巧解振动物体与弹簧分离问题
- 格式:pdf
- 大小:1.06 MB
- 文档页数:1
龙源期刊网
以弹簧临界问题为背景探究物体的运动分离情况
作者:张帅孝
来源:《中学物理·高中》2014年第11期
弹簧问题可以与牛顿运动定律,动能定理,能量守恒,动量守恒等多方面的知识有机的结合起来,可以综合考查考生的综合分析问题的能力和实际应用能力.所以是历年高考中的热点
问题.
弹簧中的临界问题和牛顿运动定律综合应用是考生的难题之一.这类问题的解题思路通常
可分为四步:①分析物体的运动过程.②找到临界条件.③根据临界条件进行受力分析.④列方程进行求解.下面通过典型问题分析如下:
题型一竖直面内物体匀变速直线运动探究临界问题
例1 一质量不计的劲度系数为k的轻弹簧上端固定,下端悬吊一质量为m的物块.现用一质量为M的托盘向上压缩弹簧,如图乙所示,当托盘突然撤走时物块具有向下的加速度
小结弹簧中的临界问题是高中物理中的重点也是难点,学生在学习时必须清楚的分析运
动过程,找出临界状态的原因,临界状态的条件,根据临界状态的条件写出方程.在分析这类
问题时,一定要注意弹簧的弹力是变力,若物体作匀变速直线运动,则外力一定是变力,若合外力不变,则也加速度变.两物体分离时,重要的临界条件通常是物体之间的弹力为零,但此
时的加速度仍然相同,这个临界条件往往是解题的突破口.
(指导教师:刘正春)。
“弹簧与物块的分离”模型一、模型建构:两个物体与弹簧组成的系统。
两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。
【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。
〖解析〗物体应在弹簧的原长处分离。
由于水平面光滑,当弹簧从压缩状态回到自然伸长位置时,一直加速运动。
当它刚刚回到平衡位置时,物块B 受的弹力为阻力,开始减速。
而物块A 不受外力做匀速直线运动。
v A ≥v B此时A 、B 分离。
【体验1】但是如果物体与地面之间是不光滑的,题目条件如模型1。
试讨论分离条件。
〖解析〗假设A 、B 在某一位置分离,此时刻两物体的相互作用力为零F AB =0同时,两物体的加速度相同。
则A A a g μ=;B B B kx a gm μ=+讨论:(1)如果A μ等于B μ或均为零;x 等于零。
两物体在O 点(原长处)分离;(2)如果A μ大于B μ,x 大于零,两物体在O 点的右侧分离;(3)如果A μ小于B μ,x 大于零,两物体的分离点在O 点的左侧。
〖点评〗两物体分离的条件是:相互间的弹力F N =0等于零;两物体瞬时加速度相等。
【模型2】竖直面上“弹簧与木块的分离”模型如图2所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,重物何时与木板分离?〖解析〗当物体分离时,物体间的弹力F N =0物块只受重力,物块的加速度为g ,木板的加速度也为g 弹簧的状态应为原长,即弹簧恢复原长时,二者分离此时物块与薄板有共同的加速度。
从动力学的角度可以得到,竖直方向的弹簧类问题两物体的分离点是在弹簧的原长处。
弹簧连接物体的分离问题临界条件:①两物体仍然接触、但弹力为零;②速度和加速度相等。
情况1:弹簧与物体分离——弹簧原长时情况2:弹簧连接的B与固定的板C分离——B、C间弹力为零、弹簧拉力等于B重力向下分力1、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一个固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.(重力加速度为g)情况3:物块P与弹簧连接的M分离——P、M间弹力为零、P、M加速度相等2、一弹簧秤的秤盘质量M=1.5 kg,盘内放一物体P,物体P的质量m=10.5 kg,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图1—10—10所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动,已知在头0.2 s内F是变力,在0.2 s以后是恒力.求F的最小值和最大值各是多少?(g=10 m/s2)3、固定在水平面上的竖直轻弹簧,上端与质量为M的物块B相连,整个装置处于静止状态时,物块B位于P处,如图所示.另有一质量为m的物块C,从Q处自由下落,与B相碰撞后,立即具有相同的速度,然后B、C一起运动,将弹簧进一步压缩后,物块B、C被反弹.下列结论中正确的是()A.B、C反弹过程中,在P处物块C与B相分离B.B、C反弹过程中,在P处物C与B不分离C.C可能回到Q处D.C不可能回到Q处“弹簧与物块的分离”模型太原市第十二中学 姚维明模型建构:两个物体与弹簧组成的系统。
两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。
【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0 这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。
经典力学——弹簧类问题的解题技巧一命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念、物体的平衡、牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,需引起重视。
二知识概要与方法(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=—(kx22 —kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k△x来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
物体的弹簧振动问题一、弹簧振动的定义与分类1.定义:物体通过弹簧连接两个固定点,在受力作用下,物体围绕平衡位置做周期性的往复运动,称为弹簧振动。
(1)线性振动:弹簧的弹性力与位移成正比,如简谐振动。
(2)非线性振动:弹簧的弹性力与位移不成正比,如阻尼振动、指数振动等。
二、简谐振动1.定义:当物体受到的恢复力与位移成正比,且方向相反时,物体进行的振动称为简谐振动。
(1)周期性:简谐振动具有固定的周期,即振动一次所需的时间。
(2)对称性:物体在平衡位置两侧的振动图像关于平衡位置对称。
(3)加速度与位移成正比,方向相反。
三、弹簧振动的动力学方程1.单质点弹簧振动:设弹簧劲度系数为k,质量为m,物体在平衡位置两侧的位移为x,则动力学方程为:m * x’’ + k * x = 0其中,x’’表示位移的的二阶导数。
2.多质点弹簧振动:多个质量点通过弹簧连接,每个质量点都满足上述动力学方程。
四、弹簧振动的解1.单质点弹簧振动:对于动力学方程m * x’’ + k * x = 0,其通解为:x = A * cos(ω * t + φ)其中,A为振幅,ω为角频率,φ为初相位。
2.多质点弹簧振动:根据耦合方程,求解每个质量点的位移,然后根据弹簧连接关系,得到整个系统的振动解。
五、弹簧振动的能量1.动能:物体在振动过程中,由于速度的变化,具有动能。
2.势能:弹簧在振动过程中,由于形变,具有势能。
3.总能量:动能与势能之和,保持不变。
六、弹簧振动的稳定性和共振1.稳定性:当物体受到外界扰动后,能够回到原振动状态的能力。
2.共振:当外界驱动力频率与系统的固有频率相等时,振幅达到最大的现象。
七、弹簧振动的实际应用1.机械振动:如发动机、机床等设备的振动控制。
2.音乐乐器:如吉他、钢琴等乐器的弦振动。
3.工程结构:如桥梁、建筑物的振动分析。
4.传感器:如压力传感器、加速度传感器等。
5.通信技术:如手机、雷达等设备的振动传输。
弹簧振子的典型特征与解题应用高炜弹簧振子与单摆是中学物理中研究简谐运动的两个理想模型,但由于在平时的教学和学习中,单摆的地位比弹簧振子更突出一些,致使许多学习者轻视了弹簧振子的应有的地位。
各类考试中涉及到弹簧振子的题目又较多,因此,研究弹簧振子的典型特征并积极利用这些特征解题是极其重要的。
典型特征1:在振动的过程中,振子在任意一点与该点关于平衡位置的对称点上,回复力F 与回复加速度a 大小相等,方向相反。
例1. 如图1所示,质量为3m 的框架,放在一水平台秤上,一轻质弹簧上端固定在框架上,下端拴一质量为m 的金属小球,小球上下振动,当小球振动到最低点时,台秤的示数为5mg ,求小球运动到最高点时,台秤的示数为_____________,小球的瞬时加速度的大小为_____________。
s图1解析:当小球运动到最低点时,台秤示数为5mg ,即框架和小球这一整体对台秤压力的大小为5mg ,由牛顿第三定律知,台秤对这一整体的支持力也为5mg 。
由牛顿第二定律可知小球在该时刻有向上的加速度,设该时刻小球加速度大小为a ,此时框架的加速度大小为0,则对框架与小球这一整体应用牛顿第二定律得:()F F M m g F mg m a m N N 合=-+=-=⨯+⨯430解得:a g =由弹簧振子的典型特征1知识,小球运动到最高点,即最低点的对称点时,小球加速度的大小也为g ,方向竖直向下,所以该时弹簧处于原长,台秤的示数为框架的质量3mg 。
典型特征2:如图2所示,O 为平衡位置,假设一弹簧振子在A 、B 两点间来回振动,振动周期为T ,C 、D 两点关于平衡位置O 点对称。
从振子向左运动到C 点开始计时,到向右运动到D 点为止,即振子由C →A →C →O →D 的运动时间为t T =2。
图2例2. 如图3所示,一轻质弹簧与质量为m 的物体组成弹簧振子,在竖直方向上A 、B 两点间做简谐振动,O 为平衡位置,振子的振动周期为T 。
高中物理力学中弹簧和弹性体题的解题技巧高中物理力学中,弹簧和弹性体是一个重要的考点,涉及到弹性力、胡克定律等概念。
在解题过程中,我们需要掌握一些解题技巧,以便更好地应对这类题目。
首先,我们来看一个例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,求在物体静止时,弹簧的伸长量。
解题思路:1. 弹簧的伸长量可以通过胡克定律来求解。
根据胡克定律,弹簧的伸长量与外力成正比,与劲度系数成反比。
所以我们可以得到公式:F = kx,其中F为外力,x为伸长量。
2. 在物体静止时,弹簧受到的重力和拉力之和为零。
所以我们可以得到方程:mg = kx。
3. 根据方程求解x,即可得到弹簧的伸长量。
这个例题展示了解决弹簧和弹性体题目的一般思路。
接下来,我们再来看一个例题,进一步探讨解题技巧。
例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向下拉出一个距离x,然后释放,求物体在通过平衡位置时的速度。
解题思路:1. 在通过平衡位置时,物体受到的合力为零。
根据牛顿第二定律,合力等于质量乘以加速度。
所以我们可以得到方程:mg - kx = ma,其中a为物体的加速度。
2. 根据胡克定律,弹簧的伸长量与物体的加速度成正比。
所以我们可以得到公式:x = a/k。
3. 将公式x = a/k代入方程mg - kx = ma,整理得到:a = gk/(m + k)。
4. 根据加速度求解速度v,即可得到物体在通过平衡位置时的速度。
通过这个例题,我们可以看到解题过程中的一些关键点。
首先,要注意建立合适的方程,根据物体所受的力和加速度之间的关系进行推导。
其次,要灵活运用胡克定律,将弹簧的伸长量与物体的加速度联系起来。
最后,要善于整理方程,将未知量整理到一边,已知量整理到另一边,以便求解。
除了以上的解题思路和技巧,我们还可以通过一些类似的题目进行练习,以便更好地掌握解题方法。
例如,可以考虑以下问题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向上推出一个距离x,然后释放,求物体在通过平衡位置时的速度。
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
?一、弹簧类命题突破要点?1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
?2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
?3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
?二、弹簧类问题的几种模型?1.平衡类问题?例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
??分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。