一轮复习配套讲义:第12篇 第1讲 合情推理与演绎推理精品教案导学案
- 格式:pdf
- 大小:468.51 KB
- 文档页数:15
高考数学一轮精品教案及其练习精析《合情推理和演绎推理》教案章节:一、合情推理教学目标:1. 理解合情推理的定义和特点;2. 掌握合情推理的基本方法;3. 能够运用合情推理解决实际问题。
教学内容:1. 合情推理的定义和特点;2. 合情推理的基本方法:归纳推理、类比推理、演绎推理;3. 合情推理在实际问题中的应用。
教学步骤:1. 引入合情推理的定义和特点,让学生理解合情推理的概念;2. 讲解合情推理的基本方法,通过例题让学生掌握各种方法的运用;3. 结合实际问题,引导学生运用合情推理解决问题,并进行练习。
教学练习:A. 从个别事实得出一般结论的推理B. 从一般结论得出个别事实的推理C. 从个别事实出发,通过归纳得出一般结论的推理A. 归纳推理B. 演绎推理C. 类比推理教案章节:二、演绎推理教学目标:1. 理解演绎推理的定义和特点;2. 掌握演绎推理的基本方法;3. 能够运用演绎推理解决实际问题。
教学内容:1. 演绎推理的定义和特点;2. 演绎推理的基本方法:三段论、假言推理、选言推理;3. 演绎推理在实际问题中的应用。
教学步骤:1. 引入演绎推理的定义和特点,让学生理解演绎推理的概念;2. 讲解演绎推理的基本方法,通过例题让学生掌握各种方法的运用;3. 结合实际问题,引导学生运用演绎推理解决问题,并进行练习。
教学练习:A. 从个别事实得出一般结论的推理B. 从一般结论得出个别事实的推理C. 从个别事实出发,通过归纳得出一般结论的推理A. 三段论B. 归纳推理C. 类比推理教案章节:三、合情推理与演绎推理的关系教学目标:1. 理解合情推理与演绎推理的关系;2. 能够正确运用合情推理和演绎推理解决问题;3. 能够区分合情推理和演绎推理的应用场景。
教学内容:1. 合情推理与演绎推理的关系;2. 合情推理和演绎推理在解决问题时的应用;3. 合情推理和演绎推理的区别。
教学步骤:1. 引入合情推理与演绎推理的关系,让学生理解两者之间的联系;2. 通过例题讲解合情推理和演绎推理在解决问题时的应用;3. 分析合情推理和演绎推理的区别,并进行练习。
第1讲合情推理与演绎推理[最新考纲]1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.辨析感悟1.对合情推理的认识(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(5)(2014·安庆调研改编)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8.(√)2.对演绎推理的认识(6)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(7)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)[感悟·提升]三点提醒一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误,如(3).三是应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.如(7).学生用书第200页考点一归纳推理【例1】(2013·湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为n(n+1)2=12n2+12n,记第n个k边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数N (n,3)=12n 2+12n , 正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n , 六边形数N (n,6)=2n 2-n……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.解析 由N (n,3)=12n 2+12n ,N (n,4)=22n 2+02n ,N (n,5)=32n 2+-12n ,N (n,6)=42n 2+-22n ,推测N (n ,k )=⎝ ⎛⎭⎪⎫k -22n 2+⎝ ⎛⎭⎪⎫4-k 2n ,k ≥3. 从而N (n,24)=11n 2-10n ,N (10,24)=1 000.答案 1 000规律方法 归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.【训练1】 (1)(2014·佛山质检)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3. 则第5个不等式为________.(2)(2013·陕西卷)观察下列等式(1+1)=2×1。
2019-2020年高考数学一轮复习合情推理与演绎推理教学案二、教学目标:能用归纳和类比等进行简单的推理,理解演绎推理的基本方法三、教学重点:用归纳和类比等进行简单的推理;难点:类比推理四、知识导学:1. 归纳推理的思维过程大致为:类比推理的思维过程大致为:2.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是从一般到特殊的推理.“三段论”是演绎推理的一般形式,包括:(1)大前提—已知的一般性原理.(2)小前提—所研究的特殊情况.(3)结论—根据一般原理,对特殊情况做出的判断.演绎推理的特征是:当前提为真时,结论必然为真。
五、课前自学1.观察下列等式:332333233332123,1236,123410,...,+=++=+++=根据上述规律,第五个等式为2.数列2,5,11,20,,47,x 中,x =3.设等边ABC ∆的边长为a ,P 是ABC ∆内的任意一点,且P 到三边AB 、BC 、CA 的距离分别为123d d d 、、,则有123d d d ++;由以上平面图形的特性类比空间图形:设正四面体ABCD 的棱长为a ,P 是正四面体ABCD 内的任意一点,且P 到四个面ABC 、ABD 、ACD 、BCD 的距离分别为123d d d 、、4d 、,则有123d d d ++4d +为定值4. 把下面的推理恢复成三段论:函数()21f x x =-在R 是单调递增函数:5.已知正数a 和b ,有下列命题:(1)a+b=2,ab ≤1; (2)a+b=3,ab ≤23; (3)a+b=6,ab ≤3。
根据以上三个命题所提供的规律猜想:若a+b=9,ab ≤6. 通过观察 ①2223sin 30sin 90sin 1502︒+︒+︒= ②2223sin 5sin 65sin 1252︒+︒+︒= 请你写出一个(包含上面两个命题)一般性的命题六、合作、探究、展示例1 .(1) 观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?(2) 把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立: ①如果一条直线与两条平行直线中的一条相交,则必于另一条相交。
高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及意义。
2. 培养学生运用合情推理与演绎推理解决数学问题的能力。
3. 引导学生掌握合情推理与演绎推理的基本方法。
二、教学内容第一章:合情推理1. 合情推理的定义及分类2. 合情推理的方法:归纳推理、类比推理、归纳猜想3. 合情推理在数学中的应用第二章:演绎推理1. 演绎推理的定义及分类2. 演绎推理的方法:演绎法、反证法、归纳法3. 演绎推理在数学中的应用三、教学方法1. 采用讲授法讲解合情推理与演绎推理的基本概念和方法。
2. 通过例题展示合情推理与演绎推理在数学问题解决中的应用。
3. 组织学生进行小组讨论,分享解题心得,培养学生的合作能力。
四、教学步骤1. 引入新课:介绍合情推理与演绎推理的定义及意义。
2. 讲解合情推理:讲解归纳推理、类比推理、归纳猜想的方法,并通过例题展示其在数学中的应用。
3. 讲解演绎推理:讲解演绎法、反证法、归纳法的方法,并通过例题展示其在数学中的应用。
4. 练习与巩固:布置适量练习题,让学生巩固所学知识。
5. 总结与拓展:总结合情推理与演绎推理的方法及应用,引导学生思考如何在生活中运用这些方法。
五、教学评价1. 课后作业:检查学生对合情推理与演绎推理方法的掌握情况。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。
3. 小组讨论:评估学生在小组讨论中的参与程度及合作能力。
4. 期中期末考试:全面评估学生对选修内容的掌握情况。
六、教学内容第三章:合情推理与演绎推理的综合应用1. 合情推理与演绎推理在数学证明中的应用2. 合情推理与演绎推理在数学问题解决中的应用3. 合情推理与演绎推理在数学探究活动中的应用第四章:常见的错误与误解1. 合情推理与演绎推理中的常见错误2. 如何避免合情推理与演绎推理中的错误与误解3. 正确评价合情推理与演绎推理的结果七、教学方法1. 通过案例分析,让学生了解合情推理与演绎推理在实际应用中的重要性。
第五节合情推理与演绎推理[知识能否忆起]一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:[小题能否全取]1.(教材习题改编)A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的.2.数列2,5,11,20,x,47,…中的x等于( )A.28 B.32C.33 D.27解析:选B 由5-2=3,11-5=6,20-11=9.则x-20=12,因此x=32.3.(教材习题改编)给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( )A.0 B.1C.2 D.3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V1V2=13S1h113S2h2=⎝⎛⎭⎪⎫S1S2·h1h2=14×12=18.答案:1∶85.(2018·陕西高考)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74……照此规律,第五个不等式为___________________________________________________.解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n2<2n-1n(n∈N*,n≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<1161.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.典题导入[例1] (2018·河南调研)已知函数f(x)=xx +2(x >0).如下定义一列函数:f 1(x)=f(x),f 2(x)=f(f 1(x)),f 3(x)=f(f 2(x)),…,f n (x)=f(f n -1(x)),…,n ∈N *,那么由归纳推理可得函数f n (x)的解析式是f n (x)=________.[自主解答] 依题意得,f 1(x)=xx +2, f 2(x)=xx +2x x +2+2=x3x +4=x2-+22,f 3(x)=x 3x +4x 3x +4+2=x7x +8=x3-+23,…,由此归纳可得f n (x)=xn-+2n(x >0).[答案]xn-+2n(x >0)由题悟法1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围. 2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1.(2018·枣庄模拟)将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a+b +c)r”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD =13(S 1+S 2+S 3+S 4)r.[答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r由题悟法1.类比推理是由特殊到特殊的推理, 2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n)a p +(n -p)a m +(p -m)a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -np ·b n -pm ·b p -mn =(b 1qp -1)m -n·(b 1qm -1)n -p·(b 1qn -1)p -m=b 01·q 0=1.答案:b m -np ·b n -pm ·b p -mn =1典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n(S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)由题悟法演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF.(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF.1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( ) A .① B .② C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.(2018·合肥模拟)正弦函数是奇函数,f(x)=sin(x 2+1)是正弦函数,因此f(x)=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f(x)=sin(x 2+1)不是正弦函数,所以小前提不正确.3.(2018·泰兴模拟)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18 B.19 C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4.(2018·德州模拟)给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b”类比推出“a,c ∈C ,则a -c =0⇒a =c”;②“若a ,b ,c ,d ∈R ,则复数a +bi =c +di ⇒a =c ,b =d”类比推出“a,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a,b ∈R ,则a -b >0⇒a >b”类比推出“若a ,b ∈C ,则a -b >0⇒a >b”; ④“若x ∈R ,则|x|<1⇒-1<x <1”类比推出“若z ∈C ,则|z|<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n(n≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6.(2018·武汉市适应性训练)下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f(x)=xcos x 满足f(-x)=-f(x)对∀ x ∈R 都成立,推断:f(x)=xcos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =+2n -2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7.(2018·杭州模拟)设n 为正整数,f(n)=1+12+13+…+1n ,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f(2n),右边应当为n +22,即可得一般的结论为f(2n)≥n +22. 答案:f(2n)≥n +228.(2018·陕西高考)观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·杭州模拟)在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24. 答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+22个2+3+3+…+32个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”归纳出f(n +1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1+1-1+1-1+…+1-1的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1, f(3)-f(2)=8=4×2, f(4)-f(3)=12=4×3, f(5)-f(4)=16=4×4, …由上式规律,所以得出f(n +1)-f(n)=4n. 因为f(n +1)-f(n)=4n , 所以f(n +1)=f(n)+4n ,f(n)=f(n -1)+4(n -1) =f(n -2)+4(n -1)+4(n -2)=f(n -3)+4(n -1)+4(n -2)+4(n -3) =…=f(1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n≥2时,1-1=1-=12(1n -1-1n), ∴1+1-1+1-1+…+1-1=1+12⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝ ⎛⎭⎪⎫1-1n=32-12n.1.(2018·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n ∈N *,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0. 将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03.(2018·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1.(2018·江西高考)观察下列事实:|x|+|y|=1的不同整数解(x ,y)的个数为4,|x|+|y|=2的不同整数解(x ,y)的个数为8,|x|+|y|=3的不同整数解(x ,y)的个数为12,…,则|x|+|y|=20的不同整数解(x ,y)的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x|+|y|的值为1,2,3时,对应的(x ,y)的不同整数解的个数,再猜想|x|+|y|=n 时,对应的不同整数解的个数.通过观察可以发现|x|+|y|的值为1,2,3时,对应的(x ,y)的不同整数解的个数为4,8,12,可推出当|x|+|y|=n 时,对应的不同整数解(x ,y)的个数为4n ,所以|x|+|y|=20的不同整数解(x ,y)的个数为80.2.(2018·豫东、豫北名校测试)已知如下等式: 3-4=17(32-42),32-3×4+42=17(33+43),33-32×4+3×42-43=17(34-44),34-33×4+32×42-3×43+44=17(35+45),则由上述等式可归纳得到3n-3n-1×4+3n-2×42-…+(-1)n4n=________(n∈N*).解析:依题意及不完全归纳法得,3n-3n-1×4+3n-2×42-…+(-1)n4n=17[3n+1-(-4)n+1].答案:17[3n+1-(-4)n+1]。
2018版高考数学一轮复习第十二章推理与证明、算法、复数 12.1 合情推理与演绎推理真题演练集训理新人教A版1.[2016·北京卷]袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案:B解析:解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误.故选B.解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s(个).所以乙盒中红球与丙盒中黑球一样多.故选B.2.[2014·北京卷]学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A.2人 B.3人 C.4人 D.5人答案:B解析:设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件,因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,故选B.3.[2015·山东卷]观察下列各式:C01=40;C03+C13=41;C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________. 答案:4n -1解析:由题知,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1.4.[2015·福建卷]一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎨⎧x 4⊕x 5⊕x 6⊕x 7=0x 2⊕x 3⊕x 6⊕x 7=0x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.答案:5解析:设a ,b ,c ,d ∈{0,1},在规定运算法则下满足:a ⊕b ⊕c ⊕d =0,可分为下列三类情况:①4个1:1⊕1⊕1⊕1⊕=0,②2个1:1⊕1⊕0⊕0=0,③0个1:0⊕0⊕0⊕0=0,因此,错码1101101通过校验方程组可得:由x 4⊕x 5⊕x 6⊕x 7=0,∴1⊕1⊕0⊕1≠0; 由x 2⊕x 3⊕x 6⊕x 7=0,∴1⊕0⊕0⊕1=0; 由x 1⊕x 3⊕x 5⊕x 7=0,∴1⊕0⊕1⊕1≠0. ∴错码可能出现在x 5上或x 1与x 4都错. 由已知只有第k 位发生码元错误,故错误为x 5, 若x 5=0,则检验方程组都成立,故k =5.5.[2014·新课标全国卷Ⅰ]甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.答案:A解析:由于甲、乙、丙三人去过同一城市,而甲没有去过B城市,乙没有去过C城市,因此三人去过的同一城市应为A,而甲去过的城市比乙多,但没去过B城市,所以甲去过的城市数应为2,乙去过的城市应为A.课外拓展阅读归纳不准确致误分析[典例] 如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n}(n∈N*)的前12项,如表所示.2 013 2 014 2 015A.1 004 B.1 007 C.1 011 D.2 014[易错分析] 本题中的“按如此规律下去”就是要求由题目给出的6个点的坐标和数列的对应关系,归纳出该数列的一般关系.可能出现的错误有两种:一是归纳时找不准“前几项”的规律,胡乱猜测;二是弄错奇、偶项的关系.本题中各个点的纵坐标对应数列的偶数项,并且逐一递增,即a2n=n(n∈N*),各个点的横坐标对应数列的奇数项,正负交替后逐一递增,并且满足a4n-3+a4n-1=0(n∈N*),如果弄错这些关系就会得到错误的结果,如认为当n 为偶数时a n=n,就会得到a2 013+a2 014+a2 015=2 014的错误结论,而选D.[解析] a1=1,a2=1,a3=-1,a4=2,a5=2,a6=3,a7=-2,a8=4,…,这个数列的规律是奇数项为1,-1,2,-2,3,…,偶数项为1,2,3,…,故a2 013+a2 015=0,a2 014=1 007,故a2 013+a2 014+a2 015=1 007.[答案] B归纳总结由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.。
§7.4合情推理与演绎推理1.推理从一个或几个已知命题得出另一个新命题的思维过程称为推理.推理一般分为合情推理与演绎推理两类.2.合情推理3.(1)定义:由一般性的命题推演出特殊性命题的推理方法称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确. (×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理. (√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. (×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N *).( × ) (6)2+23=223, 3+38=338, 4+415=4415,…, 6+b a =6ba(a ,b 均为实数),则可以推测a =35,b =6.( √ ) 2.数列2,5,11,20,x,47,…中的x 等于________. 答案 32解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的后四位数字为________. 答案 8 125解析 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 011=4×501+7,所以52 011与57后四位数字相同为8125. 4.(2013·陕西)观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2. 5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.题型一 归纳推理例1设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般 性结论,并给出证明. 思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1, ∵f (x 1)+f (x 2)=33133121+++x x 3)33(333233)33)(33()33()33(2121212121+++++=+++++=+x x xx x x x x x x .33)3233(3323332)33(3323321212121=++++=⨯++++=x x x x x x x x 思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.(1)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为___________________.(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有________.答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n )>n +22(n ≥2,n ∈N *) 解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. (2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n )>n +22(n ≥2,n ∈N *).题型二 类比推理例2 已知数列{a n }为等差数列,若a m =a ,a n=b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m .类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________. 思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算. 答案 n -m d nc m解析 设数列{a n }的公差为d ,数列{b n }的公比为q .因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -man -m, 所以类比得b m +n =n -m d nc m思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应法则,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的序号是________.(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =________.答案 (1)③ (2)R =a 2+b 2+c 22解析 (1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三 演绎推理例3已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a(a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-aa x +a ,则-1-y=-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-aa a x +a=-a ·a x a +a ·a x =-a xa x +a,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数. 证明设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).所以y=f(x)为R上的单调增函数.高考中的合情推理问题典例:(1)(5分)(2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n , 正方形数N (n,4)=n 2, 五边形数N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k 2n , ∴N (10,24)=24-22×100+4-242×10 =1 100-100=1 000.答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.思维启迪 直接类比可得.解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1.因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1, x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 答案 x 0x a 2-y 0y b 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项:k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得 1×2=13(1×2×3-0×1×2), 2×3=13(2×3×4-1×2×3), …,n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)]. 相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2). 类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为 _______________________.思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)], 由此得1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), …,n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)].以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2)=14n (n +1)(n +2)(n +3). 答案 14n (n +1)(n +2)(n +3) 温馨提醒 (1)合情推理可以考查学生的抽象思维能力和创新能力,在每年的高考中经常会考到;(2)合情推理的结论要通过演绎推理来判断是否正确.方法与技巧1.合情推理的过程概括为 从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.失误与防范1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.A组专项基础训练(时间:40分钟)一、填空题1.(2012·江西改编)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=______.答案123解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.2.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1*1=1,(2)(n+1)*0=n*1+1,则n*1=.答案n解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n.3.下列推理是归纳推理的是________.(填序号)①A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆②由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab ④科学家利用鱼的沉浮原理制造潜艇答案 ②解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以②是归纳推理.4.在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体A -BCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________. 答案 127解析 平面几何中,圆的面积与圆的半径的平方成正比,而在空间几何中,球的体积与半径的立方成正比,∴V 1V 2=127. 5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为________.答案 d n =n c 1·c 2·…·c n解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d 2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·2)1(-n n q ,∴d n =n c 1·c 2·…·c n =c 1·21-n q ,即{d n }为等比数列.6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2, 易知f (14)=119,f (15)=135,故n =14.7.若函数f (x )=x x +2(x >0),且f 1(x )=f (x )=x x +2,当n ∈N *且n ≥2时,f n (x )=f [f n -1(x )],则f 3(x )=________,猜想f n (x )(n ∈N *)的表达式为________.答案 x 7x +8 x (2n -1)x +2n解析 ∵f 1(x )=x x +2,f n (x )=f [f n -1(x )](n ≥2), ∴f 2(x )=f (x x +2)=xx +2(x x +2+2)=x 3x +4. f 3(x )=f [f 2(x )]=f (x 3x +4)=x3x +4(x 3x +4+2)=x 7x +8. 由所求等式知,分子都是x ,分母中常数项为2n ,x 的系数比常数项少1,为2n -1,故f n (x )=x (2n -1)x +2n. 8.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =AC BC,把这个结论类比到空间:在三棱锥A -BCD 中(如图所示),平面DEC 平分二面角A -CD -B 且与AB 相交于点E ,则类比得到的结论是________.答案 BE EA =S △BCD S △ACD解析 易知点E 到平面BCD 与平面ACD 的距离相等,故V E -BCD V E -ACD =BE EA =S △BCD S △ACD. 二、解答题9.已知等差数列{a n }的公差d =2,首项a 1=5.(1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律.解 (1)由于a 1=5,d =2,∴S n =5n +n (n -1)2×2=n (n +4). (2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n .∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21,S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当n ≥2时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.解 如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,证明:则1AE 2=1AB 2+1AC 2+1AD 2. 如图,连结BE 并延长交CD 于F ,连结AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2, ∴1AE 2=1AB 2+1AC 2+1AD 2.B 组 专项能力提升(时间:40分钟)1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是________.答案 2解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.2.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有ab ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是______.(填序号)①自然数集②整数集 ③有理数集 ④无理数集 答案 ③解析 ①错:因为自然数集对减法、除法不封闭;②错:因为整数集对除法不封闭;③对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;④错:因为无理数集对加、减、乘、除法都不封闭.3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________.答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域. 4.对大于或等于2的正整数的幂运算有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…;23=3+5,33=7+9+11,43=13+15+17+19,….根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =________.答案 11解析 由22=1+3,32=1+3+5,42=1+3+5+7,…,可知n 2=1+3+5+…+(2n -1). 由m 2=1+3+5+…+11,可知m =6, 易知53=21+23+25+27+29, 则21是53的分解中最小的正整数, 可得p =5.故m +p =11.5.如图,类比直线方程的截距式和点到直线的距离公式,则点 H (4,2,1)到平面ABC 的距离是________. 答案326161解析 平面ABC 的方程为x -4+y -2+z3=1,即3x +6y -4z +12= 0,故所求距离d =|3×4+6×2-4×1+12|32+62+(-4)2=326161.6.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列{S nn }是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n ,(小前提)故{S nn }是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n . (结论)7.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2.故f (12 013)+f (2 0122 013)=2,f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, …f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。
高考数学(理科)一轮复习合情推理与演绎推理学案附答案本资料为woRD文档,请点击下载地址下载全文下载地址学案37 合情推理与演绎推理导学目标:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.自主梳理自我检测.观察′=2x,′=4x3,′=-sinx,由归纳推理可得:若定义在R上的函数f满足f=f,记g为f的导函数,则g等于A.fB.-fc.gD.-g2.给出下面类比推理命题:①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈c,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a =c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈c,则a-b>0⇒a>b”.其中类比结论正确的个数是A.0B.1c.2D.33.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.探究点一归纳推理例1 在数列{an}中,a1=1,an+1=2an2+an,n∈N*,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移 1 观察:①sin210°+cos240°+sin10°cos40°=34;②sin26°+cos236°+sin6°cos36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二类比推理例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有paha+pbhb+pchc=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt△ABc中,若∠c=90°,Ac=b,Bc =a,则△ABc的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.探究点三演绎推理例3 在锐角三角形ABc中,AD⊥Bc,BE⊥Ac,D、E是垂足.求证:AB的中点m到D、E的距离相等.变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数..合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.一、选择题.定义A*B,B*c,c*D,D*A的运算分别对应下图中的、、、,那么下图中的、所对应的运算结果可能是A.B*D,A*DB.B*D,A*cc.B*c,A*DD.c*D,A*D2.设f=1+x1-x,又记f1=f,fk+1=f),k=1,2,…,则fXX等于A.-1xB.xc.x-1x+1D.1+x1-x3.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a•b=b•a”;②“t=mt+nt”类比得到“•c=a•c+b•c”;③“t=m”类比得到“•c=a•”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a•p=x•p⇒a=x”;⑤“|m•n|=|m|•|n|”类比得到“|a•b|=|a|•|b|”;⑥“acbc=ab”类比得到“a•cb•c=ab”.以上的式子中,类比得到的结论正确的个数是A.1B.2c.3D.44.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是A.289B.1024c.1225D.13785.已知整数的数对如下:,,,,,,,,,,,,…则第60个数对是A.B.c.D.二、填空题6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是___________________________________________________ _____________________.7.定义一种运算“*”:对于自然数n满足以下运算性质:8.观察下列等式=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为___________________________________________________ __.三、解答题9.(12分)已知数列{an}的前n项和为Sn,a1=-23,且Sn+1Sn+1+2=0.计算S1,S2,S3,S4,并猜想Sn的表达式.10.已知函数f=-aax+a,证明:函数y=f的图象关于点12,-12对称;求f+f+f+f+f+f的值.1.如图1,若射线om,oN上分别存在点m1,m2与点N1,N2,则=om1om2•oN1oN2;如图2,若不在同一平面内的射线oP,oQ和oR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.学案37 合情推理与演绎推理自主梳理归纳推理全部对象部分个别类比推理这些特征特殊到特殊①一般原理②特殊情况③特殊情况一般特殊自我检测.D [由所给函数及其导数知,偶函数的导函数为奇函数.因此当f是偶函数时,其导函数应为奇函数,故g=-g.] 2.c [①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]3.1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除大前提2100+1是奇数小前提所以2100+1不能被2整除结论课堂活动区例1 解题导引归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解在{an}中,a1=1,a2=2a12+a1=23,a3=2a22+a2=12=24,a4=2a32+a3=25,…,所以猜想{an}的通项公式为an=2n+1.这个猜想是正确的,证明如下:因为a1=1,an+1=2an2+an,所以1an+1=2+an2an=1an+12,即1an+1-1an=12,所以数列1an是以1a1=1为首项,2为公差的等差数列,所以1an=1+×12=12n+12,所以通项公式an=2n+1.变式迁移1 解猜想sin2α+cos2+sinαcos=34.证明如下:左边=sin2α+cos[cos+sinα]=sin2α+32cosα-12sinα32cosα+12sinα=sin2α+34cos2α-14sin2α=34=右边.例2 解题导引类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为pa,pb,pc,pd,且相应各面上的高分别为ha,hb,hc,hd.则有paha+pbhb+pchc+pdhd=1.证明如下:paha=13S△BcD•pa13S△BcD•ha=VP—BcDVA—BcD,同理有pbhb=VP—cDAVB—cDA,pchc=VP—BDAVc—BDA,pdhd=VP—ABcVD—ABc,VP—BcD+VP—cDA+VP—BDA+VP—ABc=VA—BcD,∴paha+pbhb+pchc+pdhd=VP—BcD+VP—cDA+VP—BDA+VP—ABcVA—BcD=1.变式迁移2 在三棱锥A—BcD中,若AB、Ac、AD两两互相垂直,且AB=a,Ac=b,AD=c,则此三棱锥的外接球半径R=a2+b2+c22例3 解题导引在演绎推理中,只有前提和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD中,AD⊥Bc,即∠ADB=90°,——小前提所以△ADB是直角三角形.——结论因为直角三角形斜边上的中线等于斜边的一半,——大前提而m是Rt△ADB斜边AB的中点,Dm是斜边上的中线,——小前提所以Dm=12AB.——结论同理Em=12AB,所以Dm=Em.变式迁移3 解证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.课后练习区.B [由图得A表示|,B表示□,c表示—,D表示○,故图表示B*D和A*c.]2.A [计算f2=f1+x1-x=1+1+x1-x1-1+x1-x =-1x,f3=f-1x=1-1x1+1x=x-1x+1,f4=1+x-1x+11-x-1x+1=x,f5=f1=1+x1-x,归纳得f4k+i=fi,k∈N*,i=1,2,3,4.∴fXX=f2=-1x.]3.B [只有①、②对,其余错误,故选B.]4.c [设图中数列1,3,6,10,…的通项公式为an,则a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n.故an-a1=2+3+4+…+n,∴an=nn+12.而图中数列的通项公式为bn=n2,因此所给的选项中只有1225满足a49=49×502=b35=352=1225.]5.D [观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n+1的数对有n个,多个数对的排序是按照横坐标依次增大的顺序来排的,由nn +12=60⇒n=120,n∈Z,n=10时,nn+12=55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是,,,,,∴第60个数对是.]6.空间正四面体的内切球的半径是高的14解析利用体积分割可证明.7.n8.n++…+=2解析∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n个等式为n++…+=2.9.解当n=1时,S1=a1=-23.当n=2时,1S2=-2-S1=-43,∴S2=-34.当n=3时,1S3=-2-S2=-54,∴S3=-45.当n=4时,1S4=-2-S3=-65,∴S4=-56.猜想:Sn=-n+1n+2.0.证明函数f的定义域为R,任取一点,它关于点12,-12对称的点的坐标为.由已知得y=-aax+a,则-1-y=-1+aax+a=-axax+a,f=-aa1-x+a=-aaax+a=-a•axa+a•ax=-axax+a,∴-1-y =f.即函数y=f的图象关于点12,-12对称.解由有-1-f=f,即f+f=-1.∴f+f=-1,f+f=-1,f+f=-1,则f+f+f+f+f+f=-3.1.解类似的结论为:Vo—P1Q1R1Vo—P2Q2R2=oP1oP2•oQ1oQ2•oR1oR2.这个结论是正确的,证明如下:如图,过R2作R2m2⊥平面P2oQ2于m2,连接om2.过R1在平面oR2m2作R1m1∥R2m2交om2于m1,则R1m1⊥平面P2oQ2.由Vo—P1Q1R1=13S△P1oQ1•R1m1=13•12oP1•oQ1•sin∠P1oQ1•R1m1=16oP1•oQ1•R1m1•sin∠P1oQ1,同理,Vo—P2Q2R2=16oP2•oQ2•R2m2•sin∠P2oQ2.所以=oP1•oQ1•R1m1oP2•oQ2•R2m2.由平面几何知识可得R1m1R2m2=oR1oR2.所以=oP1•oQ1•oR1oP2•oQ2•oR2.所以结论正确.。
12.3 合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.合情推理主要包括__________和__________.合情推理的过程:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想(1)归纳推理:由某类事物的________具有某些特征,推出该类事物的__________都具有这些特征的推理,或者由________概括出__________的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由________具有某些类似特征和其中________的某些已知特征,推出________也具有这些特征的推理称为类比推理(简称类比),简言之,类比推理是由______到______的推理.2.演绎推理:从______的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由______到______的推理.(1)三段论是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)“三段论”可以表示为①大前提:M是P.②小前提:S是M.③结论:S是P.用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是( ).A.白色B.黑色C.白色可能性大D.黑色可能性大2.数列2,5,11,20,32,x,…中的x等于( ).A.28 B.32C.33 D.473.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ).A.f(x) B.-f(x)C.g(x) D.-g(x)4.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( ).A.0 B.1 C.2 D.3一、归纳推理【例1】 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想. 方法提炼1.归纳推理的特点:(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的.所以“前提真而结论假”的情况是可能发生的;(3)人们在进行归纳推理时,总是先收集一定的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行;(4)归纳推理能够发现新事实、获得新结论,是做出科学发现的重要手段.2.归纳推理的一般步骤:首先,对有限的资料进行观察、分析、归纳整理;然后,在此基础上提出带有规律性的结论,即猜想;最后,检验这个猜想.请做演练巩固提升1 二、类比推理【例2】 在Rt △ABC 中,∠BAC =90°,作AD ⊥BC ,D 为垂足,BD 为AB 在BC 上的射影,CD 为AC 在BC 上的射影,则有AB 2+AC 2=BC 2,AC 2=CD ·BC 成立.直角四面体PABC (即PA ⊥PB 、PB ⊥PC 、PC ⊥PA )中,O 为P 在△ABC 内的射影,△PAB 、△PBC 、△PCA 的面积分别记为S 1、S 2、S 3,△OAB 、△OBC 、△OCA 的面积分别记为S ′1、S ′2、S ′3,△ABC 的面积记为S .类比直角三角形中的射影结论,在直角四面体PABC 中可得到正确结论________(写出一个正确结论即可).方法提炼1.类比推理的特点:(1)类比推理是由特殊到特殊的推理;(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠;(3)类比推理以旧的知识作基础,推测新的结果,具有发现的功能;(4)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.2.类比推理的步骤:首先,找出两类对象之间可以确切表述的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而获得一个猜想;最后,检验这个猜想.类比是科学研究最普遍的方法之一.在数学中,类比是发现概念、方法、定理和公式的重要手段,也是开拓新领域和创造新分支的重要手段.类比在数学中应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限之间有不少结论,都是先用类比法猜想,而后加以证明的.请做演练巩固提升2三、演绎推理【例3】如图,已知直四棱柱ABCDA1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.(1)证明:无论点E怎样运动,四边形EFD1D都为矩形;(2)当EC=1时,求几何体AEFD1D的体积.方法提炼1.演绎推理是由一般性的命题推出特殊性命题的一种推理模式.2.演绎推理的一般模式是由大前提、小前提推出结论的三段论推理.三段论推理常用的一种格式,可以用以下公式来表示:如果b⇒c,a⇒b,则a⇒c.3.演绎推理是一种必然性推理.演绎推理的前提与结论之间有蕴涵关系,因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的.错误的前提可能导致错误的结论.三段论推理也可用集合论的观点来解释:若集合M的所有元素都具有性质P,S是M 的子集,那么S中所有元素也都具有性质P.三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般性的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.请做演练巩固提升3把握不准周期性而致误【典例】 (2012陕西高考)观察下列不等式1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个不等式为________________.答案:1+122+132+142+152+162<116答题指导:在解答本题时有两点易造成误解:(1)对于给定的式子,只观察式子结果,而不去继续探究下几项式子,从而找不到规律而误解.(2)在继续探究的情况下,运算错误从而导致周期找不到或找错周期而误解.1.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( ). A .01 B .43 C .07 D .492.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体PABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ).A.18B.19C.164 D.1273.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以y=⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误..是( ). A .大前提错导致结论错 B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提错都导致结论错4.(2012湖北高考)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=______.(用k 表示)5.(2012长沙模拟)有以下命题:设a n 1,a n 2,…,a n m 是公差为d 的等差数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m (p ∈N *,r ∈N 且r <m ),则a n 1+a n 2+…+a n mm =a p +r md ;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等差平均项.(1)已知等差数列{a n }的通项公式为a n =2n ,根据上述命题,则a 1,a 3,a 10,a 18的等差平均项为________.(2)将上述真命题推广到各项为正实数的等比数列中:设a n 1,a n 2,…,a n m 是公比为q的等比数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m(p ∈N *,r ∈N 且r <m ),则________;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等比平均项.参考答案基础梳理自测知识梳理1.归纳推理 类比推理 (1)部分对象全部对象 个别事实 一般结论 (2)两类对象 一类对象 另一类对象 特殊 特殊 2.一般性 一般 特殊 基础自测1.A 解析:由图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.2.D 解析:由5-2=3,11-5=6,20-11=9,32-20=12,则x -32=15,∴x =47. 3.D 解析:由已知的三个求导式可归纳推理得到偶函数的导函数是奇函数,又f (x )是偶函数,所以g(x )是奇函数,故g(-x )=-g(x ).4.B 解析:只有③正确. 考点探究突破【例1】 解:猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin2α+⎝ ⎛⎭⎪⎫32cos α-12sin α⎝ ⎛⎭⎪⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.【例2】 S 21=S 1′S(或S 2=S 21+S 22+S 23)解析:空间问题与平面问题的类比,通常可抓住几何要素的如下对应关系作对比:多面体↔多边形,面↔边,体积↔面积,二面角↔平面角,面积↔线段长,…,由此,可类比得S 21=S 1′S(或S 2=S 21+S 22+S 23).【例3】 (1)证明:在直四棱柱ABCDA 1B 1C 1D 1中,DD 1∥CC 1, ∵EF∥CC 1,∴EF∥DD 1.又∵平面ABCD∥平面A 1B 1C 1D 1, 平面ABCD ∩平面EFD 1D =ED , 平面A 1B 1C 1D 1∩平面EFD 1D =FD 1,∴ED∥FD 1.∴四边形EFD 1D 为平行四边形. ∵侧棱DD 1⊥底面ABCD ,又DE ⊂平面ABCD , ∴DD 1⊥DE.∴四边形EFD 1D 为矩形. (2)解:连接AE ,∵四棱柱ABCD A 1B 1C 1D 1为直四棱柱, ∴侧棱DD 1⊥底面ABCD.又AE ⊂平面ABCD ,∴DD 1⊥AE. 在Rt △ABE 中,AB=2,BE=2, 则AE=22.在Rt △CDE 中,EC=1,CD=1, 则DE=2.在直角梯形ABCD 中,AD=22()10BC AB CD +-=, ∴AE 2+DE 2=AD 2,即AE ⊥ED. 又∵ED ∩DD 1=D , ∴AE ⊥平面EFD 1D.由(1)可知,四边形EFD 1D 为矩形,且DE =2,DD 1=1,∴矩形EFD 1D 的面积为S 矩形EFD 1D =DE ·DD 1=2.∴几何体AEFD 1D 的体积为V AEFD 1D =13S 矩形EFD 1D ·AE=13×2×22=43.演练巩固提升1.B 解析:(法一)由题意得,72 011=7502×4+3=(74)502·73,由于74=2 401末位为1,倒数第二位为0,因此2 401502的末两位定为01.又73=343,∴(74)502·73的末两位定为43.(法二)用归纳法:∵72=49,73=343,74=2 401,75=16 807,76=117 649,77=823 543,…,由上知末两位有周期性且T =4.又72 011=7502×4+3,∴72 011的末两位与73的末两位一样为43.2.D 解析:正四面体的内切球与外接球的半径之比为1∶3,故体积之比为V 1V 2=127.3.A 解析:y =a x是增函数这个大前提是错误的,从而导致结论错误.4.(1)5 030 (2)5k (5k -1)2解析:(1)由题意可得,a 1=1,a 2=3,a 3=6,a 4=10,…,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n .以上各式相加得,a n -a 1=2+3+…+n =(n -1)(n +2)2,故a n =n (n +1)2.因此,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,…由此归纳出b 2 012=a 5 030.(2)b 1=a 4=4×52,b 3=a 9=9×102,b 5=a 14=14×152,….归纳出b 2k -1=5k (5k -1)2.5.a 8ma n 1·a n 2·…·a n m =a p ·r mq解析:(1)∵a 1+a 3+a 10+a 184=2+6+20+364=16,∴a 1,a 3,a 10,a 18的等差平均项为a 8.(2)用m a n 1·a n 2·…·a n m 类比a n 1+a n 2+…+a n m m 用a p ·r m q 来类比a p +rmd 可得.。
0(1,2,,)ia i n >=2.1 合情推理与演绎推理姓名 班级【学习目标】(1)结合已学过的数学实例,了解归纳推理、合情推理的含义,通过生活中的实例和已学过的教学的案例,体会演绎推理的重要性;(2)能利用归纳、类比进行简单的推理,体会并认识合情推理、演绎推理在数学发现中的作用。
掌握推理的基本方法,并能运用它们进行一些简单推理。
【教学重点】能利用归纳、类比、演绎的方法进行简单的推理。
【教学难点】用归纳和类比进行推理,作出猜想;分析证明过程中包含的“三段论”形式。
【教学过程】问题一:归纳推理一、创设情境1.哥德巴赫猜想:哥德巴赫观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 1000=29+971,, ……猜测:任一不小于6的偶数都等于两个奇质数之和。
2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对20213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:任何形如122+=nF (*∈N n )的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,从而推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的计算机上,用1200个小时,作了100亿逻辑判断,完成证明。
4. 哥尼斯堡城七桥问题:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图1所示。
7.4 合情推理与演绎推理『知识梳理』一、教学目标能用归纳和类比等方法进行简单的推理,了解合情推理在数学发现中的作用;掌握演绎推理的基本方法,并能运用它们进行一些简单的推理;了解合情推理和演绎推理的联系和区别.二、合情推理归纳推理类比推理定义由某类事物的具有某些特征,推出该类事物的都具有这些特征的推理,或者由概括出的推理由两类对象具有和其中一类对象的推出另一类对象也具有这些特征的推理特点由到、由到的推理由到的推理一般步骤(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确的一般性命题(猜想)(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)三、演绎推理1.定义:从出发,推出下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:“三段论”的结构①大前提—已知的;②小前提—所研究的特殊情况;③结论—根据一般原理,对做出的判断“三段论”的表示①大前提—M是P;③小前提—S是M;④结论—4.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.5.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.考点一归纳推理典题导入『例1』已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.由题悟法1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.『注意』归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为()135791113151719212325272931………A.809B.852C.786 D.893考点二类比推理典题导入『例2』在平面几何里,有“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=12(a+b+c)r”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则四面体的体积为________________”.由题悟法1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.考点三演 绎 推 理典题导入『例3』 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .由题悟法演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).答案『知识梳理』二、归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由两类对象具有类似特征和其中一类对象的某些已知特征推出另一类对象也具有这些特征的推理特点由部分到整体、由个别到一般的推理由特殊到特殊的推理一般步骤(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确的一般性命题(猜想)(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)三、1.一般性的原理某个特殊情况2.一般到特殊3.“三段论”的结构①大前提—已知的一般原理;②小前提—所研究的特殊情况;③结论—根据一般原理,对特殊情况做出的判断“三段论”的表示①大前提—M是P;②小前提—S是M;③结论—S是P『例1』『解析』依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x22-1x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x23-1x+23,…,由此归纳可得f n(x)=x2n-1x+2n(x>0).『答案』 x2n -1x +2n(x >0)1.『解析』选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.『例2』 『解析』 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V四面体ABCD=13(S 1+S 2+S 3+S 4)r . 『答案』 V 四面体ABCD =13(S 1+S 2+S 3+S 4)r2.『解析』设{b n }的首项为b 1,公比为q ,则b m -n p ·b n -p m ·b p-mn=(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1.『答案』b m -n p·b n -p m ·b p -mn =1『例3』『解析』 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)3.证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提)所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .。
第十二章⎪⎪⎪推理与证明、算法、复数第一节 合情推理与演绎推理本节主要包括2个知识点: 1.合情推理; 2.演绎推理.突破点(一) 合情推理[基本知识][基本能力]1.判断题(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是a n =________.解析:a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2. 答案:n 2(2)由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是合情推理中的________推理.答案:类比(3)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3. 则第5个不等式为____________________________________________________.答案:12+16+112+120+130< 5[全析考法]运用归纳推理时的一般步骤(1)通过观察特例发现某些相似性(特例的共性或一般规律);(2)把这种相似性推广到一个明确表述的一般命题(猜想);(3)对所得出的一般性命题进行检验.类型(一)与数字有关的推理[例1](1)给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=()A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)(2)(2018·兰州模拟)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,则1+2+…+n+…+2+1=________.[解析](1)由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).(2)由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n+…+2+1=n2.[答案](1)A(2)n2解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.[易错提醒]类型(二) 与式子有关的推理[例2] (1)(2016·山东高考)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________.(2)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.[解析] (1)观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=43×n ×(n +1)=4n (n +1)3. (2)第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .[答案] (1)4n (n +1)3 (2)n n[方法技巧]与式子有关的推理类型及解法(1)与等式有关的推理.观察每个等式的特点,找出等式左右两侧的规律及符号后可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. 类型(三) 与图形有关的推理[例3] 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55[解析] 因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.[答案] D [方法技巧]与图形有关的推理的解法与图形变化相关的归纳推理,解决的关键是抓住相邻图形之间的关系,合理利用特殊图形,找到其中的变化规律,得出结论,可用赋值检验法验证其真伪性.类比推理1.类比推理的应用一般分为类比定义、类比性质和类比方法,常用技巧如下:类比定义 在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解 类比性质 从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键 类比方法 有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移2.平面中常见的元素与空间中元素的类比:平面 点 线 圆 三角形 角 面积 周长 … 空间线面球三棱锥二面角体积表面积…[例4] 如图,在△ABC 中,O 为其内切圆圆心,过O 的直线将三角形面积分为相等的两部分,且该直线与AC ,BC 分别相交于点F ,E ,则四边形ABEF 与△CEF 的周长相等.试将此结论类比到空间,写出一个与其相关的命题,并证明该命题的正确性. [解] 如图,截面AEF 经过四面体ABCD 的内切球(与四个面都相切的球)的球心O ,且与BC ,DC 分别交于点E ,F ,若截面将四面体分为体积相等的两部分,则四棱锥A -BEFD 与三棱锥A -EFC 的表面积相等.下面证明该结论的正确性, 设内切球半径为R ,则V A -BEFD =13(S △ABD +S △ABE +S △ADF +S 四边形BEFD )×R =V A -EFC =13(S △AEC +S △ACF +S △ECF )×R ,即S △ABD +S △ABE +S △ADF +S 四边形BEFD =S △AEC +S △ACF +S △ECF ,两边同加S △AEF 可得结论. [方法技巧]类比推理的步骤和方法(1)类比推理是由特殊到特殊的推理,其一般步骤为: ①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.[全练题点]1.[考点二]由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”; ⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B ①②正确,③④⑤⑥错误.2.[考点二]在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.3.[考点一·类型(一)]将正奇数排成如图所示的三角形数阵(第k 行有k 个奇数),其中第i 行第j 个数表示为a ij ,例如a 42=15,若a ij =2 017,则i -j =( )1 3 5 7 9 1113 15 17 19…A .26B .27C .28D .29解析:选A 前k 行共有奇数为1+2+3+…+k =k (1+k )2个,所以第k 行的最后一个数为2·k (1+k )2-1=k 2+k -1,第k +1行的第一个数为k (k +1)+1,当k +1=45时,k (k +1)+1=44×45+1=1 981,即第45行的第一个数为1 981,因为2 017-1 9812=18,所以2 017是第45行的第19个数,即i =45,j =19,所以i -j =45-19=26.故选A.4.[考点一·类型(二)]观察下列各等式:55-4+33-4=2,22-4+66-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A 各等式可化为55-4+8-5(8-5)-4=2,22-4+8-2(8-2)-4=2;77-4+8-7(8-7)-4=2,1010-4+8-10(8-10)-4=2,可归纳得一般等式:nn -4+8-n (8-n )-4=2,故选A.5.[考点一·类型(三)]蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.解析:因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1.答案:373n2-3n+1突破点(二)演绎推理[基本知识](1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)模式:“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(3)特点:演绎推理是由一般到特殊的推理.[基本能力]1.判断题(1)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.()(2)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案:(1)√(2)×2.填空题(1)下列说法:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.其中正确的有________个.解析:易知①③④正确.答案:3(2)推理“①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形”中的小前提是________(填序号).答案:②[全析考法][典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论) (大前提是等比数列的定义)(2)由(1)可知数列⎩⎨⎧⎭⎬⎫S n n 是等比数列,(大前提)所以S n +1n +1=4·S n -1n -1(n ≥2),即S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) 所以对于任意正整数n ,都有S n +1=4a n .(结论)[方法技巧]演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本例中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.[全练题点]1.已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m .证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)b <a ,m >0,(小前提) 所以mb <ma .(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提) mb <ma ,(小前提)所以mb +ab <ma +ab ,即b (a +m )<a (b +m ).(结论)因为不等式两边同除以一个正数,不等号不改变方向,(大前提) b (a +m )<a (b +m ),a (a +m )>0,(小前提) 所以b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .(结论)2.已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调递增函数.证明:设任意x 1,x 2∈R ,取x 1<x 2, 则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),所以x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0,[f (x 2)-f (x 1)](x 2-x 1)>0, 因为x 1<x 2,即x 2-x 1>0,所以f (x 2)-f (x 1)>0,即f (x 2)>f (x 1).(小前提) 所以y =f (x )为R 上的单调递增函数.(结论)[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩解析:选D 依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选D.2.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:由丙所言可能有两种情况.一种是丙持有“1和2”,结合乙所言可知乙持有“2和3”,从而甲持有“1和3”,符合甲所言情况;另一种是丙持有“1和3”,结合乙所言可知乙持有“2和3”,从而甲持有“1和2”,不符合甲所言情况.故甲持有“1和3”.答案:1和33.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三个去过同一城市. 由此判断乙去过的城市为________.解析:由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过的同一城市应为A ,而甲去过的城市比乙多,但没去过B 城市,所以甲去过A ,C 城市,乙去过的城市应为A.答案:A[课时达标检测][小题对点练——点点落实]对点练(一) 合情推理1.(1)已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n -1=n 2,则(1)(2)两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理解析:选A (1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理,故选A.2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .121 B .123 C .231D .211解析:选B 令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是( )A .n (n +1) B.n (n -1)2C.n (n +1)2D .n (n -1)解析:选C 由题图知第1个图形的小正方形个数为1,第2个图形的小正方形个数为1+2,第3个图形的小正方形个数为1+2+3,第4个图形的小正方形个数为1+2+3+4,…,则第n 个图形的小正方形个数为1+2+3+…+n =n (n +1)2.4.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选B 55=3 125 ,56=15 625,57=78 125,58=390 625,59=1 953 125,…,可得59与55的后四位数字相同,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.5.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z +3=0的距离为( )A .3B .5 C.5217D .3 5解析:选B 类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B.6.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作……根据以上操作,若要得到100个小三角形,则需要操作的次数是________.解析:由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个……由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.答案:337.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.1 2 3 4 5 … 3 5 7 9 … 8 12 16 … 20 28 …2 013 2 014 2 015 2 0164 027 4 029 4 0318 056 8 060 16 116……该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为____________.解析:观察数列,可以发现规律:每一行都是一个等差数列,且第一行的公差为1,第二行的公差为2,第三行的公差为4,第四行的公差为8,…,第2 015行的公差为22 014,故第一行的第一个数为2×2-1,第二行的第一个数为3×20,第三行的第一个数为4×21,第四行的第一个数为5×22,…,第n 行的第一个数为(n +1)·2n-2,故第2 016行(最后一行)仅有一个数为(1+2 016)×22 014=2 017×22 014.答案:2 017×22 0148.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为20172的格点的坐标为____________.解析:因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 009,1 008)处标2 0172.答案:(1 009,1 008) 对点练(二) 演绎推理1.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B 对于A ,小前提与结论互换,错误;对于B ,符合演绎推理过程且结论正确;对于C 和D ,大前提均错误.故选B.2.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C.推理形式错误D.结论正确解析:选A若f′(x0)=0,则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理() A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.4.(2018·湖北八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是() A.甲B.乙C.丙D.丁解析:选D若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名;若乙猜测正确,则3号不可能得第一名,即1,2,4,5,6号选手中有一位获得第一名,那么甲和丙中有一人也猜对比赛结果,与题意不符,故乙猜测错误;若丙猜测正确,那么乙猜测也正确,与题意不符,故仅有丁猜测正确,所以选D.5.在一次调查中,甲、乙、丙、丁四名同学的阅读量有如下关系:甲、丙阅读量之和与乙、丁阅读量之和相同,甲、乙阅读量之和大于丙、丁阅读量之和,丁的阅读量大于乙、丙阅读量之和.那么这四名同学按阅读量从大到小排序依次为____________.解析:因为甲、丙阅读量之和等于乙、丁阅读量之和,甲、乙阅读量之和大于丙、丁阅读量之和,所以乙的阅读量大于丙的阅读量,甲的阅读量大于丁的阅读量,因为丁的阅读量大于乙、丙阅读量之和,所以这四名同学按阅读量从大到小排序依次为甲、丁、乙、丙.答案:甲、丁、乙、丙[大题综合练——迁移贯通]1.给出下面的数表序列:其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解:表4为1 3 5 7 4 8 1212 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.2.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,求证:1AD 2=1AB 2+1AC 2.在四面体ABCD 中,类比上述结论,你能得到怎样的猜想?并说明理由.解:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD 2.证明:如图,连接BE 并延长交CD 于点F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD .∵AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. ∵AB ⊥平面ACD ,∴AB ⊥CD .∵AE ⊥平面BCD ,∴AE ⊥CD .又AB ∩AE =A , ∴CD ⊥平面ABF ,∴CD ⊥AF .∴在Rt △ACD 中1AF 2=1AC 2+1AD 2,∴1AE 2=1AB 2+1AC 2+1AD2. 3.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.第二节 直接证明与间接证明、数学归纳法本节主要包括3个知识点: 1.直接证明; 2.间接证明; 3.数学归纳法.突破点(一) 直接证明[基本知识]Q (结论)⇐P 1→P 1⇐P 2→…→得到一个明显成立的条件[基本能力]1.判断题(1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(3)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( ) (4)证明不等式2+7<3+6最合适的方法是分析法.( ) 答案:(1)× (2)× (3)√ (4)√ 2.填空题(1)6-22与5-7的大小关系是________.解析:假设6-22>5-7,由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.答案:6-22>5-7 (2)已知a ,b 是不相等的正数,x =a +b2,y =a +b ,则x 、y 的大小关系是________. 解析:x 2=12(a +b +2ab ),y 2=a +b =12(a +b +a +b )>12(a +b +2ab )=x 2,又∵x >0,y >0,∴y >x .答案:y >x(3)设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________. 解析:∵a >b >0,∴a >b ,a -b >0,∴n 2-m 2=a -b -(a +b -2ab )=2ab -2b >2b 2-2b =0,∴n 2>m 2, 又∵m >0,n >0,∴n >m . 答案:n >m[全析考法](1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式; (2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型. [例1] (2018·武汉模拟)已知函数f (x )=(λx +1)ln x -x +1. (1)若λ=0,求f (x )的最大值;(2)若曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直,证明:f (x )x -1>0.[解] (1)f (x )的定义域为(0,+∞). 当λ=0时,f (x )=ln x -x +1.则f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0, 故f (x )在(0,1)上是增函数; 当x >1时,f ′(x )<0,故f (x )在(1,+∞)上是减函数. 故f (x )在x =1处取得最大值f (1)=0. (2)证明:由题可得,f ′(x )=λln x +λx +1x-1. 由题设条件,得f ′(1)=1,即λ=1. ∴f (x )=(x +1)ln x -x +1.由(1)知,ln x -x +1<0(x >0,且x ≠1).当0<x <1时,x -1<0,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)<0,∴f (x )x -1>0.当x >1时,x -1>0,f (x )=(x +1)ln x -x +1=ln x +(x ln x -x +1)=ln x -x ⎝⎛⎭⎫ln 1x -1x +1>0,∴f (x )x -1>0.综上可知,f (x )x -1>0. [方法技巧] 综合法证题的思路分析法[例2] 已知a >0,1b -1a >1,求证:1+a >11-b .[证明] 由已知1b -1a >1及a >0,可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1,只需证1+a-b -ab >1,只需证a -b -ab >0,即a -b ab >1,即1b -1a>1.这是已知条件,所以原不等式得证.[方法技巧]分析法证题的思路(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.[全练题点]1.[考点一]命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:选B 因为证明过程是“由因导果”,即由条件逐步推向结论,故选B.2.[考点一](2018·广州调研)若a ,b ,c 为实数,且a <b <0,则下列不等式成立的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b解析:选B a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a (a -b )>0,即a 2-ab >0,∴a 2>ab .① 又∵ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.3.[考点一]已知a ,b ,c 为正实数,a +b +c =1,求证:a 2+b 2+c 2≥13.证明:因为a +b +c =1,所以(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2=3(a 2+b 2+c 2),当且仅当a =b =c =13时,等号成立.所以a 2+b 2+c 2≥13.4.[考点二]已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )·(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证m (a -b )2≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.突破点(二) 间接证明[基本知识]1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.用反证法证明问题的一般步骤3.常见的结论和反设词[基本能力]1.判断题(1)用反证法证明结论“a>b”时,应假设“a<b”.()(2)反证法是指将结论和条件同时否定,推出矛盾.()(3)用反证法证题时必须先否定结论,否定结论就是找出结论的反面的情况.()(4)反证法的步骤是:①准确反设;②从否定的结论正确推理;③得出矛盾.() 答案:(1)×(2)×(3)√(4)√2.填空题(1)用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.答案:3a≤3b(2)应用反证法推出矛盾的推导过程中,可把下列哪些作为条件使用________(填序号).①结论相反的判断即假设;②原命题的条件;③公理、定理、定义;④原结论.答案:①②③(3)写出下列命题的否定.①若a,b,c满足a2+b2=c2,则a,b,c不都是奇数;否定为____________________________________________________________;②若p>0,q>0,p3+q3=2,则p+q≤2;否定为________________________________________________________;③所有的正方形都是矩形;否定为________________________________________________________________;④至少有一个实数x,使x2+1=0;否定为_______________________________________________________________.答案:①若a,b,c满足a2+b2=c2,则a,b,c都是奇数②若p>0,q>0,p3+q3=2,则p+q>2③至少存在一个正方形不是矩形④不存在实数x ,使x 2+1=0[全析考法][例1] 设{a n }是公比为q (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n=⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n)1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.[例2] 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数. (1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有{h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.[例3] 已知a ,b ,c c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[证明] 假设三个方程都没有两个相异实根,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0. 上述三个式子相加得:a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0, 即(a -b )2+(b -c )2+(c -a )2≤0.由已知a ,b ,c 是互不相等的非零实数.因此,上式“=”不能同时成立,即(a -b )2+(b -c )2+(c -a )2<0与事实不符,故ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[全练题点]1.[考点三](2018·上海十二校模拟)用反证法证明命题“已知a ,b ∈N *,如果ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 不能被5整除解析:选B 用反证法证明命题时,应先假设结论的否定成立,而至少有一个能被5整除的否定是都不能被5整除,故作的假设是“a ,b 都不能被5整除”.2.[考点一、三]若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数是( )A .0B .1C .2D .3解析:选C 由于a ,b ,c 不全相等,则a -b ,b -c ,c -a 中至少有一个不为0,故①正确;②显然正确;令a =2,b =3,c =5,满足a ≠c ,b ≠c ,a ≠b ,故③错误.3.[考点三]已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.证明:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =x 2+12+2-x +x 2-x +1=2x 2-2x +12+3=2⎝⎛⎭⎫x -122+3≥3, 两者矛盾,所以假设不成立, 故a ,b ,c 至少有一个不小于1.4.[考点一]等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列, 则b 2q =b p b r ,。