第十四章 流变学基础
- 格式:ppt
- 大小:330.50 KB
- 文档页数:22
流变学原理流变学原理是研究物质在外力作用下的变形和流动特性的学科。
它是材料科学和工程学中的重要分支,广泛应用于工业生产和科学研究中。
流变学原理的研究对于了解物质的结构和性能具有重要意义,可以指导材料的设计和制备过程。
下面将详细介绍流变学原理的相关内容。
流变学原理的研究对象是流体和固体材料。
流体是指具有流动性质的物质,如液体和气体;固体是指具有一定形状和体积的物质。
流变学原理主要关注物质在外力作用下的变形行为,即物质的形状和体积发生改变。
物质的变形行为与外力的大小和方向有关,同时也受到物质本身的性质和结构所影响。
流变学原理的基本假设是物质的变形是连续的,即物质的各个部分之间不存在断裂或滑动。
根据这一假设,流变学原理可以通过实验和理论分析来研究物质的变形行为。
实验方面,流变学原理利用流变仪器对物质进行测试,获取物质在不同应力条件下的变形数据。
理论方面,流变学原理建立了描述物质变形行为的数学模型,通过数学分析和计算来预测物质的流变性能。
在流变学原理中,最重要的参数是应力和应变。
应力是物质受到外力作用时的反应,可以理解为单位面积上的力的大小。
应变是物质在外力作用下发生的形变,可以理解为单位长度上的变化量。
应力和应变之间的关系可以用应力-应变曲线来表示,曲线的斜率代表了物质的刚性和变形能力。
根据物质的不同性质,流变学原理可以分为液体流变学和固体流变学。
液体流变学研究液体在外力作用下的变形和流动特性。
液体的流变行为与其黏性和粘度有关,黏性越大,流体的阻力越大,流动越困难。
固体流变学研究固体材料在外力作用下的变形和流动特性。
固体的流变行为与其弹性和塑性有关,弹性固体在受力后可以恢复原状,塑性固体在受力后会发生形变而无法恢复。
流变学原理的研究不仅可以应用于工业生产中的材料设计和工艺改进,还可以用于科学研究中的材料性能评估和理论验证。
例如,在涂料工业中,流变学原理可以用来研究涂料的流动性和涂覆性能,优化涂料的配方和施工工艺。
流体的流变学和流变性流体的流变学是研究流体在外力作用下变形和流动行为的科学。
流变性描述了流体在受力时的响应特性,其对于工程学、材料科学、地质学和生物学等领域具有重要意义。
本文将介绍流体的流变学基础知识、流变性的分类与特征,以及流变学在不同领域的应用。
一、流体的流变学基础知识流体的流变学基础知识包括黏度、剪切应力、剪切速率等概念。
黏度是衡量流体内部黏滞阻力大小的物理量,它描述了流体的黏稠程度。
通常用希氏粘度(Pa·s)或毫希氏粘度(mPa·s)来表示。
剪切应力是指单位面积上的切应力,即流体在受力作用下沿垂直于受力方向发生的变形力。
用帕斯卡(Pa)来表示。
剪切速率是指流体内各层之间相对运动的速率,它是剪切应力引起的流体变形速率。
通常用秒的倒数(s-1)来表示。
二、流变性的分类与特征根据流体的流变性质,流体可以分为牛顿流体和非牛顿流体。
牛顿流体是指其黏度对剪切应力的变化不敏感,黏度保持不变。
一般来说,水、气体等低粘度液体都是牛顿流体。
非牛顿流体则是指其黏度随剪切应力的变化而变化。
非牛顿流体的流变性质较为复杂,主要分为塑性流体、剪切稀化流体和剪切增稠流体等。
塑性流体是指在一定的剪切应力下才会发生塑性变形的流体,如面膜、牙膏等。
剪切稀化流体是指其黏度随剪切应力的增加而减小的流体,如可可粉、淀粉水等。
剪切增稠流体则是指其黏度随剪切应力的增加而增大的流体,如颜料、油漆等。
非牛顿流体常常表现出流变学特征,如屈服应力、流变模量、渗透率等。
这些特征能够帮助我们理解流体在不同应力下的行为,并且对于流体的使用和加工具有重要的指导作用。
三、流变学在不同领域的应用1. 工程学领域:流变学在工程学中的应用十分广泛。
例如,在涂料工业中,对涂料黏度和流动性的研究可以优化工艺流程和涂料性能。
再如在食品工业中,流变学可以帮助研究食品的质地、流动性和纹理,为新产品的开发提供指导。
2. 材料科学领域:流变学对材料的研究和评价也具有重要意义。
第十四章流变学基础第一节概述一、流变学的基本概念(一)流变学研究内容流变学—Rheology来源于希腊的Rheos=Sream(流动)词语,是Bingham和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。
流变学主要是研究物质的变形和流动的一门科学。
对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。
对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。
此时在单位面积上存在的内力称为内应力(stress)。
对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity)。
把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑形变形(plastic deformation)。
流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity)有关,因此流动也可视为一种非可逆性变形过程。
实际上,多数物质对外力表现为弹性和粘性双重特性,称为粘弹性物质。
(二)剪切应力与剪切速度观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。
因此在流速不太快时可以将流动着的液体视为互相平行移动的液层,叫层流,如图14-1。
由于各层的速度不同,便形成速度梯度du/dy,或称剪切速度。
这反映流体流动的特征。
由于流动阻力便产生速度梯度,流动较慢的液层阻滞着流动较快液层的运动。
使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A)上所需施加的这种力称为剪切应力,简称剪切力(shearing force),单位为N·m-2,以S表示。
剪切速度(rate of shear),单位为s-1,以D表示。
剪切应力与剪切速度是表征体系流变性质的两个基本参数。
图14-1 流动时形成的速度梯度二、流变学在药剂学中的应用流变学在药学研究中的重要意义在于可以应用流变学理论对乳剂、混悬剂、半固体制剂等的剂型设计、处方组成以及制备、质量控制等进行评价。