2018人教版七年级数学上册知识点归纳总结
- 格式:doc
- 大小:305.10 KB
- 文档页数:7
七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。
(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。
2、“0”不仅表示没有,还可以表示某种量的基准。
(三)负数:在正数前面加上符号“﹣”(负)的数。
(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。
若规定前进10米记作+10米,则后退5米记作-5米。
注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。
二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。
(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。
3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。
(三)相反数1、概念:只有符号不同的两个数叫做相反数。
2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。
人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
人教版七年级数学上册知识点大全1.1正数和负数1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、数0既不是正数,也不是负数,0是正数与负数的分界。
4、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
1.2.1有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数0和正整数; a >0a 是正数; a <0a 是负数;a ≥0a 是正数或0a 是非负数; a ≤0a 是负数或0a 是非正数.1.2.2数轴1、用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2、数轴的三要素:原点、正方向、单位长度。
3、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
4、数轴的规范画法:是条直线,数字在下,字母在上。
5、所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
6、一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
1.2.3 相反数1、只有符号不同的两个数叫做互为相反数。
(1)注意:a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(2)相反数的商为-1; (3)相反数的绝对值相等。
人教版七年级上册数学知识点总结一、有理数1. 有理数的概念有理数是指可以表示为分数的数,即整数、分数、有限小数和循环小数的总称。
有理数可以用分数形式表示,分子为整数,分母为自然数。
2. 有理数的大小比较有理数的大小比较可利用坐标轴表示。
在数轴上,数越往右,数值越大;数越往左,数值越小。
3. 有理数的加减法有理数的加减法规则与整数的运算一样。
同号两数相加、异号两数相减,要先取绝对值,再按两数同号加、异号减的原则进行加减法操作。
4. 有理数的乘除法有理数的乘法和除法规则与整数的运算法则一致,同号相乘得正数,异号相乘得负数;除数不等于零时,正数除以正数得正数,负数除以负数也得正数。
5. 有理数的混合运算将有理数的加减法、乘除法结合起来进行运算,按照运算的先乘除后加减的原则进行混合运算。
6. 有理数的应用有理数在生活中的应用非常广泛,如计量、比较、计算等方面。
二、代数1. 代数式、字母、代数式的值代数式是由数字、字母和运算符号组成的式子。
字母是未知数,代数式的值是指将字母用具体的数代入代数式中去求得的结果。
2. 代数表达式的加减法代数表达式的加减法要进行相同字母项合并,并按照合并的原则进行加减法操作。
3. 代数表达式的乘法代数表达式的乘法是指将代数式进行分配率展开,并用分配率原理进行乘法运算。
4. 代数表达式的除法代数表达式的除法是指先找出最高次项,再按照最高次项进行除法操作,得到商和余数。
5. 代数式的应用代数式在生活中的应用非常广泛,如方程、不等式、数列等方面。
三、方程1. 一元一次方程一元一次方程是指未知数的最高次项是一次的方程。
2. 解一元一次方程解一元一次方程的方法有两种,分别是移项法和等价变形法,可以通过逆运算的原理来解决方程。
3. 一元一次方程的应用一元一次方程在生活中的应用非常广泛,如比例问题、配比问题、运动问题等方面。
四、集合1. 集合的概念集合是包含一组确定对象的整体,其中的对象称为元素。
七年级上册数学知识点总结人教版(十五篇)七年级上册数学知识点总结人教版篇一(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
第一章 有理数一、知识网络结构⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧科学记数法有理数大小比较律、分配律运算律:交换律、结合、混合运算加、减、乘、除、乘方运算负分数负整数负有理数正分数正整数正有理数按正负分负分数正分数分数负整数正整数整数按定义分分类近似数和有效数字相反数、绝对值、倒数数轴正数、负数相关概念有理数0二、知识要点1、大于______的数叫正数,根据需要,有时正数前面加上,通常这个“+”号_____省略。
在正数前面加上一个______的数叫做负数,这个“-”号_______省略。
______既不是正数,也不是负数,它不仅仅表示没有,它是正数和负数的_______。
在同一个问题中,分别用正数和负数表示具有_____________的量,如果正数表示某种意义的量,那么负数表示与它相反的意义的量,但把哪个量规定为正数是可以任意选择的。
2、_______、_______、_________统称为整数,整数可以看作分母为______的分数,正整数、0、负整数、正分数、负分数都可以写成分数的形式。
3、有理数分类:按定义来分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数负整数正整数_______0_______ ; ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数正分数正整数按正负来分________________________ 4、正有理数常常称为正数,负有理数常常称为_______,正整数和0统称________,负整数和0统称________,正数和0统称________,负数和0统称_________ 。
如果a是非负数,则 a≥0 。
0 可以 - 不可以 0 分界 相反意义正整数 0 负整数 1 整数 分数 正有理数 0负有理数 负数 非负整数 非负数 非正整数 非正数5、规定了_______、__________和___________的直线叫数轴。
人教版七年级数学上册知识点大全1 .有理数:(1)凡能写成9(p.q 为整数且pwO)形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数:“不一定是负数,+a 也不一定是正数;兀不是有理(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴 上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数=0和正整数; a>0oa 是正数; aVO = a 是负数;a20 u> a 是正数或0 o a 是非负数;aW 0 Q a 是负数或0 0 a 是非 正数.2 .数轴:数轴是规定了原点、正方向、单位长度的一条直线.3 .相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c 的相反数是-a+b-c ; a-b 的相反数是b-a ; a+b 的相反数是-a-b ;(3)相反数的和为0 Q a+b=0 O a 、b 互为相反数.⑷相反数的商为-L(5)相反数的绝对值相等4 .绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)有理数的分类: 正有理数蹈零②有理数, [正整数 整数零 负整数a (a >0)(2)绝对值可表示为:|a| =、0 (a = 0)或 -a (a<0) »(3) © = l = a>0 ;© = -l = a<0; a a (4) a|是重要的非负数,即|a 20;(5) 理数比大小:〔1〕正数永远比0大,负数永远比0小;〔2〕正数大于一切负数;〔3〕两个负数比拟,绝对值大的反而小;〔4〕数轴上的两个数,右边的数总比左边的数大;〔5〕 -h -2, +1, +4, -0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准.6.倒数: 乘积为1的两个数互为倒数;注意:0没有倒数; 假设ab=l= a 、b 互为倒数; 为负倒数.等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1, -1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0.1, -1. 7.有理数加法法那么:〔1〕同号两数相加,取相同的符号,并把绝对值相力口;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(a > 0) (a K0)假设 ab=To a 、b 互(3) 一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b) +c=a+ (b+c).9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b).10有理数乘法法那么:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正.11有理数乘法的运算律:(1)乘法的交换律:ab=ba; (2)乘法的结合律:(ab) c=a (be);(3)乘法的分配律:a (b+c) =ab+ac .(简便运算)12.有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 即£无意义.13.有理数乘方的法那么:(1)正数的任何次幕都是正数;(2)负数的奇次暴是负数;负数的偶次算是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做森;(3) 1是重要的非负数,即120;假设a'lblR o a=0,b=0;O.l 2=0.01〔4〕据规律「=底数的小数点移动一位,平方数的小数点移动二位. io- =100 15 .科学记数法:把一个大于10的数记成aXl 〔r 的形式,其中a 是整数数位只有一位 的数,这种记数法叫科学记数法.16 .近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一 位. 17 .有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个 近似数的有效数字.整式的加减1 .单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2 .单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3 .多项式:几个单项式的和叫多项式.4 .多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式 叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;6 .同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7 .合并同类项法那么: 系数相加,字母与字母的指数不变.8 .去〔添〕括号法那么:去〔添〕括号时,假设括号前边是“ + 〞号,括号里的各项都不变号;假设括号前边是“-〞 号,括号里的各项都要变号.9 .整式的加减:一找:〔划线〕;二“ 十 〞〔务必用+号开始合并〕三合:〔合并〕5.整式,单项式 多项式10.多项式的升幕和降寨排列:把一个多项式的各项按某个字母的指数从小到大〔或从大到小〕排列起来,叫做按这个字母的升号排列〔或降寨排列〕.一元一次方程1.等式:用号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上〔或减去〕同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以〔或除以〕同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:〞方程的解就能代入〞!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6. 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7. 一元一次方程的标准形式:ax+b=0 〔x是未知数,a、b是数,且a#0〕.8. 一元一次方程解法的一般步骤:化简方程--------- 分数根本性质去分母-------- 同乘〔不漏乘〕最简公分母去括号----------- 注意符号变化移项-------- 变号〔留下靠前〕合并同类项------- 合并后符号系数化为1 -------- 除前面10.列一元一次方程解应用题:〔1〕读题分析法: 多用于“和,差,倍,分问题〞仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共, 合,为,完成,增加,减少,配套——〞,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.〔2〕画图分析法:...... 多用于“行程问题〞利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键, 从而取得布列方程的依据,最后利用量与量之间的关系〔可把未知数看做量〕, 填入有关的代数式是获得方程的根底.。
数学书七年级上册的知识点数学书七年级上册的知识点主要包括以下几个方面:一、数与代数有理数:包括正数、负数和零。
有理数是可以表示为两个整数的比的数,其中分母不为零。
数的运算:有理数的加法、减法、乘法和除法。
重点是掌握运算法则和运算律,特别是乘法交换律、结合律,以及减法运算。
绝对值:理解绝对值的定义,掌握求一个数的绝对值的方法。
有理数的混合运算:要求掌握顺序法则,并熟悉混合运算的步骤。
二、方程与不等式一元一次方程:理解方程的基本概念,掌握方程的解法,包括去括号、移项、合并同类项和系数化为1等步骤。
一元一次不等式:理解不等式的概念,掌握解一元一次不等式的方法,重点是移项和合并同类项。
三、几何初步知识线段:理解线段的基本性质,掌握线段的比较、延长、截取等方法。
角:了解角的基本概念,如锐角、直角、钝角等,以及角的度量单位和方法。
相交线:理解相交线的概念,掌握通过平行线和垂线来定义其他线的关系。
平行线:理解平行线的概念,掌握平行线的性质和判定方法。
四、数据整理与概率初步知识数据整理:了解数据整理的基本概念和方法,如分类、分组、频数等。
概率初步知识:了解概率的基本概念,如必然事件、不可能事件和随机事件等。
五、数学思想方法符号思想:了解数学符号的概念和作用,掌握常见的数学符号及其用法。
方程思想:了解方程的概念和作用,掌握一元一次方程的解法和应用。
转化思想:了解转化的概念和方法,掌握将复杂问题转化为简单问题的技巧。
分类讨论思想:了解分类讨论的概念和方法,掌握分类讨论的步骤和应用。
数形结合思想:了解数形结合的概念和方法,掌握数形结合在解题中的应用。
除了以上几个方面,学生还应该注重培养自己的数学思维能力和问题解决能力。
可以通过多做练习题、参加数学竞赛等方式来提高自己的数学水平。
同时,也应该注重培养自己的数学兴趣和信心,积极探索数学世界的奥秘。
第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数; 若ab=-1⇔ a 、b 互为负倒数. 等于本身的数汇总:相反数等于本身的数:0倒数等于本身的数:1,-1绝对值等于本身的数:正数和0平方等于本身的数:0,1立方等于本身的数:0,1,-1.7. 有理数加法法则:X|k |b| 1 . c|o |m(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
(5)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章 整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
X k b 1 . c o m4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5.⎩⎨⎧多项式单项式整式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
第三章 一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去 分 母----------同乘(不漏乘)最简公分母(分母的最小公倍数)去 括 号----------注意符号变化移 项----------变号(留下靠前)合并同类项--------注意合并后符号w w w .x k b 1.c o m系数化为1---------等式两边同时除以未知数前面的系数10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.(3)列表分析数量关系复合应用题先找到已知量,再根据情况设未知数表示一个或部分未知量,根据表中已有数量之间的关系表达出其余量。
再根据表达量之间的相等关系列方程。
11.列方程解应用题的常用公式:(1)行程问题: 路程=速度×时间 时间路程速度= 速度路程时间=; (2)工程问题:工作量=工作效率×工作时间 工时工作量工效= 工效工作量工时=; 工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b 1.c o m(3)船在顺水、逆水中航行或者飞机在顺风、逆风中飞行的问题:船在顺水中航行的速度=船在静水中航行的速度+水流速度船在顺水中航行的速度=船在静水中航行的速度-水流速度飞机在顺风中飞行的速度=飞机在无风时飞行的速度+风的速度飞机在顺风中飞行的速度=飞机在无风时飞行的速度-风的速度顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价10几折 , %100⨯-=成本成本售价利润率; 利润问题常用等量关系: 售价-进价=利润(5)配套问题:⎧⎨⎩⎧⎨⎩(6)分配问题第四章 图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形平面图形:三角形、四边形、圆、多边形等.主视图---------从正面看 2、几何体的三视图 左视图---------从左边看俯视图---------从上面看(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段12经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的长短比较方法(1)度量法(2)叠合法(3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=21AB,AB=2AM=2BM. 6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身).8、点与直线的位置关系(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点).(三)角1、角:有公共端点的两条射线所组成的图形叫做角.1︒=60'=3600", 1'=60"; 1'=(601)︒, 1"=(601)'=(36001)︒ 45(1)度量法(2)叠合法6、角的四则运算角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若OB是∠AOC 的平分线,则∠AOB=∠BOC=21∠AOC, ∠AOC=2∠AOB =2∠BOC ). 9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.(4)余角的性质:同角(等角)的余角相等; 补角的性质:同角(等角)的补角相等.10、方向角 (1)正方向(2)南或北写在前面,东或西写在后面 (北偏东、北偏西、南偏东、南偏西)东 西 北 南 东北 西北 西南东南北偏东 北偏西 南偏西 南偏西。