鸽巢原理教学设计
- 格式:doc
- 大小:31.00 KB
- 文档页数:8
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级数学下册《鸽巢原理》教案设计一、教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。
2. 培养学生运用逻辑推理和数学思维解决实际问题的能力。
3. 培养学生合作交流的能力,提高学生的数学素养。
二、教学内容:1. 鸽巢原理的定义及基本性质。
2. 鸽巢原理在实际问题中的应用。
三、教学重点与难点:1. 教学重点:让学生掌握鸽巢原理的基本概念和应用。
2. 教学难点:如何引导学生运用鸽巢原理解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生探究鸽巢原理。
2. 运用案例分析法,让学生通过实际问题体验鸽巢原理的应用。
3. 采用合作交流法,培养学生合作解决问题的能力。
五、教学过程:1. 导入新课:通过一个有趣的故事引入鸽巢原理,激发学生的学习兴趣。
2. 自主学习:让学生阅读教材,了解鸽巢原理的定义及基本性质。
3. 案例分析:出示一些实际问题,让学生运用鸽巢原理进行解答。
4. 讨论交流:引导学生分享自己在解决问题过程中的心得体会,培养学生合作交流的能力。
5. 总结提升:对本节课的内容进行总结,让学生明确鸽巢原理的应用范围和价值。
6. 课后作业:布置一些有关鸽巢原理的练习题,巩固所学知识。
六、教学评价:1. 通过课堂提问、作业批改等方式,了解学生对鸽巢原理的理解程度。
2. 注重培养学生运用鸽巢原理解决实际问题的能力,评价学生在解决问题过程中的思维过程和方法。
3. 观察学生在合作交流中的表现,评价学生的团队协作能力和沟通能力。
七、教学反馈:1. 根据学生的课堂表现和作业情况,及时调整教学方法和策略,以提高教学效果。
2. 在课后与学生进行交流,了解他们在学习过程中的困惑和问题,给予针对性的指导。
3. 鼓励学生在课堂上积极提问,充分调动学生的学习积极性。
八、教学拓展:1. 引导学生深入研究鸽巢原理,探索其在其他学科和实际生活中的应用。
2. 介绍与鸽巢原理相关的数学问题和研究,激发学生的学术兴趣。
3. 组织一些有关鸽巢原理的竞赛或活动,提高学生的学习积极性。
《鸽巢原理》是六年级下册数学教材中的一节内容,属于人教新课标。
本节内容旨在通过学习鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
以下是本节课的教案设计。
一、教学目标1. 知识与技能目标:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 过程与方法目标:通过实际操作和观察,引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的意识。
二、教学重点与难点1. 教学重点:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 教学难点:引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
三、教学方法1. 启发式教学法:通过提问、引导学生观察和思考,激发学生的思维。
2. 实践操作法:通过实际操作,让学生亲身体验鸽巢原理。
3. 小组合作法:分组讨论,培养学生的合作学习能力。
四、教学过程1. 导入新课通过一个有趣的故事引入鸽巢原理:小明有10个鸽巢,他的朋友小华送给他11只鸽子,请问小明如何将这11只鸽子安置在10个鸽巢中,使得每个鸽巢中至少有一只鸽子?2. 探究新知(1)引导学生观察和思考:如果每个鸽巢中最多只能容纳一只鸽子,那么小明最多能将几只鸽子安置在鸽巢中?(2)学生进行实践操作:让学生用10个鸽巢和11只鸽子进行实际操作,观察结果。
(3)引导学生发现鸽巢原理:通过观察和实践,引导学生发现鸽巢原理:如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢中至少有两只鸽子。
3. 巩固练习(1)让学生运用鸽巢原理解决实际问题,如:有13个小朋友,每人至少有一个玩具,共有15个玩具,请问至少有几个小朋友的玩具是相同的?(2)小组讨论:让学生分组讨论,如何运用鸽巢原理解决生活中的问题。
4. 课堂小结通过本节课的学习,学生应掌握鸽巢原理的含义,并能够运用鸽巢原理解决实际问题。
同时,培养学生合作学习的意识,激发学生对数学的兴趣。
五、课后作业1. 根据本节课所学内容,完成课后练习题。
六年级数学下册《鸽巢原理》教案设计教学目标:1. 让学生理解并掌握鸽巢原理的基本概念和应用。
2. 培养学生运用逻辑推理和数学思维解决问题的能力。
3. 培养学生合作交流的能力,提高学生的团队协作能力。
教学重点:1. 鸽巢原理的基本概念和应用。
2. 运用逻辑推理和数学思维解决问题的方法。
教学难点:1. 理解并运用鸽巢原理解决实际问题。
2. 培养学生合作交流的能力。
教学准备:1. 教学PPT或者黑板。
2. 教学卡片或者题目。
3. 学生分组,每组4-6人。
教学过程:一、导入(5分钟)1. 利用PPT或者黑板,展示一个简单的鸽巢原理问题,引导学生思考和讨论。
2. 邀请学生分享他们对鸽巢原理的理解和应用。
二、新课讲解(15分钟)1. 讲解鸽巢原理的基本概念和原理。
2. 通过示例题目,引导学生运用逻辑推理和数学思维解决问题。
1. 分发课堂练习题目,学生独立完成。
2. 引导学生互相检查和讨论答案。
3. 教师进行讲解和解析。
四、小组活动(15分钟)1. 将学生分成小组,每组4-6人。
2. 每个小组选择一道应用题,运用鸽巢原理进行解决。
3. 各小组汇报解题过程和结果,其他小组进行评价和讨论。
2. 学生分享他们在课堂练习和小组活动中的体验和感受。
3. 教师给出改进和提高的建议。
教学延伸:1. 布置课后作业,要求学生独立完成一道鸽巢原理的应用题。
2. 鼓励学生在日常生活中运用鸽巢原理解决问题,并分享给同学和老师。
教学反思:六、课堂拓展(10分钟)1. 通过PPT或黑板,展示一些与鸽巢原理相关的有趣问题和实际应用案例。
2. 引导学生思考和讨论,尝试解决这些问题。
3. 邀请学生分享他们的解题思路和解决方案。
七、练习与提升(10分钟)1. 分发练习题目,要求学生在规定时间内完成。
2. 引导学生独立思考,自主解决问题。
3. 教师进行讲解和解析,解答学生的疑问。
1. 将学生分成若干小组,每组4-6人。
2. 设置竞赛题目,要求各小组在规定时间内运用鸽巢原理解决问题。
《鸽巢原理》教案一、教学目标1.经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
2.会用“鸽巢原理”解决简单的实际问题,提高学生有根据、有条理地进行思考和推理的能力。
3.通过“鸽巢原理”的灵活应用,感受数学的魅力,提高学生学习数学的兴趣。
二、教学重难点1.重点(1)经历“鸽巢原理”的探究过程,理解“鸽巢原理”。
(2)对“总有”“至少”的理解。
2.难点运用“鸽巢原理”进行逆向思维。
三、教学方法操作法、讨论法、讲授法四、教学过程(一)游戏导入(5分钟)1.教师:“同学们,我们来玩一个游戏。
请5位同学上来,老师这里准备了4把椅子,大家都坐下,看看会出现什么情况?”2.引导学生观察并思考,引出课题:鸽巢原理。
(二)新授(20分钟)1.例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
让学生小组合作,动手摆一摆,记录不同的放法。
展示学生的摆放方法,共4种:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)引导学生观察发现:不管怎么放,总有一个笔筒里至少有2支铅笔。
解释“总有”和“至少”的含义。
2.例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
引导学生用平均分的方法思考:7÷3=2......1,2+1=3 总结:物体数÷抽屉数=商......余数,至少数=商+1(三)课堂练习(10分钟)1.教材中的练习题,如:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。
为什么?2.生活中的例子:13个人中至少有几个人的生日在同一个月?(四)课堂总结(5分钟)1.回顾鸽巢原理的内容和解题方法。
2.强调在解决问题时要找准物体和抽屉。
五、课后作业1.完成课本上的课后习题。
2.思考:如果把“总有一个抽屉里至少放进3本书”改为“总有一个抽屉里至少放进2本书”,那么至少需要多少本书放进3个抽屉?。
一、教案设计概述1. 教学目标:(1)让学生理解鸽巢原理的基本概念和意义。
(2)培养学生运用鸽巢原理解决实际问题的能力。
(3)提高学生的逻辑思维和数学素养。
2. 教学内容:(1)鸽巢原理的定义及证明。
(2)鸽巢原理在实际问题中的应用。
3. 教学方法:(1)采用讲授法,讲解鸽巢原理的基本概念和证明过程。
(2)运用案例分析法,引导学生运用鸽巢原理解决实际问题。
(3)开展小组讨论法,培养学生的合作能力和口头表达能力。
4. 教学准备:(1)准备相关案例和练习题。
(2)制作PPT课件,辅助教学。
二、教学过程1. 导入新课:(1)利用PPT课件,展示鸽巢原理的图片,引导学生思考。
(2)提问:什么是鸽巢原理?它有什么实际意义?2. 讲解鸽巢原理:(1)介绍鸽巢原理的定义和证明过程。
(2)通过PPT课件,展示鸽巢原理的证明过程,让学生理解并掌握。
3. 案例分析:(1)给出典型案例,让学生运用鸽巢原理进行分析。
(2)引导学生讨论,得出结论。
4. 练习巩固:(1)出示练习题,让学生独立完成。
(2)讲解答案,分析解题过程,巩固所学知识。
三、课堂小结1. 回顾本节课所学内容,让学生总结鸽巢原理的概念和应用。
2. 强调鸽巢原理在实际问题中的重要性,激发学生学习兴趣。
四、作业布置2. 预习下一节课内容,为课堂学习做好准备。
五、教学反思1. 课后总结课堂教学效果,了解学生掌握情况。
2. 对教学方法进行调整,以提高教学效果。
3. 关注学生在作业中的表现,及时给予指导和鼓励。
六、课堂活动1. 运用游戏教学法,设计一个关于鸽巢原理的数学游戏,让学生在游戏中理解和掌握鸽巢原理。
2. 组织学生进行小组竞赛,看哪个小组能更快地运用鸽巢原理解决问题,提高学生的合作能力和竞争意识。
七、拓展与延伸1. 引导学生思考:鸽巢原理在生活中的应用,例如:分配资源、安排活动等。
2. 介绍与鸽巢原理相关的数学问题,激发学生的学习兴趣,提高学生的数学素养。
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
《鸽巢问题》教学设计(通用8篇)《鸽巢问题》教学设计(通用8篇)作为一名无私奉献的老师,时常需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
我们应该怎么写教学设计呢?下面是小编整理的《鸽巢问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《鸽巢问题》教学设计篇1教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学过程:一、创设情境、入新课1、师:同学们,导你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。
今天我们就一起来研究它。
二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。
请看大屏幕。
(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。
(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。
(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?探究之前,老师有几个要求。
(一生读要求)(3)汇报展示方法,证明结论。
(展示两张作品,其中一张是重复摆的。
)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。
《鸽巢原理》教学设计一、教学目标:1.了解鸽巢原理的概念和意义。
2.掌握鸽巢原理的应用方法。
3.培养学生良好的观察和思维能力。
4.激发学生对科学原理的兴趣和探索精神。
二、教学内容:1.什么是鸽巢原理?2.鸽巢原理的应用领域。
3.鸽巢原理的实例分析。
三、教学过程:1.导入(5分钟)教师通过提问让学生思考一个问题:“你们小时候有没有让家人帮忙照看自己的宠物?你们的家人是怎么安排的呢?”引出鸽巢原理的概念。
2.讲解(20分钟)教师通过幻灯片或者板书介绍鸽巢原理的概念和意义。
解释鸽巢原理是在分配有限资源时,出现了两种极端情况:一种是资源不足,导致无法完成分配;另一种是资源过剩,导致浪费。
鸽巢原理的目的就是通过合理的分配,既能达到效用最大化,又能避免资源的浪费。
3.探究(30分钟)教师准备了几个小实验和材料:十个相同大小的木块、一把尺子。
(1)实验一:直线排列教师将十个木块摆成一排,让学生测量总长度。
然后再根据鸽巢原理进行排列,让学生再次测量总长度。
通过对比两次测量,让学生发现鸽巢原理的应用。
(2)实验二:竖线排列教师将十个木块摆成两列,让学生测量总高度。
然后再根据鸽巢原理进行排列,让学生再次测量总高度。
通过对比两次测量,让学生发现鸽巢原理的应用。
(3)实验三:三维排列教师将十个木块摆成一个长方体,让学生测量长、宽、高的大小。
然后再根据鸽巢原理进行排列,让学生再次测量长、宽、高的大小。
通过对比两次测量,让学生发现鸽巢原理的应用。
4.拓展(15分钟)教师给学生展示一些其他的鸽巢原理的实例,例如:编程的优化算法、物流配送中的最优路径规划等。
让学生观察和思考这些实例中鸽巢原理的应用方法。
5.小结(10分钟)教师对本节课学习的内容进行小结,再次强调鸽巢原理的概念和意义。
鼓励学生在生活中发现和应用鸽巢原理,并与同学分享他们的观察和思考。
四、教学评价:本节课的教学评价可以从以下几个方面进行:1.观察学生在实验过程中的积极参与和合作情况。
六年级下册《鸽巢原理》教学设计北马路小学郝美玲【教学内容】新人教版小学数学六年级下册68页——数学广角《鸽巢问题》第一课时。
【教材分析】“鸽巢原理”是一种解决某种特定结构的数学或生活问题的模型,是一类较为抽象和艰涩的数学问题。
为此,教材在例1前,设计了一个抽扑克牌的魔术引入教学,例1以学生熟悉的、可操作的铅笔和笔筒为素材,习题用鸽子和鸽笼为例,选择这些学生常见的、熟悉的事物,以及一些有趣的、新颖的内容作为学习的素材,以增强学习材料的吸引力,提升学生学习的积极性,缓解学习难度带来的压力。
在例题与习题的衔接上,在习题的层次方面,教材也都很关注细节,体现出循序渐进的原则。
【设计理念】让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。
在教学中,通过几个直观的例子,借助实际操作,向学生介绍“鸽巢问题”;学生在理解的基础上,对一些简单的实际问题“模型化”,会用鸽巢原理解决问题或解释相关的现象,促进逻辑推理能力的发展。
【教学目标】1.学生理解鸽巢原理的基本形式(假如有多于n个元素分成n个集合,那么一定有一个集合中至少含有2个元素),初步学习鸽巢原理的分析方法,能初步运用鸽巢原理解决简单的实际问题或解释相关的现象。
2.学生通过操作、观察、比较、推理等活动探究鸽巢原理的过程中,逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养模型思想和逻辑推理思想。
3.学生通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。
【教学重点】理解鸽巢原理,掌握先“平均分”、再调整的方法。
【教学难点】理解“总有”、“至少”的意义,理解平均分后余数不是1时的至少数。
【教学准备】扑克牌、纸杯(笔筒)、多媒体课件。
【教学过程】一、创设情境,引出问题。
1.老师表演小魔术:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。
选两组学生抽扑克牌,让大家判断老师的说法对不对。
教师结合学生抽出的扑克牌的情况引导学生理解“至少2张牌”的意思。
2.引入课题:老师能料事如神,是有依据的,这还是一个著名的数学原理。
大家想知道吗?老师相信,集合大家的智慧,你们自己就能发现其中的奥秘![设计意图]扑克牌小魔术作为新课的切入点,激起学生认知上的兴趣,趁机抓住他们的求知欲,激发学生探究新知的热情,使学生积极主动地投入到新课的学习中去。
同时,在魔术中直观地感知“至少”的意思。
二、共同探究,理解鸽巢原理。
(一)出示例1,共同探究验证。
1.老师还能料定:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。
质疑:大家对老师的说法有什么不理解之处吗?如果学生不能提出疑问,那么老师来提问:“总有”是什么意思?(3个笔筒无论哪个,一定有一个)“至少放2支铅笔”是什么意思?(放2支或2支以上,最少2支)[设计意图]引导学生理解关键词语“总有”和“至少”的含义,培养学生认真阅读理解的习惯。
2.讨论:你认为老师的说法对吗?先让学生凭直觉判断对或错。
再指出:对待数学问题,我们要有严谨的态度,只有经过周密的验证才能下结论。
那么,可以用什么方法来验证老师的说法对不对呢?学生独立思考,提出设想。
[设计意图]树立学生严谨的数学学习态度,打开学生的思维,大胆设想验证方法。
3.小组合作探究:小组合作验证,验证完成了准备汇报并坐端正。
需要笔筒的用纸杯代替笔筒。
教师巡视,了解学生验证的情况。
[设计意图]放手让学生自主探究,让学生充分表达自己的想法,有充足的空间和时间合作探究。
4.小组汇报交流,预设情况如下:(1)枚举法请用实物模拟实验的小组先展示,有用画图、数的分解的方法分析的也进行展示。
引导学生认识到要把铅笔摆放的所有方式都列举出来,为了不遗漏要做到有序列举(课件展示),指出这种思考方法叫“枚举法”。
[设计意图] 经历探究鸽巢原理的过程,初步学习枚举的分析方法,培养学生分析问题的能力和严谨的思维习惯。
(2)假设法请学生展示并解说其他的方法,如果学生没有想到,教师示范:假设老师的说法是错误的,没有任何笔筒里有2支或2支以上的铅笔,那么每个笔筒里只放1支,剩下1支放入任意一个笔筒中,这个笔筒中就有2支笔了。
所以总有一个笔筒中至少有2支铅笔。
集体讨论:让学生充分质疑,充分发表意见,教师适时点拨。
教师可连续发问:先在每个笔筒中放1支铅笔,实际上就是在怎样分?为什么一开始就平均分呢?只考虑平均分这一种情况,其他的摆放方法不用考虑了吗?引导学生认识到:先在每个笔筒中放1支铅笔,实际上就是在平均分;平均分,就可以使每个笔筒的铅笔尽可能的少,也就有可能找到和老师说法不一样的情况;平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
可以用除法算式表示这种分析方法,指出这种思考方法叫做“假设法”。
[设计意图]经历探究鸽巢原理的过程,理解学习假设的分析方法,培养学生逻辑推理的能力和严谨的思维习惯。
(3)请学生评价这两种方法。
总结结论并板书。
[设计意图]培养学生的优化意识,使学生认识到枚举法的优越性和局限性、假设法的独特优点。
(二)解决变式问题,建立数学模型1.解决变式问题:(1)把6支铅笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。
这种说法对吗?为什么?先同桌互相说一说,再指名回答。
(2)把6个苹果放进5个抽屉里,不管怎么放,总有一个抽屉里至少放2个苹果。
这种说法对吗?为什么?学生独立思考,指名回答。
引导学生认识到:6个苹果相当于6支铅笔,5个抽屉相当于5个笔筒,那么就有同样的结论“总有一个抽屉里至少放2个苹果”。
(3)把7支铅笔放进6个笔筒里,不管怎么放,总有一个笔筒里至少放几支铅笔?为什么?学生独立思考,指名回答。
(4)把7个篮球放进6个球筐里,不管怎么放,总有一个球筐里至少放2个篮球。
这种说法对吗?学生独立思考,齐答。
提问:7个篮球相当于什么?6个球筐相当于什么?(5)17只鸽子飞进16个鸽巢里,不管怎么飞,总有一个鸽巢里至少飞进2只鸽子。
这种说法对吗?学生独立思考,齐答。
提问:17只鸽子相当于什么?16个鸽巢相当于什么?[设计意图]通过解决变式问题,让学生真正掌握并运用假设法解决问题,培养学生解决问题的灵活性和迁移能力;通过联系、对比,建立待分物体和“鸽巢”的多个表象,为抽象出数学模型做基础。
2.讨论:这些问题有什么相同点吗?有什么规律吗?引导学生发现:铅笔、苹果、篮球、鸽子都是待分物体,笔筒、抽屉、球筐、鸽巢都可以看作盛放待分物体的“鸽巢”;待分物体都比“鸽巢”多1,都是总有一个“鸽巢”至少放2个待分物体。
引导学生用字母表示:如果“鸽巢”个数用n来表示,待分物体就有(n+1)个,那么总有一个“鸽巢”至少放2个待分物体。
并用一句完整的话来描述。
揭示课题:这就是老师所说的那个著名的数学原理——鸽巢原理。
(板书课题)[设计意图]让学生经历将具体问题数学化的过程,建立鸽巢原理最简单情况的数学模型,初步形成模型思想,发展学生的抽象能力和概括能力。
3.普及数学史知识知道鸽巢原理最早是由谁提出的吗?课件出示:这个原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。
该原理有两个经典案例,一个是把10个苹果放进9个抽屉,总有一个抽屉里至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”(指名读)。
学生齐读课件出示的“鸽巢原理”——把(n+1)个待分物体放进n 个鸽巢,总有一个鸽巢里至少放了2个待分物体。
[设计意图]了解鸽巢原理的由来,进一步强化鸽巢原理基本形式的数学模型,感受数学的魅力,体会数学的价值。
三、运用鸽巢原理解决问题1.请学生解释扑克牌小魔术中的奥秘。
引导学生认识到:5人抽出了5张牌,这5张牌相当于5个待分物体,扑克牌有4个花色,相当于4个鸽巢,5张牌归入4个花色,那么总有一个花色至少有2张牌。
[设计意图]能初步运用鸽巢原理解释相关的现象。
2.讨论问题:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?先同桌讨论,再交流,重点引导学生讨论平均分后余下2只鸽子该怎么办。
引导学生认识到:为了找到飞进鸽子的至少数,余下的2只鸽子也要尽可能的平均分。
[设计意图]通过讨论理解平均分后余数不是1时的至少数,掌握先“平均分”再调整的原则。
3.解决问题:随意找13位老师,他们中至少有2个人的属相相同。
为什么?若是随意找15位、17位老师,还是至少有2个人的属相相同吗?学生自由发言,互动交流。
[设计意图]能初步运用鸽巢原理解决简单的实际问题,体会数学的价值,提高解决问题的能力和兴趣。
四、集体交流:这节课你有什么收获?引导学生从数学知识、数学思考方法等多方面来谈收获。
[设计意图] 培养学生反思归纳的学习习惯。
五、课后问题:随意找30位老师,他们中至少有多少个人的属相是相同的?[设计意图]为下节课的探究活动做铺垫。