6小题,满分18分,每小题3分)9.【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.10.【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【解答】解:因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20﹣6=14个,故答案为:14.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.11.【分析】根据图象的增减性来确定(m﹣2)的取值范围,从而求解.【解答】解:∵一次函数y=(m﹣2)x+1,若y随x的增大而增大,∴m﹣2>0,解得,m>2.故答案是:m>2.【点评】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.12.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答.【解答】解:6※3==1.故答案为:1.【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键.13.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm ),由勾股定理得=20(cm ), 则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm ).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.【分析】根据正比例函数的性质得到∠D 1OA 1=45°,分别求出正方形A 1B 1C 1D 1的面积、正方形A 2B 2C 2D 2的面积,总结规律解答.【解答】解:∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=()1﹣1,由勾股定理得,OD 1=,D 1A 2=,∴A 2B 2=A 2O =,∴正方形A 2B 2C 2D 2的面积==()2﹣1,同理,A 3D 3=OA 3=,∴正方形A 3B 3C 3D 3的面积==()3﹣1, …由规律可知,正方形A n B n ∁n D n 的面积=()n ﹣1,故答案为:()n ﹣1.【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D 1OA 1=45°,正确找出规律是解题的关键.三.解答题(共10小题,满分78分)15.【分析】(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.【解答】解:(1)∵a ===+,b ===﹣,∴ab =(+)×(﹣)=1,a +b =++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2 =10. 【点评】此题主要考查了分母有理化,正确得出有理化因式是解题关键.16.【分析】(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE 的度数.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∴AB==20,∵CE是中线,∴DE是斜边AB上的中线,∴DE=AB=10;(2)∵DF⊥CF,F是CF的中点,∴DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠DCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=57°,则∠BCE=19°.【点评】本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.17.【分析】(1)运用求平均数公式即可求出三人的平均成绩,比较得出结果;(2)将三人的总成绩按比例求出测试成绩,比较得出结果.(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.【解答】解:(1),,.∵73>70>68,∴甲将被录用;(2)综合成绩:4+3+1=8,,,,∵77.5>76.625>69.625,∴丙将被录用;(3)x=1,y=8或x=2,y=7或x=3,y=6或x=4,y=5时,乙被录用.(答案不唯一,写对一种即可)故答案为:1,8.【点评】本题考查了平均数和加权成绩的计算.平均数等于所有数据的和除以数据的个数.18.【分析】(1)先把A点坐标代入y=﹣x+b求出b=6,得到直线AB的解析式为y=﹣x+6,然后求自变量为0时的函数值即可得到点B的坐标;(2)利用OB:OC=3:1得到OC=2,C点坐标为(﹣2,0),然后利用待定系数法求直线BC的解析式;(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(﹣3,﹣3),然后根据三角形面积公式可计算出S △EBO =9,S △FBO =9,S △EBO =S △FBO .【解答】(1)解:把A (6,0)代入y =﹣x +b 得﹣6+b =0,解得b =6,所以直线AB 的解析式为y =﹣x +6,当x =0时,y =﹣x +6=6,所以点B 的坐标为(0,6);(2)解:∵OB :OC =3:1,而OB =6,∴OC =2,∴C 点坐标为(﹣2,0),设直线BCy =mx +n ,把B (0,6),C (﹣2,0)分别代入得,解得, ∴直线BC 的解析式为y =3x +6;(3)证明:解方程组得,则E (3,3),解方程组得,则F (﹣3,﹣3),所以S △EBO =×6×3=9,S △FBO =×6×3=9,所以S △EBO =S △FBO .【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.【分析】(1)直接利用勾股定理结合网格得出符合题意的答案;(2)直接利用勾股定理结合网格得出符合题意的答案.【解答】解:(1)如图1所示:正方形ABCD 即为所求;(2)如图2所示:三角形ABC即为所求.【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.20.【分析】(1)利用总人数乘对应的百分比求解即可;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数300即可.【解答】解:(1)D错误,理由:20×10%=2≠3;故答案为:D,2;(2)由题意可知,植树5棵人数最多,故众数为5,共有20人植树,其中位数是第10、11人植树数量的平均数,即(5+5)=5,故中位数为5;故答案为:5,5;(3)(4×4+5×8+6×6+7×2)÷20=5.3,∴300名学生共植树5.3×300=1590(棵).故答案为:1590.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由平行四边形的性质、等腰三角形的判定即可解决问题;【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.【点评】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.23.【分析】(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=AM=t,据此可得;(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.【解答】解:(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=2﹣t,故答案为:2﹣t.(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE==,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴S=•t•(4﹣2t+4﹣t)=﹣(t﹣)2+,当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.【点评】本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.24.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG ≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
2018-2019学年八下数学期中考试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:(本大题共8小题,每小题3分,共24分)1、十二边形的内角和为()A.1080°B.1360° C、1620° D、1800°2、在Rt△ABC中,∠ACB=90°,AC=CB,CD是斜边AB的中线,若AB=22,则点D到BC的距离为()A.1B.2C.2D.223、若点A(m,n)在第三象限,则点B(-m,n),在()A、第一象限B、第二象限C、第三名象限D、第四象限4、△ABC中,∠C=90°,AD为角平分线,BC=32,BD∶DC=9∶ 7, 则点D到AB的距离为( )A.18cmB.16cmC.14cmD.12cm5、已知点P (3k – 2,2k – 3 )在第四象限.那么k的取值范围是()A、23<k <32B、k<23C、k>32D、都不对6、菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补7、如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A、36oB、9oC、27oD、18o8、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2). B.(2,1). C.(2,2). D.(3,1).二、填空题:(本大题共8小题,每小题3分,共24分)9、如果点M(a-1,a+1)在x轴上,则a的值为10、ΔABC中,∠C=90°,AB=10,∠A=30°,则BC= ,AC=11、点A (3,-2)关于 x 轴对称的点是_____。
12、平行四边形ABCD 中,∠A=500,AB=30cm ,则∠B=____,DC=____ cm 。
13、若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为 cm 2。
14、已知Rt △ABC 中,斜边AB=10cm ,则斜边上的中线的长为______15、如图,有一个直角△ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,当AP= 时,才能使ΔABC ≌ΔPQA.16、如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P 的坐标是_____________.三、解答题(本大题共72分)17、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41) ,.以原点O 为对称中心,再画出与ABC △关于原点O 对称的111A B C △,并写出点1C 坐标. (本小题5分)18、已知:如图7,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
求证:∠CDF =∠ABE (本小题5分)PQC ABx CBA O xy19、已知:如下图,CD 、C ′D ′分别是Rt △ABC ,Rt △A ′B ′C ′斜边上的高,且CB=C ′B ′,CD=C ′D ′.求证:△ABC ≌△A ′B ′C ′.(本小题6分)20、如图:已知在△ABC 中,AB=AC ,D 为BC 上任意一点,DE ∥AC 交AB 于E , DF ∥AB 交AC 于F ,求证:DE+DF=AC (本小题6分)21、如图,直角三角形OAB 中,∠AOB =90°,∠A =60°∠xOA =30°,AB 与y 轴的交点坐标D 为(0,4)。
求A 、B 的坐标。
(本小题7分)22、如图,已知ΔABC 在坐标平面内的顶点C (2,0),∠ACB =90°,∠B =30°,AB =62,∠BCD =45°。
①求A 、B 的坐标;②求AB 中点M 的坐标。
(本小题7分)yxO DBAy xO E DCMBA·23、已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明. (本小题8分)24、如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.(本小题8分)25、如图(19),在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥AC.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.(本小题10分)26、一次数学活动课上,老师留下了这样一道题“任画一个△ABC,以BC的中点O为对称中心,作△ABC的中心对称图形,问△ABC与它的中心对称图形拼成了一个什么形状的特殊四边形?并说明理由.”于是大家讨论开了,小亮说:“拼成的是平行四边形”;小华说:“拼成的是矩形”;小强说:“拼成的是菱形”;小红说:“拼成的是正方形”;其他同学也说出了自己的看法……你赞同他们中的谁的观点?为什么?若都不赞同,请说出你的观点(画出图形),并说明理由(本小题10分)八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 计分答案 D A D C A B D B二、填空题:(本大题共8小题,每小题3分,共24分)9、__-1____ ,10、BC=__5____,AC= ___8___,11、__(3,2)____12、∠B=_1300___,DC=__30__ cm13、 16 3 cm214、__5____15、 10 16、___(2018,2)__________.三、解答题(本大题共72分)17、略18、证明:(1)∵ ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠DCF=∠BAE ,∵ AE=CF ,∴△ADF≌△CBE,∴∠CDF=∠ABE19、证明:∵CD⊥AB,C'D'⊥A'B' (已知)∴∠CDB=∠C'D'B'=90°.(垂直的意义)在Rt△CDB和Rt△C'D'B'中,CB=C'B',CD=C'D',(已知)∴Rt△CDB≌Rt△C'D'B'(HL),∴∠B=∠B',(全等三角形的对应角相等)∵△ABC,△A'B'C'都是直角三角形 (已知)∴∠ACB=∠A'C'B'=90°(直角三角形的意义)在△ABC和△A'B'C'中,∠B=∠B'CD=C'D'∠ACB=∠A'B'C'∴△ABC≌△A'B'C'(ASA)20、证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C , ∴DF=CF ,∴AC=AF+FC=DE+DF . 21、角DOA=60度,三角形DOA 为等边三角形,则OA=DA=4 所以AB=8,BO=2√3,因为角AOX=30度,则A(2√3,2) 因为锐角BOX=60度,则B(-2√3,6) 22、在RT △ABC 中,∠B =30°,AB =6√2,得AC =3√2,BC =6 由于,∠BCD =45°,则∠ACE =45°,则AE =EC =3,BD =CD =3√2 则A 点坐标(-1,3),B 点坐标(2+3√2,3√2) 则M 点坐标为(1/2+3√2/2,3/2+3√2/2) 23、解:猜想四边形ADCE 是矩形。
证明:在△A BC 中, AB=AC ,AD ⊥BC . ∴ ∠BAD=∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠.∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ ADC CEA ∠=∠=90°,∴ 四边形ADCE 为矩形.24、证明:∠ADE =∠1,∠CED =∠2,∠CDE =∠3 ∵AD ‖BC ∴∠1=∠2 又∵∠1=∠3 ∴∠2=∠3 ∴CE =CD 又∵CD =C'D ∴CE =C'D 又∵CE ‖C'D∴四边形CEC'D 是平行四边形 又∵CE =CD∴四边形CEC'D 是菱形25、解:(1)证明:∵BD ⊥DE ,CE ⊥DE , ∴∠ADB=∠AEC=90°, 在Rt △ABD 和Rt △ACE 中, ∵ab=ac,ad=ce , ∴Rt △ABD ≌Rt △ACE .∴∠DAB=∠EAC ,∠DBA=∠ACE .∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°, ∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE )=90°. ∴AB ⊥AC .(2)AB ⊥AC .理由如下:同(1)一样可证得Rt △ABD ≌Rt △ACE . ∴∠DAB=∠ECA ,∠DBA=∠EAC , ∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°, ∴AB ⊥AC .26、解:不赞同他们的观点,因为△ABC 形状不确定,所以应分情况讨论.(1)若△ABC 中,AC AB ≠且︒≠∠90BAC 时,如图1、图2. △ABC 与它的中心对称图形拼成了一个平行四边形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∴四边形ABDC 是平行四边形.(2)若△ABC 中,AC AB =且︒≠∠90BAC 时,如图3、图4. △ABC 与它的中心对称图形拼成一个菱形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB =∴四边形ABDC 是菱形.(3)若△ABC 中,AC AB ≠且︒=∠90BAC 时,如图5,△ABC 与它的中心对称图形拼成一个矩形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB ≠︒=∠90BAC ,∴四边形ABDC 是矩形.(4)若△ABC 中,AC AB =且︒=∠90BAC 时,如图6,△ABC 与它的中心对称图形拼成一个正方形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB =,︒=∠90BAC ,∴四边形ABDC 是正方形..2018-2019学年八下数学期中考试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。