=360°-180°=180°.
如果一个四边形的一组对角互补,那么另一组对角也互补.
如图,在六边形的每个顶点处取一个外角,这些外角的和叫做 六边形的外角和.六边形的外角和等于多少? 问题1:任意一个外角和它相邻的内角有什么关系?
互补 问题2:六边形的6个外角加上与它们 相邻的内角,所得总和是多少?
解得:n=10,∴ 这个多边形的边数是10. 故答案为:10.
练习6(1)根据图中的相关数据,求出x 的值:
(2)一个多边形内角和的度数比外角和的度数的4倍多180度, 求多边形的边数.
解:(1)(x+9)°+115°+90°+x°=(4-2)×180°, 解得:x=73.
(2)设多边形的边数为n, ∵多边形的外角和是360°,内角和的度数比外角和的度数的4倍多180度, ∴可得方程(n-2)180°=4×360°+180° 解得n=11,
练习4一个多边形的内角和是外角和的2倍,则这个多边形是(C )
A.四边形
B.五边形
C.六边形
D.八边形
解析:设所求正n 边形边数为n ,由题意得 (n-2) ·180°=360°×2 解得n=6. 则这个多边形是六边形.故选C.
练习5一个多边形的内角和是其外角和的4倍,则这个 多边形的边数是10 . 解析:设这个多边形的边数为n, 则该多边形的内角和 为(n-2)×180°,依题意得:(n-2)×180°=360°×4,
6×180°=1080°
如图,在六边形的各个顶点处取一个外角,这些外角的和叫 做
六边形的外角和.六边形的外角和等于多少? 问 题 3 :上述总和六边形的内角和、外角和有什么关系?
六边形的外角和加上内角和等于这个总和 因此六边形的外角和