达朗贝尔原理
- 格式:pptx
- 大小:796.91 KB
- 文档页数:19
达朗贝尔原理
达朗贝尔原理是描述在没有内部能量源的封闭系统中,各个分子之间的碰撞会导致热量传递的物理定律。
根据达朗贝尔原理,当两个物体处于不同温度时,较高温度的物体的分子运动速度较快,向较低温度的物体传递能量,使得两个物体的温度逐渐趋于平衡。
达朗贝尔原理是理解热平衡和传热过程的基础。
通过达朗贝尔原理,我们可以解释为什么将热水与冷水混合后会均匀分布热量。
在混合过程中,热水的热量会传递给冷水,使其温度升高,而热水的温度则会降低,最终两者达到热平衡。
达朗贝尔原理也可以解释热传导的现象。
当一个物体的一部分受热时,这部分的分子会增加动能,与其他部分的分子发生碰撞,并将能量传递给它们。
这样,热量就会在物体内部传导,使整个物体温度均匀。
除此之外,达朗贝尔原理还可以用来解释气体的扩散现象。
在两个容器中分别装有不同浓度的气体时,两者之间存在浓度差。
根据达朗贝尔原理,气体分子会沿着浓度梯度运动,使得浓度逐渐趋于均匀。
总的来说,达朗贝尔原理是解释热平衡、热传导和气体扩散等现象的重要物理定律,对于研究能量传递和分子运动具有重要意义。
达朗贝尔原理名词解释引言达朗贝尔原理是热传递领域中的基础原理之一。
它描述了热量是如何通过辐射传递的过程,深化了我们对热辐射现象的理解。
本文将对达朗贝尔原理进行详细解释,包括其定义、物理背景、数学表达和应用。
定义达朗贝尔原理是指在热平衡状态下,两个物体的辐射热流密度与它们的辐射特性(如温度、表面特性等)有关。
根据该原理,两个物体之间的净辐射热流密度正比于它们的体温差的四次方,并与它们的表面性质有关。
物理背景达朗贝尔原理建立在基于物体的辐射行为的基础上。
物体发出的热辐射能够传递能量,并且辐射的强度与物体的温度有关。
辐射热量的传递主要通过光子的辐射和吸收来实现,而达朗贝尔原理描述了这一现象的规律。
数学表达达朗贝尔原理的数学表达式为:q=σ⋅A⋅(T14−T24)其中,q表示两个物体之间的净辐射热流密度,σ是斯特藩-玻尔兹曼常数,A是两个物体之间的表面积,T1和T2分别是两个物体的绝对温度。
辐射特性达朗贝尔原理中涉及到物体的表面性质,这些性质对辐射热流密度产生影响。
以下是一些影响辐射特性的因素: 1. 反射率:物体的反射率决定了其对外界辐射的反射程度,反射率越高,辐射热流密度越低。
2. 吸收率:物体的吸收率决定了其对外界辐射的吸收程度,吸收率越高,辐射热流密度越高。
3. 发射率:物体的发射率决定了其自身的辐射能力,发射率越高,辐射热流密度越大。
达朗贝尔原理的应用达朗贝尔原理在很多领域都有重要的应用,下面列举了一些应用案例: 1. 热辐射计算:在热传递计算中,达朗贝尔原理通常被用于计算不同温度物体之间的热辐射传递。
2. 太阳能利用:太阳能的收集和利用依赖于太阳辐射能量的捕获,达朗贝尔原理可用于描述太阳辐射的传递和捕获过程。
3. 红外热成像:红外热成像技术通过捕捉物体的红外辐射来显示物体的温度分布情况,达朗贝尔原理为该技术的基础原理。
4. 空间热传递:在航天器和卫星中,热传递对于电子设备和舱内环境的控制非常重要,达朗贝尔原理可用于优化热传递效果。
基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。
如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。
第十一章 达朗贝尔原理§11.1 质点的达朗贝尔原理=++∴=+G N F maN F令a -m G =在质点上除了作用有真实的主动力和约束反力外,再假想地加上惯性力,则这些力在形式上组成一组平衡力系,称质点的达朗贝尔原理。
11.2 质点系的达朗贝尔原理、运动刚体惯性力系的简化一、质点系的达朗贝尔原理设质点系由几个质点组成,其中一质点M i ,其质量为m i ,作用其上的主动力F i ,约束反力N i ,加速度为a i ,在该质点上加上惯性力为G i则: 0=++i i i G N F对每一个质点进行同样处理,根据加减平衡力系定理,则质点系上所有的主动力系,约束反力系,惯性力系组成了一组平衡力系。
根据静力系平衡的条件:R =0 M o =0 (主矩、主矢皆为零))()()(0=∑+∑+∑=∑+∑+∑∴i o i o i o i i i G M N M F M G N F质点系的达朗贝尔原理:质点系在运动时,作用于该质点系上的主动力系、约束反力系和惯性力系形式上构成一组平衡系。
00000:=∑=∑=∑=∑=∑=∑z y x M M M Z Y X 投影方程二、运动刚体惯性力系的简化利用达朗贝尔原理求解刚体动力学问题,需对刚体内每个质点加上它的惯性力,这些惯性力组成一组平面惯性力系,这就需要将惯性力系进行简化,求得惯性力系的主矢和对简化中心的主矩,并且在解题过程中,直接将惯性力的主矢主矩加到运动刚体上即可: (一)平动刚体惯性力系的简化平动刚体 a i =a n =a cG i =-m i a i刚体内各点的惯性力组成一组平行力系,将该惯性力系向质心c 简化:)()(=∴=⨯-=⨯∑=-⨯∑=∑=-=∑-=∑=c c cc ci i i i i i i c ci i i r M m m G M a m G M a r a r a r M M a G结论:刚体作平动时,惯性力系简化结果为通过质心c 的主矢Gc Ma G -=(二)定轴转动刚体惯性力系的简化条件:定轴转动刚体,均质,具有与转轴互相垂直的对称平面。
达朗贝尔定理
达朗贝尔(Jean le Rond d'Alembert)定理或称达朗贝尔原理是指,在刚体静力学中,一个刚体在平衡状态下,其任一点的受力与其对该点的矩(即力乘以距离)相等。
换句话说,如果一个刚体处于平衡状态,那么作用在这个刚体上的所有力的矩之和为零。
这个定理是由法国数学家达朗贝尔在他的著作《静力学原理》中提出的。
它是刚体静力学的基本原理之一,对于分析刚体的平衡状态和设计刚体结构具有重要意义。
达朗贝尔定理的数学表达式为:对于一个刚体,如果它处于平衡状态,则对于任一点,作用在该点的所有力的矢量和为零。
用数学语言表达,如果M是刚体上所有力矩的矢量和,则对于任一向量v,有M·v = 0。
这个原理可以应用于分析和设计各种刚体结构,例如桥梁、建筑、机械零件等。
通过应用达朗贝尔定理,工程师可以确保他们的设计符合刚体静力学原理,从而确保结构的稳定性和安全性。