18.2.1矩形(1)测考试试题1
- 格式:doc
- 大小:141.50 KB
- 文档页数:4
18.2.1矩形同步练习一.选择题1.如图,要使平行四边形ABCD成为矩形,需要添加的条件是()A.∠A+∠B=180°B.∠B+∠C=180°C.∠A=∠B D.∠B=∠D2.如图,矩形ABCD的长BC=20cm,宽AB=15cm,∠ABC的平分线BE交AD于点E,则AE、ED的长分别为()A.15cm和5cm B.10cm和5cm C.9cm和6cm D.8cm和7cm3.取一张长方形纸片,过长方形的任意一个顶点将纸片折叠(只折一次),那么折痕和该顶点所在的长方形的两边所成角的关系是()A.互余B.互补C.相等D.不确定4.如图,在矩形ABCD中,AB=2,对角线AC与BD相交于点O,AE⊥BD,垂足为E.若BE =EO,则AD的长是()A.6B.2C.3D.25.如图,在矩形ABCD中,对角线BD的垂直平分线MN交AD于点M,交BC于点N,连接BM、DN.若AB=4,AD=8,则MD的长为()A.3B.4C.5D.66.如图,E、F分别是矩形ABCD边上的两点,设∠ADE=α,∠EDF=β,∠FDC=γ,若∠AED =α+β,下列结论正确的是()A.α=βB.α=γC.α+β+2γ=90°D.2α+γ=90°7.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD、BC于E、F两点.若AC=2,∠DAO=30°,则FC的长度为()A.1B.2C.D.8.如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C 处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°9.如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图①);固定△ADC,把△ABC沿AD方向平移(如图②),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A.1B.1.5C.2D.0.8或1.210.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AE=AD;②∠AED=∠CED;③BH=HF;④CF=DF;⑤BC﹣CF=2HE,其中正确的有()A.5个B.4个C.3个D.2个二.填空题11.如图在矩形ABCD对角线AC,BD相交于点O,若∠ACB=30°,AB=2,则BD的长为.12.如图,矩形ABCD中,AD=2,AB=3,过点A、C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是.13.如图,在矩形ABCD中,AB=8,AD=6,点E,F都在CD上,点P在AD上,连接PE,若EF=PE,∠FBP=∠ABP,2∠APB+∠DPE=180°,则线段AP的长为.14.如图,在矩形ABCD中,点E、F分别在边AD、AB上,△CEF为等腰直角三角形,CE=EF,∠CEF=90°,∠BAD的平分线交CF于点H,连接BH.若BH=,AF=,则△ABH的面积为.15.如图,矩形ABCD,O为对角线交点,以AO,AB为邻边作平行四边形ABC1O,AC1交OB 于点O1;以AO1,AB为邻边作平行四边形ABC2O1…,若S矩形ABCD=a,则=.三.解答题16.如图,点E在矩形ABCD的边BC上,延长EB到点F,使BF=CE,连接AF.求证:AD =EF.17.如图,在平行四边形ABCD中,P是AB上一点(不与点A,B重合),CP=CD,过点P作PQ⊥CP,交AD于点Q,连接CQ,∠BPC=∠AQP.(1)求证:四边形ABCD是矩形;(2)当AP=3,AD=9时,求AQ和CQ的长.参考答案一.选择题1.解:A、当∠A+∠B=180°时,不可判断平行四边形ABCD成为矩形;B、当∠B+∠C=180°时,不可判断平行四边形ABCD成为矩形;C、当∠A=∠B时,∠A=∠B=90°,可判定平行四边形ABCD是矩形;D、当∠B=∠D时,不可判断平行四边形ABCD是矩形;故选:C.2.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=20cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∴∠AEB=∠ABE,∴AB=AE=15cm,∴DE=AD﹣AE=5cm,故选:A.3.解:如图所示:∵四边形ABCD是长方形,∴∠BAD=90°,∵AE是任意一条折痕,∴∠BAE+∠DAE=90°,即折痕和该顶点所在的长方形的两边所成角的关系是互余;故选:A.4.解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∴∠ADE=90°﹣∠ABD=30°,∴AD=AB=2,故选:B.5.解:∵对角线BD的垂直平分线MN交AD于点M,交BC于点N,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,∴MD长为5.故选:C.6.解:∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵∠ADE=α,∠EDF=β,∠FDC=γ,∴α+β+γ=90°,∵∠AED+α=90°,∠AED=α+β,∴2α+β=90°,∴α+β+γ=2α+β,∴α=γ,故选:B.7.解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=30°,∴∠AOD=120°,∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=BD=AC=,∴OF=tan30°×BO=1,∴CF=1,故选:A.8.解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=50°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=20°.故选:B.9.解:如图,设A′B′交AC于点E,tan∠DAC==,设AA′=x,A′D=2﹣x,∵AD=2,DC=3,∴=,∴A′E=x,∵两个三角形重叠部分的面积是S=AE×A′D=x(2﹣x)=﹣(x﹣1)2+,解当x=1时,阴影部分的面积最大,AA′=1,故选:A.10.解:①设AB=a,则AD=a,∵AE平分∠BAD,∴∠BAE=45°,∴BA=BE.∴在Rt△ABE中,AE=a,∴AE=BE.①正确;②∵DH⊥AH,∠DAE=45°,AD=a,∴DH=AH=a.∴DH=DC.根据到角两边距离相等的点在角的平分线上定理可知DE平分∠AEC,即②∠AED=∠CED 正确;③∵AH=AB=a,∴∠ABH=∠AHB.∵AB∥CD,∴∠ABF+∠DFB=180°.又∠AHB+∠BHE=180°,∴∠BHE=∠HFD.∠HEB=∠FDH=45°,又BE=DH=a,∴△BHE≌△HFD(AAS),∴BH=HF,③正确;④由△BHE≌△HFD得到HE=DF,HE=AE﹣AH=,则CF=a﹣()=2a﹣,∴,即CF=DF,∴④错误;⑤BC=a,CF=2a﹣,HE=,∴BC﹣CF=2HE,∴⑤正确;综上所述,正确的是①②③⑤共4个.故选:B.二.填空题11.解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故答案为:4.12.解:∵四边形ABCD是矩形,∴AB∥CD,∴∠F AH=∠AED,∵∠ADE=∠AHF=∠DAF=90°,AD=2,FH=2,∴AD=FH,∴△ADE≌△F AH(AAS),∴AF=AE,∵AE∥CF,AF∥EC,∴四边形AECF是平行四边形,∵AF=AE,∴四边形AECF是菱形,设DE=x,则BF=x,CE=CF=3﹣x,在Rt△BCF中,(3﹣x)2=x2+22,解得x=;故答案为:.13.解:分别延长PE、BF,交于点G,∵四边形ABCD是矩形,AB=8,AD=6,∴∠A=∠C=∠D=90°,BC=AD=6,AB=CD=8,∵2∠APB+∠DPE=180°,∴∠APB=∠GPB.在△P AB和△PGB中,,∴△P AB≌△PGB(ASA),∴PG=P A,∠A=∠G=90°,在△DPG和△EFG中,,∴△DPE≌△GFE(AAS),∴DP=DG,∴PE+GE=DE+EF,即PG=DF,∴PG=DF=P A,即CF=8﹣DF=8﹣AP,∴GF=DP=AD﹣AP,即BF=8﹣GF=8﹣(6﹣AP)=2+AP,∵∠C=90°,∴BC2+CF2=BF2,即62+(8﹣AP)2=(2+AP)2,∴AP=.故答案为:.14.解:如图,连接EH,延长AH交DC的延长线于N,∵∠AEF+∠AFE=90°,∠AEF+∠DEC=90°,∴∠AFE=∠DEC,在△AEF和△DCE中,,∴△AEF≌△DCE(SAS),∴AE=CD,DE=AF=,∴AE=CD=AB,∵AH平分∠BAD,∴∠BAH=∠DAH=45°,∵∠ADC=90°,∴∠DAN=∠N=45°,∴AD=DN,∴AF=CN,在△AFH和△NCH中,,∴△AFH≌△NCH(AAS),∴FH=HC,又∵∠ABC=90°,∴BH=FH=HC=,∴CF=2,设BF=x,则AB=+x,∴AD=2+x=BC,∵CF2=BF2+BC2,∴40=x2+(2+x)2,∴x=2,(负值舍去),∴BF=2,BC=4,∴BF=2AF,∴S△AFH=S△BFH,∵S△BFC=×BF×BC=×2×4=8,∴S△BFH=4,S△AFH=2,∴S△ABH=2+4=6,故答案为:6.15.解:∵四边形ABCD是矩形,四边形ABC1O是平行四边形,∴S△ABO=S矩形ABCD,S△ABO=S,∴S=S矩形ABCD=,同理可得:平行四边形ABC2O1的面积=,平行四边形ABC3O2的面积=,…∴平行四边形ABC2020O2019的面积=.故答案为:.三.解答题16.证明:∵四边形ABCD是矩形,∴AD=BC,∵EF=BF+BE,∵BC=CE+BE,BF=CE,∴EF=BC,∴AD=EF.17.(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL),∴DQ=PQ,设AQ=x,则DQ=PQ=12﹣x,在Rt△APQ中,AQ2+AP2=PQ2,∴x2+32=(9﹣x)2,解得:x=4,∴AQ的长是4.设CD=AB=CP=y,则PB=y﹣3,在Rt△PCB中,根据勾股定理列方程,求出y=15.在Rt△CDQ中,CQ==5.。
18.2 特殊的平行四边形18.2.1 矩形基础闯关全练1.(2018山东淄博高青一模)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.(2018广西南宁马山期末)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分3.如图18-2-1-1.在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.1.4.(2018天津河西三中期中)如图18-2-1-2,在矩形ABCD中,AC、BD交于点O,AB=1,∠AOB=60º,则AD=_______.5.如图18-2-1-3,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为_______.6.数学课上,老师要同学们判断一个四边形门框是不是矩形.下面是某合作小组的4位同学拟订的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C .测量一组对角是否都为直角D.测量三个角是不是直角7.如图18-2-1-4,已知四边形ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB=CDB .AC=BDC .当∠ABC=90º时,它是矩形D.AC 与BD 互相平分能力提升全练1.(2018四川内江中考)如图18-2-1-5,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 与AD 交于点F ,已知∠BDC=62º.则∠DFE 的度数为( )A .31ºB .28ºC .62ºD .56º2.(2018四川成都中考)如图18-2-1-6,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于21AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为_______.3.(2018四川攀枝花中考)如图18-2-1-7,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足ABCD 矩形PAB △S 31=S ,则点P 到A ,B 两点的距离之和PA+PB 的最小值是_______.三年模拟全练一、选择题1.(2018湖北宜昌东部期中,10,★★☆)八年级(3)班同学要在广场上布置一个矩形的花坛,如图18-2-1-8.计划用红花摆成两条对角线.如果一条对角线用了49盆红花,还需要从花房运来红花()A.48盆B.49盆C.50盆D.51盆2.(2018重庆巴蜀期末,8,★☆☆)如图18-2-1-9,已知在矩形ABCD中,AC与BD相交于D,DE平分∠ADC交BC于E,∠BDE=15º,则∠COE的度数为()A.75ºB.85ºC.90ºD.65º3.(2018江西萍乡期末,9,★☆☆)如果平行四边形的四个内角的平分线能够围成一个四边形,那么这个四边形一定是()A.梯形B.矩形C.菱形D.正方形4.(2018四川资阳期末,9,★★☆)如图18-2-1-10.在△ABC中,∠C=90º,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.1.2B.2.4C.2.5D.4.8二、填空题5.(2017重庆荣昌盘龙中学期中,17,★☆☆)如图18-2-1-11,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,可添加的条件是___________.6.(2018陕西西安东仪中学期末,13,★★☆)如图18-2-1-12,在Rt△ABC中,∠ACB=90º,点D、E、F分别为AB、AC、BC的中点,若CD=5.则EF的长为_________.三、解答题7.(2018安徽桐城期末,20,★★☆)如图18-2-1-13,在△ABC中,D是边BC上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.五年中考全练一、选择题1.(2018上海中考,5,★☆☆)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠BB.∠A=∠CC.AC=BDD.AB⊥BC二、填空题2.(2018福建中考,13,★☆☆)如图18-2-1-14,在Rt△ABC中,∠ACB=90º,AB=6,D 是AB的中点,则CD=________.3.(2018湖南株洲中考,14,★☆☆)如图18-2-1-15,矩形ABCD的对角线AC与BD相交于点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为________.4.(2018黑龙江龙东中考,3,★☆☆)如图18-2-1-16,在平行四边形ABCD中,添加一个条件________,使平行四边形ABCD是矩形.5.(2018广西贵港中考,16,★★☆)如图18-2-1-17,将矩形ABCD折叠,折痕为EF,BC 的对应边B′C′与CD交于点M,若∠B′MD=50º,则∠BEF的度数为________.三、解答题6.(2018山东青岛中考,21,★★☆)如图18-2-1-18,□ABCD中,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120º,判断四边形ACDF的形状,并证明你的结论.核心素养全练1.阅读以下材料,然后解答下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,那么称这样的矩形为三角形的“友好矩形”,如图18-2-1-19①所示,矩形ABEF为△ABC的“友好矩形”,显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”:(2)如图18-2-1-19②,若△ABC为直角三角形,且∠C=90º.在图18-2-1-19②中画出△ABC 的所有“友好矩形”,并比较这些矩形面积的大小;(3)若△ABC是锐角三角形,且BC>AC>AB,在图18-2-1-19③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.2.长与宽之比为2:1的矩形纸片称为标准纸,请思考并解答下列问题:(1)将一张标准纸ABCD(AB<BC)对开,如图18-2-1-20所示,所得的矩形纸片ABEF是标准纸,请给予证明.(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上的点F处,折痕为AE(如图18-2-1-21甲);第二步:沿过D点的直线折叠,使C点落在AD边上的点N处,折痕为DG(如图18-2-1-21乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图18-2-1-21丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是不是标准纸,请说明理由.(3)不难发现:将一张标准纸按如图18-2-1-22所示的方式一次又一次对开后,所得的矩形纸片都是标准纸,现有一张标准纸ABCD ,AB=1,BC=2,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2018次对开后所得标准纸的周长.18.2特殊的平行四边形18.2.1 矩形1.D 添加AC=BD ,∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形的判定定理“对角线相等的平行四边形是矩形”,可知四边形ABCD 是矩形,故选D .2.C 矩形的对角线相等,而平行四边形的对角线不一定相等.3.A 因为矩形的对角线相等且互相平分,OA=2,所以AC=20A=4,BD=AC ,所以BD 的长为4.4.答案 3解析 ∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO,∠BAD=90º,∴AO=BO,∵∠A OB=60º,∴AO=BO=AB=1.∴BD=2,∴AD=3122222=-=-AB BD .5.答案10解析 ∵AD ⊥BC ,E 为AC 的中点,∴DE 是Rt △ADC 斜边上的中线,∴AC=2DE=10.又AB=AC,∴ AB=10.6.D 根据有三个角是直角的四边形是矩形可以判定此四边形是矩形.7.B 因为四边形ABCD 是平行四边形,所以AB=CD ,AC 与BD 互相平分,当∠A BC=90º时,它是矩形,所以选项A 、C 、D 中结论正确,故选B .1.D ∵四边形ABCD 为矩形,∴AD ∥BC ,∠A DC=90º,∴∠FDB=90º-∠B DC=90º-62º=28º,∵AD ∥BC,∴ ∠C BD =∠FDB=28º,∵矩形ABCD 沿对角线BD 折叠,∴∠FBD=∠CBD=28º,∴∠DFE=∠FBD+∠FDB=28º+28º=56º.2.答案30解析如图,连接AE ,由作图可知MN 垂直平分AC ,∴EA=EC=3,∵四边形ABCD 是矩形,∴∠D =90º.∴在Rt △ADE 中,AD=5232222=-=-DE AE , ∴在Rt △ADC 中,AC=()()303252222=++=+DC AD .3.答案42解析 如图,设点P 到AB 的距离是h ,则21AB •h=31AB •AD ,即21×4h=31×4×3,∴h=2,可见点P 是直线EF(EF ∥AB,且EF 与AB 间的距离是2)上的动点,作点B 关于EF 的对称点B ′,连接AB ′交EF 于点P ,则此时PA+PB 的值最小,最小值为AB ′=24′22=+BB AB .一、选择题1.A ∵矩形的对角线互相平分且相等,∴一条对角线用了49盆红花,中间一盆为对角线交点,∴还需要从花房运来红花49-1=48盆,故选A .2.A 由题意知∠C DE=∠CED=45º,又∠B DE=15º,所以∠CDO=60º,由矩形的特征“对角线相等且互相平分”可知OD=OC ,故△OCD 是等边三角形,从而有OC=OD=CE ,∠DCO=60º,∠OCB=30º,进而求得∠COE=230-180=75º. 3.B 因为“平行四边形的两组时角分别相等”“邻角互补”,所以相邻两个角的平分线组成的角是直角,即平行四边形的四个内角的平分线围成的四边形的四个角都是直角,是矩形.故选B .4.D 连接PC ,∵PE ⊥CA,PF ⊥BC ,∴∠PEC =∠PFC =∠C =90º,∴四边形ECFP 是矩形,∴EF=PC ,∴当PC 最小时,EF 也最小,又∵当CP ⊥AB 时,PC 最小,且AC=6,BC=8,∴由勾股定理得AB=10.因此由等面积法,得PC=1086⨯=⋅AB BC AC =4.8,故选D . 二、填空题5.答案EF ⊥FC(答案不唯一) 解析 连接AC ,∵E ,F 分别是边AB ,BC 的中点,∴EF ∥AC ,EF=21AC ,同理,HG ∥AC,HG=21AC ,∴EF ∥HG 、EF=HG 、∴四边形EFGH 是平行四边形,要使四边形EFGH 是矩形,则需有一个角为直角,如EF ⊥FG .答案不唯一.6.答案5解析 根据直角三角形斜边的中线等于斜边的一半,得AB=2CD=10.根据三角形的中位线性质,可得EF=21AB ,因此EF=5. 三、解答题7.解析 (1)证明:由题意知AF ∥BD,∴∠AFE =∠ECD ,∵E 为AD 的中点,∴AE=DE ,又∠A EF =∠D EC ,∴△AEF ≌△DEC(AAS),∴AF=CD ,又AF=BD ,∴BD=CD.(2)四边形AFBD 为矩形,证明:∵AB=AC ,由(1)知BD=CD ,∴AD ⊥BC(三线合一),即∠A DB=90º.又∵AF ∥BD ,AF=BD ,∴四边形AFBD 为平行四边形,∴四边形AFBD 是矩形,一、选择题1.B ∵∠A=∠B,AD ∥BC,∴∠A =∠B=90º,故A 选项能判定:∵∠A=∠C 是一组对角相等,任意平行四边形都具有的性质,故B 选项不能判定:∵对角线相等的平行四边形是矩形,故C 选项能判定,∵AB ⊥B C,∴∠B=90º,故D 选项能判定.故选B .二、填空题2.答案3解析 ∵∠A CB=90º,D 为AB 的中点,∴CD=21AB=21×6=3. 3.答案 25 解析 ∵四边形ABCD 是矩形,∴BD=AC=10,OD=21BD ,∴OD=5,∵P,Q 分别为AO 、AD 的中点,∴PQ=21OD=25. 4.答案AC=BD 或∠A BC=90º或∠B CD=9025或∠CDA=9025或∠DAC=9025或AB ⊥BC 等(答案不唯一)解析 根据矩形的判定可知:添加AC=BD 或∠A BC=90º或∠B CD=90º或∠C DA=90º或∠DAC=90º或AB ⊥BC 等条件后可使平行四边形ABCD 是矩形.5.答案70º解析 依题意得∠B=∠B′=∠B′MD+∠B′EA=90º,所以∠B′EA=90º-50º=40º.所以∠B ′EB=180º-∠B′EA=140º,又∠B ′EF=∠BEF ,所以∠BEF=21∠B ′EB=70º. 三、解答题6.解析(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD,∴∠AFC =∠D CF,∵G 为AD 的中点,∴GA=GD ,又∠A GF=∠DGC ,∴△AGF ≌△DGC(AAS),∴AF=CD,∴AB=AF.(2)四边形ACDF 是矩形,证明:∵AF=CD ,AF ∥CD ,∴四边形ACDF 是平行四边形.∴四边形ABCD 是平行四边形,∴∠B AD =∠B CD=120º,∴∠FAG=60º,∵AB=AC=AF ,∴△AGF 是等边三角形,∴AG=GF ,∵△AGF ≌△DGC,∴ FG=CG=21CF, ∵AG=GD=21AD ,∴AD=CF ,∴四边形ACDF 是矩形. 1.解析 (1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图,共有两个“友好矩形”,分别为矩形BCAD 、矩形ABEF .易知,矩形BCAD 、ABEF 的面积都等于△ABC 面积的2倍,所以,Rt △ABC 的两个“友好矩形”的面积相等.(3)如图,共有3个“友好矩形”,分别为矩形BCDE 、矩形CAFG 和矩形ABHK ,其中矩形ABHK 的周长最小.证明如下:易知,这三个矩形的面积相等,设其面积为S ,矩形BCDE ,CAFG 及ABHK 的周长分别为L ₁,L ₂,L ₃,BC=a ,CA=b ,AB=c ,则L ₁=a S 2+2a,L ₂=b S 2+2b,L ₃=cS 2+2c, L ₁-L ₂=(a S 2+2a)-(b S 2+2b)=-ab S 2(a-b )+2(a-b)=2(a-b)•ab S ab ,∵ab>S,a >b,∴L ₁-L ₂>0,即L ₁>L ₂,同理可得,L ₂>L ₃,∴L ₁>L ₂>L ₃,∴L ₃最小,即矩形ABHK 的周长最小.2.解析(1)证明:∵矩形纸片ABCD 是标准纸,且AB <BC , ∴2=ABBC . 由对开的含义知AF=21BC ,∴222221==⋅==AC AB BC AB AF AB , ∴矩形纸片ABEF 是标准纸.(2)是标准纸.理由如下:设AB=CD=a ,a >0.由图形折叠可知△ABE ≌△AFE ,∴∠BAE=∠FAE,∴∠DAE=21∠B AD=45º, 由图形折叠知DG ⊥EM ,∴∠A GD=90º,∴△ADG 是等腰直角三角形,又由图形折叠知DG=CD=a ,∴在Rt △ADG 中,AD=a DG AG 222=+, ∴22==aa AB AD .∴矩形纸片ABCD 是标准纸,(3)∴第5次对开后所得的标准纸的周长为422+, 第2018次对开后所得的标准纸的周长为1008221+.。
18.2.1矩形测试题、选择题1.若矩形对角线相交所成钝角为120 °,短边长3.6cm,则对角线的长为( ).A.3.6cmB.7.2cmC.1.8cmD.14.4cm 2.已知AC 为矩形ABCD 的对角线,则图中∠ 1 与∠2 一定不相等的是( )二、填空题6.矩形ABCD 中,对角线AC、BD 相交于O,∠ AOB=60°,AC=10cm,则AB= _____________ c m,BC =_____ c m.7.如图,四边形ABCD 是一张矩形纸片,AD=2AB,若沿过点D 的折痕DE 将A 角翻折,使点A 落在BC 上的A1处,则∠ EA1B=_________ °。
3.如图,在矩形ABCD 中,AB<BC ,AC ,BD 相交于点O,则图中等腰三角形的个数是(A.8B. 6C.44.已知直角三角形ABC 的周长为A.5B. 6C. 714, 斜边AB 上的中线D.8CD 长为3,则直角三角形ABC 的面积为5.如图,在Rt△ ABC 中,CD 是斜边AB 上的中线,若∠A=20°,则∠ BDC= ()A.30B.40C.45D.2D.608. 如图,在△ABC 中,∠C= 90 °,AB=10 ,A B C C 34,过AB 边上一点PF丄BC于点F,则EF的最小值是9.如图,矩形OABC 中,OA 在x轴上,OC在y轴上,且OA = 2,AB对折得到△AB'C,AB'交y轴于D点,则D 点的坐标为 ___________ .三、解答题10.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点的延长线于F,且AF=DC ,连结CF.(1)求证:D是BC的中点;(2) 如果AB=AC,试猜测四边形ADCF 的形状,并证明你的结论.11.如图,矩形ABCD 中,AB=6cm,BC=8cm,若将矩形折叠,使点EF 的长。
18.2.1矩形同步习题一.选择题1.矩形具有而一般平行四边形不具有的性质是()A.对角线互相平分B.对角相等C.对边相等D.对角线相等2.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD的长为()A.5B.C.D.3.若直角三角形斜边上的高和中线长分别是4cm,6cm,则它的面积是()A.12cm2B.24cm2C.15cm2D.48cm24.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,DE=3BE.求AE的长()A.B.3C.D.5.如图,矩形ABCD的对角线AC、BD交于点O,M、N分别为BC、OC的中点,AB=6,∠ACB=30°则MN的长为()A.3B.4C.5D.66.如图所示,矩形ABCD中,BC=2AB,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°7.如图,矩形ABCD的对角线AC、BD相交于点O,E是边BC的中点,AO=,AD=4,则OE的长为()A.1B.C.2D.8.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2B.4.5C.5.2D.5.59.如图,长方形ABCD中,F是BC上(不与B、C重合)的任意一点,图中面积相等的三角形有()A.3对B.4对C.5对D.6对10.如图,矩形ABCD中,∠BOC=120°,BD=12,点P是AD边上一动点,则OP的最小值为()A.3B.4C.5D.6二.填空题11.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠OAD=55°,则∠OBA的度数为.12.如图,在矩形ABCD中,AC,BD交于点O,M,N分别为AB,OA的中点.若MN=2,CD=4,则∠ACB的度数为.13.如图,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC 沿OB折叠,点C落在点D处,则点D的坐标为.14.如图,点E是矩形ABCD内任一点,若AB=4,BC=7.则图中阴影部分的面积为.15.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD 于F,则PE+PF的值为_____.三.解答题16.如图,在矩形ABCD中,点F是BC边上一点,DE⊥AF于E,且DE=DC,求证:△ABF ≌△DEA.17.如图,矩形ABCD中,AB=1,BC=2,点E在AD上,点F在BC边上,FE平分∠DFB.(1)判断△DEF的形状,并说明理由;(2)若点F是BC的中点,求AE的长.18.如图,已知E是矩形ABCD一边AD的中点,延长AB至点F,连接CE,EF,CF,得到△CEF.且CD=1,AF=2,CF=3.(1)求BC的长;(2)求证:CE⊥EF.参考答案一.选择题1.解:A、矩形、平行四边形的对角线都是互相平分的.,故本选项不符合;B、矩形、平行四边形的对角都是相等的,故本选项不符合;C、矩形、平行四边形的对边都是相等的,故本选项不符合;D、矩形的对角线相等,平行四边形的对角线不一定相等,故本选项符合;故选:D.2.解:∵矩形ABCD中,两条对角线AC与BD相交于点O,OA=2,∴AC=2AO=4,又∵AB=3,∠ABC=90°,∴BC==,∴AD=BC=,故选:D.3.解:∵直角三角形斜边上中线长6cm,∴斜边=2×6=12(cm),∴面积=×12×4=24(cm2).故选:B.4.解:∵DE=3BE,∴BD=4BE,∵四边形ABCD是矩形,∴BO=DO=BD=2BE,∴BE=EO,又∵AE⊥BO,∴AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠ADB=30°,又∵AE⊥BD,∴AE=AD=3,故选:B.5.解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∠ABC=90°,∵∠ACB=30°,∴∠BAC=60°,∴△ABO是等边三角形,∴BO=AB=6,∵M、N分别为BC、OC的中点,∴MN=BO=3,故选:A.6.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=∠ADC=90°,∵BC=2AB,AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠DAE=∠AEB=30°,∵AD=AE,∴∠ADE=75°,∴∠EDC=15°,故选:D.7.解:∵四边形ABCD是矩形,∴AO=CO,AC=2AO=2,∠ADC=90°,∴CD===2,∵E是边BC的中点,∴OE是△BCD的中位线,∴OE=CD=1,故选:A.8.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.9.解:∵四边形ABCD是矩形,∴AD∥BC,S△ABD=S△BCD=S矩形ABCD,∴S△ABD=S△AFD=S矩形ABCD,S△ABF=S△BFD,∴S△ADF=S△BCD,S△ABE=S△DEF,故选:C.10.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD=BD=6,∵∠BOC=120°=∠AOD,∴∠OAD=∠ODA=30°,当OP⊥AD时,OP有最小值,∴OP=OD=3,故选:A.二.填空题11.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴∠DAB=90°,DB=AC,OD=OB=OA=OC,∵∠OAD=55°,∴∠ODA=∠OAD=55°,∴∠OBA=90°﹣∠ADB=90°﹣55°=35°,故答案为:35°.12.解:∵四边形ABCD是矩形,∴AB=CD=4,AO=CO,BO=DO,AC=BD,∴AO=BO,∵M,N分别为AB,OA的中点,∴BO=2MN=4,∴AO=BO=AB=4,∴△ABO是等边三角形,∴∠BAC=60°,∴∠ACB=30°,故答案为:30°.13.解:设BD与OA交于点E,作DF⊥OA于点F,∵点A的坐标为(4,0),点C的坐标为(0,2),∴OC=2,OA=4,∵四边形ABCD是矩形,∴BC∥OA,∴∠CBO=∠AOB,由翻折变换的性质可知,∠DBO=∠CBO,∴∠OBD=∠AOB,∴BE=OE,在Rt△EAB中,设BE=OE=x,则AE=4﹣x,由勾股定理得22+(4﹣x)2=x2,解得x=,即BE=,∴OE=BE=,在Rt△ODE中,OD=OC=2,DE=BD﹣BE=4﹣=,由OE•DF=OD•DE得וDF=×2×,∴DF=,在Rt△ODF中,由勾股定理得OF2=OD2﹣DF2=22﹣()2=,∴OF=,∴点D的坐标为(,﹣),故答案为:(,﹣).14.解:∵四边形ABCD是矩形,∴AD=BC=7,设两个阴影部分三角形的底为AD,BC,高分别为h1,h2,则h1+h2=AB,∴S△EAB+S△ECD=AD•h1+BC•h2=AD(h1+h2)=AD•AB=矩形ABCD的面积=×7×4=14;故答案为:14.15.解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=14S矩形ABCD=14×6×8=12,在Rt△BAD中,由勾股定理得:BD=22226810 AB AD+=+=,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,PE+PF=24 5,故答案为:24 5.三.解答题16.证明:如图,连接DF,∵四边形ABCD是矩形,∴DC⊥CF,又∵DE=DC,DE⊥AF,∴DF平分∠CFE,∴∠CFD=∠DFE,∵CB∥AD,∴∠CFD=∠ADF,∠AFB=∠DAE,∴∠DF A=∠ADF,∴AF=AD,在△ABF和△DEA中,,∴△ABF≌△DEA(ASA).17.解:(1)△DEF是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC,∠C=90°,∴∠BFE=∠DEF,∵FE平分∠DFB,∴∠BFE=∠DFE,∴∠DEF=∠DFE,∴DE=DF,∴△DEF是等腰三角形;(2)∵AB=1,BC=2,∴CD=1,AD=2,∵点F是BC的中点,∴FC==1,Rt△DCF中,∠C=90°,∴DF=,∴DE=DF=,∴AE=AD﹣DE=2﹣.18.(1)解:∵四边形ABCD是矩形,CD=1,∴AB=1,∠ABC=∠FBC=90°,∵AF=2,∴BF=1,∵Rt△CBF中,∠FBC=90°,BF=1,CF=3,∴根据勾股定理得CF2=BC2+BF2,∴BC===,∴BC的长是;(2)证明:矩形ABCD中,AD=BC=,∵E是AD的中点,∴AE=DE=,∵Rt△AEF中,∠A=90°,AE=1,AF=2,∴根据勾股定理得,EF==,∵Rt△CDE中,∠D=90°,CD=1,DE=1,∴根据勾股定理得,EC==,∵△CEF中,EC=,EF=,CF=3,∴CE2+EF2=CF2,∴△CEF是直角三角形,∴CE⊥EF.。
人教版数学八年级下册《18.2.1 矩形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若矩形的邻边长分别是,,则的长是A.B.C.D.2.如图,矩形的对角线,相交于点,是的中点,连接若,,则对角线的长为A.B.C.D.3.在数学活动课上,老师和同学们想判断一个四边形门框是否为矩形,下面是某合作学习小组的位同学拟定的方案,其中正确的是A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量四边形的三个角是否都为直角4.已知平行四边形中,下列条件:;;;平分,其中能说明平行四边形是矩形的是A.B.C.D.5.如图,在中,点,分别是边,的中点,点是线段上的一点.连接,,,且,,则的长是A.B.C.D.6.如下图,在中,,点,点分别是,的中点,是斜边上一点,添加下列条件可以使四边形成为矩形的是A.B.C.D.7.如图,四边形是矩形,,,点在第二象限,则点的坐标是A.B.C.D.(7) (8)8.如图,在中,,点、、分别是边、、的中点,若,则的值为A.B.C.D.9.如图,在矩形纸片中,,,将其折叠,使点与点重合,折痕为,则的长为A.B.C.D.(9)(10)10.如图,中,,,,是上一动点,过点作于点,于点,连接,则线段的最小值是A.B.C.D.二、填空题11.如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为________.(11)(13)12.在四边形中,对角线,交于点,从;;;;;,这六个条件中,可选取三个推出四边形是矩形,如四边形是矩形.请再写出符合要求的两个组合:________________,________________.13.如下图,延长矩形的边至点,使,连接,若,则__________14.如图,在矩形中,是边上一点,,,是边的中点,,则______ .15.如图,在矩形中,,,是边一个动点,将沿对折成,则线段长的最小值为______.(14) (15)三、解答题16.如图,已知矩形,过点作交的延长线于点求证:.17.已知:如图,四边形是平行四边形,延长至点,使,连接、、,与交于点.求证:四边形是平行四边形;若求证:四边形是矩形.18.如图,矩形中,,,点是对角线的中点,过点的直线分别交、边于点、.求证:四边形是平行四边形;当时,求的长.19.如图,,是的中点,,.求证:四边形是矩形;若,,是上一点,且,求的长.20.如图,在中,是边上的一个动点,过点作直线,交的平分线于点,交的外角的平分线于点.求证:若,,求的长连接,,当点在边上运动到什么位置时,四边形是矩形请说明理由.参考答案一、选择题1-10二、填空题11、12、;13、14、15、三、解答题16、证明:四边形是矩形,,.又,四边形是平行四边形...17、证明:▱中,且,又,,,四边形是平行四边形;▱中,,,又,,,,又平行四边形中,,,平行四边形是矩形.18、证明:四边形是矩形,,,又因为,,≌,,又因为,四边形是平行四边形;解:,四边形是平行四边形四边形是菱形,,,,设,则在中,根据勾股定理,有,解之得:,,在中,根据勾股定理,有,,在中,根据勾股定理,有,,.19、证明:因为,所以是等腰三角形.因为是中点,所以,因为,所以因为,所以四边形是平行四边形.又因为,所以四边形是矩形;解:在中,,,,所以因为于,所以,,解得.20、证明:如图所示,交的平分线于点,交的外角平分线于点,,,,,,,,,,;解:,,,,,,;解:当点在边上运动到中点时,四边形是矩形.理由如下:当为的中点时,,,四边形是平行四边形,,平行四边形是矩形.。
人教版 八年级数学下册 18.2.1 矩形 培优练习(含答案)1.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AD =2,则AC 的长是( )A .2B .4C .23D .432.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形3.下列命题是假命题的是( ) A.不在同一直线上的三点确定一个圆 B.矩形的对角线互相垂直平分 C.正六边形的内角和是720° D.角平分线上的点到角两边的距离相等4.矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( )cm . A.12 B.10 C.7.5 D.55.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB 。
添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.BE ⊥DCC.∠ADB=90°D.CE ⊥DE 6.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 7.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等8.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形;BC O DAOD C B A A B C DEF EDA④四边形BCDF的周长为532;⑤AE的长为145cm.A.2个B.3个 C.4个D.5个9.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8 B.5 C.6 D.7.2二、填空题(共有7道小题)10.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=4,则AC的长为。
18.2.1《矩形》一、选择题1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cmB.8cmC.6cmD.5cm3.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)4.如图,将矩形纸片ABCD沿对角线BD折叠一次,则图中全等三角形有()A.2对B. 3对C. 4对D.5对5.下列关于矩形的说法,正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分6.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.57.下列命题中,假命题是()A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形8.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.1.8B.2.4C.3.2D.3.610.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( )A.2 B.4 C.3 D.2二、填空题11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.12.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1= °.13.如图,将矩形纸片ABCD沿BE、DF折叠后,顶点A、C恰好都落在对角线BD的中点O 处.若BD=6 cm,则四边形B EDF的周长是cm.15.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.三、解答题16.如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.17.如图,已知在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.参考答案1.C.2.D3.B4.C5.D6.B7.C .8.C9.D 10.C.11.答案为:AC ⊥BD 12.答案为:62 13.答案为:14.答案为:6; 15.答案为:DE=5. 16.解: (1)如图所示:(2)∵四边形ABCD 是矩形,EF 是线段AC 的垂直平分线,∴AE=EC ,∠CAB=∠ACE=30°,∴∠ECB=60°,∴∠ECB=30°,∵BC=4,∴BE=.17.提示:证明△BFE ≌△CED ,从而BE=DC=AB ,∴∠BAE=45°,可得AE 平分∠BAD18.2.2 菱形一、选择题(本大题共5道小题)1. 如图,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .82. 如图,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒3. 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA4. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒5. 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm二、填空题(本大题共6道小题)6. 如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH的长等于 .7. 菱形的两条对角线将菱形分成全等三角形的对数为8. 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.9. 如图,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA10. 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是 E F DBCA11. 如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为DB三、解答题(本大题共5道小题)12. 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA13. 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA14. 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB15. 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA16. 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分ABEFGH GF EDCBA人教版 八年级数学下册 18.2.2 菱形 巩固练习-答案一、选择题(本大题共5道小题) 1. 【答案】A【解析】由菱形的对角线互相垂直平分及勾股数可知选A 2. 【答案】D 3. 【答案】C【解析】连结AR ,利用三角形的中位线可得12EF AR =与点P 无关. 4. 【答案】D 5. 【答案】A二、填空题(本大题共6道小题) 6. 【答案】3 7. 【答案】8【解析】根据菱形的性质可知:共有8对 8. 【答案】4 9. 【答案】120︒【解析】由题意可知:构成三角形为等边三角形 10. 【答案】150︒【解析】如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒ EDCBA11.【答案】30AE BC BAE PE PC AE ⊥∠=︒+===,,为最小值三、解答题(本大题共5道小题)12. 【答案】∵EF 是BD 的中垂线 ∴BE DE BF DF ==,,∴DBE BDE ∠=∠ ∵EBD DBF ∠=∠∴DBF EDB ∠=∠,所以BC DE ∥ 同理AB DF ∥所以四边形BEDF 是菱形13. 【答案】18︒【解析】连接AC ,∵四边形ABCD 为菱形ABCDEF∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒14. 【答案】∵EF 垂直平分AC , ∴,EF AC AO CO ⊥=.∴90AOE COF ∠=∠=. 又∵ABCD 平行四边形, ∴EAO FCO ∠=∠. ∴AOE ∆≌COF ∆. ∴OE OF =.∴四边形AECF 是平行四边形.又由AC EF ⊥可知,四边形AECF 是菱形.15. 【答案】100︒同理D AFD ∠=∠∵四边形ABCD 是菱形∴AD BC B D BAD C ∠=∠∠=∠∥,,,∴AEB AFD ∠=∠∵B D ∠=∠ ∴BAE DAF ∠=∠∵DE EF AF ==,∴AEF △是等边三角形,∴60EAF ∠=︒设BAE x ∠=,则602BAD x ∠=︒+∵180ABE ABE BAE ∠+∠+∠=︒,∴902x ABE ∠=︒-∵AD BC ∥,∴180B BAD ∠+∠=︒,∴906021802x x ︒-+︒+=︒ ∴20x =︒ ∴602100C BAD x ∠=∠=︒+=︒16. 【答案】A B CD EF GH连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以EG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直18.2.3正方形1.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③2.平行四边形,菱形,矩形,正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等3.正方形面积为36,则对角线的长为( )A .6B .C .9D .4.正方形的一条对角线长为4,则这个正方形的面积是( ) A .8 B .4 C .8 D .165.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP=BC ,则∠ACP 度数是( )A .45°B .22.5°C .67.5°D .75°6.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,A.75°B.60°C.55°D.45°7.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.8.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.69.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.10.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为()A.3 B.4C.D.11.如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.12.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.13.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE的最小值是.14.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.15.如图,将边长都为2cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则2019个这样的正方形重叠部分的面积和为.考点二:正方形的判定16.小明在学习了正方形之后,给同桌小文出了题目,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使□ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①②B.①③C.②③D.②④17.(2015•黑龙江)如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).考点三:正方形的性质与判定18.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.19.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.20.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.21.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.22.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.23.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.。
A 18.2.1矩形的性质与判定练习题1、矩形具有而一般平行四边形不具有的性质是 ( )A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分2、下列命题中正确的是( )A .对角线相等的四边形是矩形B .对角相等且有一个角是直角的四边形是矩形C .有一个角是直角的四边形是矩形D .内角都相等的四边形是矩形3、下列条件中,能判断一个四边形是矩形的是( )A. 对角相等B. 对角线互相垂直C. 对角线互相垂直且相等D. 对角线互相平分且相等4、四边形ABCD 的对角线交于点O ,在下列条件中,不能说明它是矩形的是 ( )A. AB=CD ,AD=BC ,∠BAD =90°B.∠BAD=∠ABC =90°,∠BAD+∠ADC=180°C ∠BAD=∠BCD,∠ABC+∠ADC=180° D. AO=CO,BO=DO,AC=BD5、下列条件中,不能判定四边形ABCD 为矩形的是( ).A .AB ∥CD ,AB=CD ,AC=BD B .∠A=∠B=∠D=90°C .AB=BC ,AD=CD ,且∠C=90° D .AB=CD ,AD=BC ,∠A=90°6、已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是 ( )A .24cm 2B . 32cm 2C .48cm 2D .128cm 27、如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处,如果∠BAF=60°,那么∠DAE 等于( ).A .15° B.30° C.45° D.60°(7题) (8题) (9题) (10题) 8、如图,在矩形ABCD 中,DE ⊥AC,∠ADE=21∠CDE,那么∠BDC 等于 ( ) A .60° B .45° C .30° D .22.5°9、如图,△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD 、CE 相交于点F ,若∠B =20°,则∠DFE 等于( ) A .70° B .60° C .50° D .40°10、如图,△ABC 是以AB 为斜边的直角三角形,AC = 4,BC =3,P 为AB 上一动点,且PE ⊥AC 于E ,PF ⊥BC 于F ,则线段EF 长度的最小值为 .11、已知,如图,等边△ABC 中,AD=DC ,BF=FC ,△BDE 是等边三角形.求证:四边形AEBF 是矩形.12、已知,如图,矩形ABCD 中,F 在CB 延长线上,AE=EF ,CF=CA .求证:BE ⊥DE .13、如图,矩形ABCD 的两边AB=3,BC=4,P 是AD 上任一点,PE ⊥AC 于点E ,PF ⊥BD 于点F 。
第1题第2题第4题 第6题 第9题 第12题 《18.2.1 矩形的性质》练习一、选择——基础知识运用1.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm ,则这个矩形的一条较短边的长度为( )A .10cmB .8cmC .6cmD .5cm 2.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,EF ⊥AD交AD 于点F ,若EF =3,AE =5,则AD 等于( )A .5B .6C .7D .83.Rt △ABC 中,∠C =90°,锐角为30°,最短边长为5cm ,则最长边上的中线是( )A .5cmB .15cmC .10cmD .2.5cm4.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =7,BC=10,则△EFM 的周长是( )A .17B .21C .24D .27 5.如图,在矩形ABCD 中,AF ⊥BD 于E ,AF 交BC 于点F ,连接DF ,则图中面积相等但不全等的三角形共有( )A .2对B .3对C .4对D .5对6.如图,在平面直角坐标系中,矩形OABC ,OA =3,OC =6,将△ABC沿对角线AC 翻折,使点B 落在点B ′处,AB ′与y 轴交于点D ,则点D的坐标为( )A .(0,-)B .(0,-)C .(0,-)D .(0,-)7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)8.已知AC 为矩形ABCD 的对角线,则图中∠1与∠2一定不相等的是( )A .B .C .D .9.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.410.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米( )A.50B.50或40C.50或40或30D.50或30或2011.菱形具有而矩形不具有性质是( )第5题第13题 第14题 第15题 第16题 第18题 A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线平分且相等12.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF .EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是( )A.②③B.③④C.①②④D.②③④13.如图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD上,图中面积相等的四边形有( )A.3对B.4对C.5对D.6对14. 将矩形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED 的大小是( )A.60°B.50°C.75°D.55°15.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连接CE ,则△CDE 的周长为( )A.5cmB.8cmC.9cmD.10cm16.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,则图中全等的直角三角形共有( )A.6对B.5对C.4对D.3对17.矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内,B 、D 两点对应的坐标分别是(2,0).(0,0),且A 、C 两点关于x 轴对称,则C 点对应的坐标是( )A.(1,1)B.(1,﹣1) C .(1,﹣2) D.(,﹣)18.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为( )A.600m 2B.551m 2C.550m 2D.500m 2二、填空——知识巩固运用19.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的坐标是 .20.长方形ABCD 面积为12,周长为14,则对角线AC 的长为 .21.如图,把一个矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在A ′的位置上.若OB =,21=OC BC ,求点A ′的坐标为 .22.在矩形ABCD 中,A (4,1),B (0,1),C (0,3),则点D 的坐标为 .23.如图,一张矩形纸片沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于_________.第21题 第22题 第24题第23题24.如图,点A、D、G、M在半⊙O上,四边形ABOC、DEOF、HMNO均为矩形.设BC=a,EF=b,NH=c,则a、b、c的大小关系为______________.三、解答——知识提高运用25.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF =BD,连接AF,求∠BAF的大小.26.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的.27.如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF⊥EF.(1)求证:AF=EF;(2)求EF长.第27题28.八年级(12)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线,如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?29.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积是多少?30.如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=8,DF=4,则菱形ABCD的边长为多少?31.如图,矩形的长与宽分别为a和b,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a和b要满足什么数量关系?32.如图,在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数是多少?4.参考答案一、选择——基础知识运用1.【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC= AC,OD=OB= BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D。
18.2.1 矩形同步测试题1.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°2.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变3.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD-DF4.如图,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论中不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD折叠,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=( )A. B.2 C.3 D.36.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( )A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD7.(2016·菏泽)在▱ABCD中,AB=3,BC=4,连接AC,BD,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠BAD+∠BCD=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为( )A.14B.16C.17D.189.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AC,AB边的中点,连接DE,CE.则下列结论中不一定正确的是( )A.ED∥BCB.ED⊥ACC.∠ACE=∠BCED.AE=CE10.如图,在矩形ABCD中,O为AC的中点,EF过O点且EF⊥AC分别交DC,AB于点F,E,点G是AE的中点,且∠AOG=30°,则下列结论正确的有( )①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.A.1个B.2个C.3个D.4个11.图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB 为直角三角时,AP= .12.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.13.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.14.如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF,连接DE,EF.请回答下列问题:(1)四边形ADEF是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?15.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B 以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动,如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6).(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积,并探索一个与计算结果有关的结论.参考答案1.【答案】D解:因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A,B 两选项为平行四边形具有的性质,C选项添加后也不一定是矩形,根据矩形的定义知D可以.故选D.2.【答案】C3.【答案】B4.【答案】A解:∵四边形ABCD是矩形,∴AD=BC,∠ADO=∠EDO=∠C=90°.∵AD=DE,∴BC=DE.在△BOC与△EOD中,∠BOC=∠DOE,∠C=∠EDO=90°,BC=DE,∴△BOC≌△EOD.故B选项正确.在△AOD和△EOD中,AD=DE,∠ADO=∠EDO=90°,OD=OD,∴△AOD≌△EOD.故C选项正确.由B,C知△AOD≌△BOC,故D选项正确.而A选项中两三角形明显不全等.5.【答案】A6.【答案】D7.【答案】B解:当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠BAD=∠ABC=∠BCD=90°,AC=BD,根据勾股定理求出AC,即可得出结论.8.【答案】D 9.【答案】C10.【答案】C解:根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GEO=60°,从而判断出△OGE是等边三角形,判断出③正确;设AE=2a,则OE=a,利用勾股定理求出AO的长,从而得到AC的长,再求出BC的长,然后利用勾股定理求出AB=3a,从而判断出①正确,②错误;再根据三角形的面积公式和矩形的面积公式列式判断出④正确.11.【答案】3或3或3解:当∠APB=90°时,分两种情况讨论.情况一:如图①,∵O为AB中点,∴PO=AB,AO=BO.∴PO=BO.∵∠1=120°,∴∠PBA=30°.∴AP=AB=3;情况二:如图②,∵AO=BO,∠APB=90°,∴PO=BO.∵∠1=120°,∴∠BOP=60°.∴△BOP为等边三角形.∴BP=AB=3.∴AP===3.当∠BAP=90°时,如图③,∵∠1=120°,∴∠AOP=60°,∴∠APO=30°,∴PO=2AO=6.∴AP===3.当∠ABP=90°时,如图④,∵∠1=120°,∴∠BOP=60°,∴∠BPO=30°,∴PO=2BO=6.∴BP===3.∴AP===3.12.证明:∵四边形ABCD为矩形,∴AC=BD.∴BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.13.(1)证明:由折叠知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°.∵四边形ABCD为矩形,∴AB=CD,AD∥BC.∴∠FAN=∠ECM,AM=CN.∴AM-MN=CN-MN,即AN=CM.在△ANF和△CME中,∴△ANF≌△CME(ASA).∴AF=CE.又∵AF∥CE,∴四边形AECF是平行四边形.(2)解:∵AB=6,AC=10,∴BC=8.设CE=x,则EM=BE=8-x,CM=10-6=4. 在Rt△CEM中,(8-x)2+42=x2,解得x=5. ∴四边形AECF的面积为CE·AB=5×6=30.14.解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△BEC都是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°.∴∠DBE=60°-∠EBA,∠ABC=60°-∠EBA, ∴∠DBE=∠ABC.∴△DBE≌△ABC.∴DE=AC,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可得△ABC≌△FEC,∴EF=BA=DA.∵DE=AF,DA=EF,∴四边形ADEF为平行四边形.(2)若四边形ADEF为矩形,则∠DAF=90°,∵∠DAB=∠FAC=60°,∴∠BAC=360°-∠DAB-∠FAC-∠DAF=360°-60°-60°-90°=150°.∴当△ABC满足∠BAC=150°时,四边形ADEF是矩形.15.解:(1)由题意得DQ=t cm,AP=2t cm,∴AQ=(6-t)cm.若△QAP为等腰三角形,则只能是AQ=AP,于是6-t=2t,∴t=2.故当t=2时,△QAP为等腰三角形.(2)S四边形QAPC=S矩形ABCD-S△CDQ-S△BPC=12×6-×12t-×(12-2t)×6=72-6t-36+6t=36(cm2).结论:在点P,Q的移动过程中,四边形QAPC的面积始终不变,为36 cm2.。
一.选择题
1.下面的图形中,既是轴对称图形,又是中心对称图形的是 ( ) A. 角 B. 任意三角形 C. 矩形 D. 等腰三角形 2.矩形具有而一般平行四边形不具有的性质是 ( )
A. 对角相等
B. 对边相等
C. 对角线相等
D. 对角线互相平分 3.已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是 ( ) A .24cm 2
B .32cm 2
C .48cm 2
D .128cm 2
4.如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处,如果∠BAF=60°,那么∠DAE 等于( ).
A .15° B.30° C.45° D.60°
5. 若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为 ( ) A .22 B .26 C .22或26 D .28
6.由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )
A 、22.5°
B 、45°
C 、30°
D 、60° 7.如图,在矩形ABCD 中,D
E ⊥AC,∠ADE=21∠CDE,那么∠BDC 等于 ( )
A .60°
B .45°
C .30°
D .22.5°
8.如图,矩形ABCD 中,E 是BC 的中点,且∠AED=90°.当AD=10cm 时,AB 等于( ) A. 10 B. 5 C. 25 D. 35 9.如图,过矩形ABCD 的对角线BD 上一点R 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMRP 的面积S 1,与矩形QCNR 的面积S 2的大小关系是 ( )
A. S 1> S 2
B. S 1= S 2
C. S 1< S 2
D. 不能确定
10.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )
A .3
B .2
C .3
D .32
第(4)题 第(7)题 第(8)题 第(10)题
C'B'
F
E
D C
B A
二.填空题
11、矩形是轴对称图形,它有______条对称轴.
12、在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO 的周长为________.
13、矩形ABCD的两条对角线相交于O,∠AOB=60o,AB=8,则矩形对角线的长___
14、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是
,对角线的长是.
15、矩形ABCD的对角线相交于O,AC=2AB,则△COD为________三角形。
16、如图1,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为().(A)98 (B)196 (C)280 (D)284
(1) (2) (3)
17、如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.
18、如图3,在矩形ABCD中,M是BC的中点,且MA⊥MD.•若矩形ABCD•的周长为48cm,•
则矩形ABCD的面积为_______cm2.
19、如果一个矩形较短的边长为5cm.两条对角线所夹的角为60°,则这个矩形的面积是
_____cm2.
20、矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为。
三.解答题
21、阅读下列过程:
如图①,小肖过AB,CD的中点画直线EF,把矩形ABCD分割成甲、乙两部分.
如图②,小徐过A,C两点画直线AC,把矩形ABCD分割成丙、丁两部分.
回答下列问题:
(1)填空:S甲_____S乙,S丙_____S丁(填“〉”或“〈”或“=”);
(2)根据小肖、小徐的分割原理,你还能探索出其他的分割方法吗?•请在图③中任意给出一种;
(3)由本题的操作过程,你发现了什么规律?
22、已知,如图,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点.
(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求OF的长.
23、如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D落在BC边的中点F处,折痕为AE,求CE的长.
24、如图,将矩形纸片折叠,先折出折痕(对角线)BD,再折使AD边与对角线BD重合,得折痕DG,若AB=2,BC=1,求AG的长。
25、如图,在矩形ABCD中,AE平分∠BAD,∠1=15°.
(1)求∠2的度数.(2)求证:BO=BE.
26、如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一
点,PE ⊥AC 于点E ,PF ⊥BD 于点F 。
求PE +PF 的值。
27、如图:矩形ABCD 中,AB=2 cm , BC=3 cm . M 是BC 的中点,求D 点到AM 的距离。
28、矩形ABCD 中,AE ⊥BD 于E ,BE ∶ED=1∶3,求证:AC=2AB
29、在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H 。
求证:①ED BE
3=②BF BO =;③
CH CA =。