高中物理模型组合27讲(Word下载)爆炸反冲模型
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
爆炸、碰撞和反冲专题●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略.●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒. ●3.三种碰撞的特点:(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '222221122112211112222''+=+m v m v m v m v (2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '2222211212211112222''+=+m v m v m v m v +ΔE K 减 (3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=(m 1+m 2)v222112212111()222+=m v m v m +m v +ΔE k max ●4.“一动一静”弹性正碰的基本规律如图5—32所示,一个动量为m 1v 1的小球,与一个静止的质量为m 2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律(1)动量守恒,初、末动能相等,即(2)根据①②式,碰撞结束时,主动球(m 1)与被动球(m 2)的速度分别为(3)判定碰撞后的速度方向当m 1>m 2时;v ′1>0,v ′2>0——两球均沿初速v 1方向运动.当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动.当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动. ●5.“一动一静”完全非弹性碰撞的基本计算关系如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.(1)碰撞后共同速度(v )根据动量守恒,共同速度为v =mv m+M……① (2)木块的冲击位移(s)设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =12Mv 2………②f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得 s =+mm Md <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为 t =02d v (4)产生的热能Q在认为损失的动能全部转化为热能的条件下 Q =ΔE K =f ·s 相=fd =12m 20v ()+MM m【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是: A .p A =6kg ·m/s ,p B =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ; C .p A =-2kg ·m/s ,p B =14kg ·m/s ; D .p A =-4kg ·m/s ,p B =17kg ·m/s .【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.训练题(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:A.m甲与m乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;B.m甲与m乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;C.m甲与m乙的值相等,甲球和乙球组成的系统机械能的减少量最小;D.m甲与m乙的值相等,甲球和乙球组成的系统机械能的减少量最大.(2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:A.甲球的速度为零而乙球的速度不为零;B.乙球的速度为零而甲球的速度不为零;C.两球的速度均不为零;D.两球的速度方向均与原方向相反,两球的动能不变.(3)如图5—38所示,质量为m的子弹以速度v从正下方向上击穿一个质量为M的木球,击穿后木球上升高度为H,求击穿木球后子弹能上升多高?。
高中物理模型——爆炸反冲模型[模型概述]“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。
[模型讲解]例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?解析:两次发射转化为动能的化学能E 是相同的。
第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式mp E k 22=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E mM M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:mM M v v s s +==122,所以m M M s s 2+=。
思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则mM mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。
[模型要点]内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。
所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。
[误区点拨]忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。
[模型演练](2005年物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。
第二十七讲 动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的________为0,这个系统的总动量保持不变。
2.表达式(1)p =p ′,系统相互作用前的总动量p 等于相互作用后的总动量p ′。
(2)m 1v 1+m 2v 2=____________,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp 1=_______,相互作用的两个物体动量的变化量等大反向。
(4)Δp =0,系统总动量的增量为零。
矢量和m 1v 1′+m 2v 2′-Δp 23.适用条件(1)理想守恒:不受外力或所受外力的合力为____。
(2)近似守恒:系统内各物体间相互作用的内力________它所受到的外力。
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在__________上动量守恒。
零远大于这一方向【典例1】(多选)如图所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小相同解析 男孩和木箱组成的系统受小车的摩擦力,所以动量不守恒,A 错误;小车与木箱组成的系统受男孩的力为外力,所以动量不守恒,B 错误;男孩、小车与木箱三者组成的系统,所受合外力为0,所以动量守恒,C 正确;木箱的动量增量与男孩、小车的总动量增量大小相同,但方向相反,D 正确。
CD二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”在滑动摩擦力作用下做______直线运动。
②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为“子弹”与“木块”组成的系统在这一过程中动量守恒。
高三物理一轮复习——爆炸和反冲运动模型问题例5 (2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图6所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图6(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少?(3)A 和B 都停止后,A 与B 之间的距离是多少?答案 (1)4.0 m /s 1.0 m/s (2)物块B 先停止 0.50 m (3)0.91 m解析 (1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v A 2+12m B v B 2② 联立①②式并代入题给数据得v A =4.0 m/s ,v B =1.0 m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2⑤ v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75 m ,s B =0.25 m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为s =0.25 m +0.25 m =0.50 m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v A 2=-μm A g ()2l +s B ⑩ 联立③⑧⑩式并代入题给数据得v A ′=7 m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A ()-v A ′=m A v A ″+m B v B ″⑫12m A v A ′2=12m A v A ″2+12m B v B ″2⑬ 联立⑪⑫⑬式并代入题给数据得v A ″=375 m/s ,v B ″=-275m/s ⑭ 这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮由④⑭⑮式及题给数据得s A ′=0.63 m ,s B ′=0.28 m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s ′=s A ′+s B ′=0.91 m拓展训练5 (2019·云南昆明市4月质检)科研人员乘热气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为M =200 kg.热气球在空中以v 0=0.1 m /s 的速度匀速下降,距。
爆炸 反冲 人船模型1.爆炸与反冲运动的特点:由于系统不受外力或内力远大于外力,所以动量守恒;由于系统内有其他形式的能量(如化学能)转化为动能,所以系统总动能增加.2.“人船模型”的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式中v 1、v 2和x 一般都是相对地面而言的.1.(2019·安徽合肥市二模)如图1所示,某人站在一辆平板车的右端,车静止在光滑的水平地面上,现人用铁锤子连续敲击车的右端.下列对平板车的运动情况描述正确的是( )A .锤子向右抡起的过程中,车向右运动B .锤子下落的过程中车向左运动C .锤子抡至最高点时,车速度为零D .锤子敲击车瞬间,车向左运动2.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.m M -m v 03.如图2所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A.2LM M +mB.2Lm M +mC.ML M +mD.mL M +m4.(2019·湖北稳派教育上学期第二次联考)某同学为研究反冲运动,设计了如图3所示的装置,固定有挡光片的小车内表面水平,置于光滑水平面上,挡光片宽为d ,小车的左侧不远处有固定的光电门,用质量为m 的小球压缩车内弹簧,并锁定弹簧,整个装置处于静止,解除锁定,小球被弹射后小车做反冲运动并通过光电门,与光电门连接的计时器记录挡光片挡光时间为t ,小车、弹簧和挡光片的总质量为3m ,则小球被弹出小车的瞬间相对于地面的速度大小为( )A.d tB.2d tC.3d tD.4d t5.(多选)如图4所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,下列说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为M∶mC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动6.(2020·广东揭阳市模拟)如图5所示,水平地面上可视为质点的物体A和B紧靠在一起静止于b处,已知A的质量为3m,B的质量为m.两物体在足够大的内力作用下突然沿水平方向左右分离.B碰到c处的墙壁后等速率反弹,并追上已停在ab段的A,追上时B的速率等于两物体刚分离时B的速率的一半.A、B 与水平地面的动摩擦因数均为μ,b与c间的距离为d,重力加速度为g.求:(1)分离瞬间A、B的速率之比;(2)分离瞬间A获得的动能.答案精析1.C [锤子、人和车组成的系统在水平方向动量守恒,锤子向右抡起的过程中,车向左运动,故A 错误;锤子下落的过程中,有水平向左的速度,根据动量守恒定律,车向右运动,故B 错误;锤子抡至最高点时,速度为零,根据动量守恒定律,车的速度也为零,故C 正确;锤子向左敲击车瞬间,根据动量守恒定律,车向右运动,故D 错误.]2.D [取向下为正方向,由动量守恒定律可得:0=m v 0-(M -m )v ′,故v ′=m v 0M -m,选项D 正确.] 3.B [小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有m v 1=M v 2,故mx 1=Mx 2,x 1+x 2=2L ,其中x 1代表小球的水平位移大小,x 2代表小车的水平位移大小,因此x 2=2Lm M +m,选项B 正确.] 4.C [解除锁定,小球被弹射后小车做反冲运动,经时间t 通过光电门,则小车匀速运动的速度大小为v 1=d t,设小球的速度大小为v 2,根据反冲运动的特点可知,小车与小球总动量为零,根据动量守恒定律得:3m v 1=m v 2,得小球的速度大小为v 2=3d t,故选C.] 5.BC [AB 与C 组成的系统在水平方向上动量守恒,C 向右运动时,AB 应向左运动,故A 错误;设碰前C 的速率为v 1,AB 的速率为v 2,则0=m v 1-M v 2,得v 1v 2=M m,故B 正确;设C 与油泥粘在一起后,AB 、C 的共同速度为v 共,则0=(M +m )v 共,得v 共=0,故C 正确,D 错误.]6.(1)13 (2)2423μmgd 解析 (1)以水平向左为正方向,分离瞬间对A 、B 系统应用动量守恒定律有:3m v A -m v B =0解得:v A v B =13; (2)A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:-μ·3mgs A =0-12×3m v A 2 对B 从两物体分离后到追上A 的过程应用动能定理:-μmgs B =12m ⎝⎛⎭⎫v B 22-12m v B 2 两物体的路程关系是s B =s A +2d分离瞬间A 获得的动能E k A =12×3m v A 2 联立解得:E k A =2423μmgd .。
高中物理平射炮反冲模型
光滑的水平面上静止一辆质量为M的炮车,当炮车水平发射一枚质量为m的炮弹,炮弹出口时有的火药能量释放,其中有的能量转化为系统的内能,求炮弹和炮车的动能各为多少?
解析:炮弹和炮车组成的系统在水平方向上满足动量守恒,设炮弹和炮车的速度分别为,由动量守恒得,即动量大小关系
设炮弹和炮车的动能分别为,系统机械能的增加量为,则由能量守恒得
模型特征:
<1>在满足动量守恒的方向上,整个系统任意时刻的动量为零,即;
<2>炮车和炮弹获得动能为;
<3>让(1)式比上(2)式得,即炮弹和炮车获得动能与其质量成反比。
例1、如图所示,带有光滑的半径为R的圆弧轨道的滑块静止在光滑的水平面上,此滑块的质量为M,一个质量为m的小球静止从A点释放,当小球从滑块B处水平飞出时,求滑块的动能。
解析:当小球从B点飞出时,小球和滑块在水平方向上满足动量守恒,由上面的模型特点的滑块获得的动能为
例2、在光滑的水平面上放有质量分别为M、m的两小球,两球间放有一被压缩的轻质弹簧,其弹性势能为E,释放弹簧,两球被弹开,求小球m的最大速度。
解析:当弹簧完全弹开后,由上面的模型特征知,小球m的动能,由动能定理得小球的最大速度。
3>2>1>。
爆炸、反冲及人船模型学校:_________班级:___________姓名:_____________模型概述1.爆炸1)爆炸问题的特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.3)由于爆炸问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.2.反冲现象:1)反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.2)在反冲现象里,系统不受外力或内力远大于外力,系统的动量是守恒的.3)反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加3.人船模型1)模型图示2)模型特点①两物体满足动量守恒定律:m人v人-m船v船=0②两物体的位移大小满足:m人x人t-m船x船t=0,又x人+x船=L得x人=m船m船+m人L,x船=m人m船+m人L③运动特点Ⅰ、人动则船动,人静则船静,人快船快,人慢船慢,人左船右;Ⅱ、人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x人x船=v人v船=m船m人.典题攻破1.爆炸1.(2024·青海海南·二模)斜向上发射的炮弹在最高点爆炸(爆炸时间极短)成质量均为m 的两块碎片,其中一块碎片沿原路返回。
已知炮弹爆炸时距地面的高度为H ,炮弹爆炸前的动能为E ,重力加速度大小为g ,不计空气阻力和火药的质量,则两块碎片落地点间的距离为()A.2EH mgB.22EH mgC.23EH mgD.42EH mg2.反冲2.(2024·山东潍坊·模拟预测)如图所示,返回舱接近地面时,相对地面竖直向下的速度为v ,此时反推发动机点火,在极短时间Δt 内,竖直向下喷出相对地面速度为u 、体积为V 的气体,辅助返回舱平稳落地。
高中物理模型汇总大全模型组合讲解——爆炸反冲模型[模型概述]“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。
[模型讲解]例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?解析:两次发射转化为动能的化学能E 是相同的。
第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式mp E k 22=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E mM M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:mM M v v s s +==122,所以m M M s s 2+=。
思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则mM mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。
[模型要点]内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。
所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。
[误区点拨]忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。
[模型演练]( 物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。
模型组合讲解——爆炸反冲模型高志勇[模型概述]“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。
[模型讲解]例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?解析:两次发射转化为动能的化学能E 是相同的。
第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式mp E k 22=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E mM M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:mM M v v s s +==122,所以m M M s s 2+=。
思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则mM mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。
[模型要点]内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。
所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。
[误区点拨]忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。
[模型演练](2005年物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。
高中物理模型组合27讲(Word 下载)追碰模型 [模型概述]追碰是物理上一个重要模型,它涉及到动量定理、动量守恒定律、能量守恒等诸多知识点。
从物理方法的角度看。
处理碰撞咨询题,通常使用整体法〔系统〕、能量方法,守恒方法及矢量运算。
〝追碰〞模型所设计的内容在每年的高考中能够以选择、运算题形式显现,因此该类试题综合性强,区分度大,分值权重高,因该部分内容恰是自然界最普遍的两个规律的联手演绎,是中学时期最重要的主干知识之一,因此相关内容就成为每年高考测试的热点内容。
[模型讲解]一、明白得动量守恒定律的矢量性例1. 如图1所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动,两球质量关系为A B m m 2=,规定向右为正方向,A 、B 两球的动量均为6kg ·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为s m kg /4⋅-,那么:〔 〕图1A. 左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B. 左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C. 右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D. 右方是A 球,碰撞后A 、B 两球速度大小之比为1:10解析:题中规定向右为正方向,而AB 球的动量均为正,因此AB 都向右运动,又A B m m 2=,因此B A v v 2=,能够判定A 球在左方,CD 错;碰撞后A 的动量变化s m kg p A /4⋅-=∆,依照动量守恒可知,B 球的动量变化s m kg p B /4⋅=∆,因此碰后AB 球的动量分不为s m kg s m kg p s m kg s m kg p B A /10/)46('/2/)46('⋅=⋅+=⋅=⋅-=,解得5:2':'=B A v v ,因此A 正确。
评点:动量守恒定律的矢量性即是重点又是难点,解题时要遵循以下原那么:先确定正方向,与正方向相同的矢量取正号,与正方向相反的矢量取负号,未知矢量当作正号代入式中,求出的结果假设大于零,那么与正方向相同,假设小于零那么与正方向相反,同时也要善于利用动量与动能的关系,但要注意它们的区不。
专题08 反冲爆炸模型及其拓展目录一.爆炸问题 (1)二.反冲运动 (1)三.人船模型问题 (1)一.爆炸问题1.(2023上·江苏扬州·高三扬州中学校考阶段练习)图所示,质量为m、带有光滑半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB长度为2R。
现将质量也为m的小球从A点正上方R处由静止释放,然后由A点进入半圆形轨道后从B点冲出,已知重力加速度为g,不计空气阻力,下列说法正确的是()2.(2023上·黑龙江哈尔滨·高三哈九中校考阶段练习)如图所示,质量分别为m、2m的两个小球A、B用长为L的轻质细绳连接,B球穿在光滑水平细杆上,初始时刻,细绳处于水平状态,将A、B由静止释放,空气阻力不计。
从释放到A球运动到最低点的过程中,下列说法正确的是()3.(2024·全国·高三专题练习)如图所示,质量为3kg的光滑轨道静置于足够大的光滑水平地面上,光滑轨道的BC部分为半径为R的四分之一圆弧,CD部分水平。
质量为1kg的小球(可视为质点)从圆弧轨道顶端B正上方的A点由静止自由落下,与圆弧相切于B点并从B点进入圆弧。
已知AB=CD=R=0.3m,取重力加速度大小g =10m/s 2,下列说法正确的是( )A .轨道对小球做正功B .轨道的最大速度为3m/sC .轨道对地面的最大压力为70ND .两者分离时轨道移动了0.15m4.(2023·湖南·校联考模拟预测)如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅M m +M m +M m +M m +5.(2023·山东·济南一中统考二模)在空间技术发展过程中,喷气背包曾经作为宇航员舱外活动的主要动力装置,它能让宇航员保持较高的机动性。
高中物理模型组合27讲(Word 下载)爆炸反冲模
型
[模型概述]
〝爆炸反冲〞模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。
[模型讲解]
例. 如下图海岸炮将炮弹水平射出,炮身质量〔不含炮弹〕为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?
解析:两次发射转化为动能的化学能E 是相同的。
第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式m
p E k 22
=知,在动量大小相同的情形下,物体的动能和质量成反比,炮弹的动能E m
M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:m
M M v v s s +==122,因此m M M s s 2+=。
摸索:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,那么m M mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。
[模型要点]
内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。
因此〝爆炸〞时,机械能增加,增加的机械能由化学能〔其他形式的能〕转化而来。
[误区点拨]
忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。
[模型演练]
〔2005年物理高考科研测试〕在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车内,炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。
假设要使刚发射后炮弹的动能等于E 0,即炸药提供的能量全部变为炮弹的动能,那么在发射前炮车应如何样运动?
答案:假设在发射前给炮车一适当的初速度v 0,就可实现题述的要求。
在这种情形下,用v 表示发射后炮弹的速度,V 表示发射后炮车的速度,由动量守恒可知:
><+=+1)(0MV
mv v M m
由能量关系可知: ><+=++22
121)(2122020MV mv E v M m 按题述的要求应有
><=32102E mv
由以上各式得: ><++++=
+-+=
4)())((2)()(2000m M m m M M m M mE M m M M m mE v。