CCHP小型冷热电三联供.
- 格式:ppt
- 大小:1.60 MB
- 文档页数:25
一、冷热电三联供概念:冷热电联产是指使用一种燃料,在发电的同时将产生的余热回收利用,做到能源阶梯级利用;冷热电联供系统一般由动力系统、燃气供应系统、供配电系统、余热利用系统、监控系统等组成。
按燃气原动机的类型不同,分为燃气轮机联供系统和内燃机联供系统。
与传统的击中式供电相比,这种小型化、分布式的供能方式。
可以使能源的综台使用率提高到85%以上。
一般情况可以节约能源成本的30—50%以上;由于使用天然气等清洁能源,降低了二氧化硫、氨氧化物和二氧化碳等温室气体的排放量,从而实现了能源的高效利用与环保的统一,减低了碳排放。
二、冷热电三联供技术优点1、系统整体能源利用效率非常高;2、自行笈电,提高了用电的可靠性;3、减少了电同的投资;4、降低了输配电网的输配电负荷;5、减少了长途输电的输电损失;6、节能环保、经济高效、安全可靠。
三、冷热电联供系统与传统制冷技术的对比优势(1)、使用热力运行,利用了低价的”多余能源”;(2)、吸收式冷水机组内没有移动件,节省了维修成本;(3)、冰水机组运行无噪音;(4)、运行和使用周期成本低;(5)、采用水为冷却介质,没有使用对大气层有害的物质。
四、采用冷热电联供的意义1. 实现能量综合梯级利用,提高能源利用效率具有发电、供热、制冷、能量梯级利用等优势,年平均能量的综合利用率高达80~90%图4.6-2 燃气热能的梯级综合利用流程关系示意图2.集成供能技术,系统运行灵活可靠三联供系统是供冷、供热、供电的技术集成,设备优化配置,集成优化运行,实现既按需供应,又可靠运行。
3.用电用气峰谷负荷互补,利于电网、气网移峰填谷对于电网、气网,负荷峰谷差越小,越有利于系统稳定、安全、节能运行。
五、冷热电联供的使用条件天然气近似为一种清洁能源,燃气冷热电三联供系统为主要的应用形式。
1.应具备的能源供应条件(1)保证天然气供应量,并且供气参数比较稳定;(2)燃气发出的电量,既可自发自用,亦可并入市电网运行,燃气发电停止运行时又可实现市电网供电;(3)市电网供电施行峰谷分时电价;(4)电网供电难以实施时,用户供电、供冷、供热负荷使用规律相似,用电负荷较稳定,发电机可采用孤网运行方式。
燃气冷热电三联供制冷系统节能分析摘要:燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。
系统安装于最终用户端附近,首先利用一次能源驱动发电机发电,再通过各种余热利用设备对余热进行回收利用,从而向用户同时提供电力、制冷、采暖、生活热水等。
燃气冷热电联供系统以其节能、削峰填谷、环保、电力可靠性高等优点而受到广泛重视。
燃气冷热电联供系统是一个复杂的能源系统,存在冷、热、电多种能量输出,受到可燃性气体价格、电价、建筑负荷波动等多种因素影响,不同的容量配置和运行方式也会直接影响系统的性能。
因此结合项目具体情况,从节能性与经济性的角度对具体的燃气冷热电联供系统进行分析,就更显得必要。
关键词:冷热电三联供制冷系统发电效率节能冷热电三联供是实现能源梯级利用的高效能源利用形式,它可将发电之后的低品位热能用于制冷供热,以提高能源的综合利用效率。
冷热电联供发展较迅速的主要有英国、美国、加拿大、法国等国家;早在上世纪 30 年代,美国就建成了第一个冷热电联供系统,现如今分布式能源站总数已超过6000 座。
关于冷热电联系统的节能性问题,各方意见不一,多数认为系统是节能的,某些认为节能是有条件的,而另一些认为不节能。
文章从一次能耗的角度出发,通过计算制冷工况的吸收式制冷系统和电压缩式制冷系统的一次能耗,分析冷热电三联供制冷系统的节能性。
一、燃气冷热电三联供制冷系统的背景我国1998年起实施的《中华人民共和国节约能源法》明确指出:“推广热电联产、集中供热,提高热电机组的利用率,发展热能梯级利用技术,热、电、冷联产技术和热、电、煤气三联供技术,提高热能综合利用率”。
2000年原国家计委、原国家经贸委、建设部、国家环保总局联合发布的《关于发展热电联产的规定》指出:“以小型燃气发电机组和余热锅炉等设备组成的小型热电联产系统,适用于厂矿企业、写字楼、宾馆、商场、医院、银行、学校等较分散的公用建筑。
一、三联供技术简介1、发展背景随着人类生产和生活的发展,各种常规能源的大量消耗促使人们一方面不断探索利用太阳能、地热等各种可再生能源,另一方面更在积极寻求高效、环保的能源利用方式。
分布式能源是指将发电系统以小规模(数千瓦至50MW的小型模块式)、分散式的方式布置在用户附近,可独立地输出电能、热能或冷能的系统。
分布式能源中心作为大电网的补充,进一步加强了大电网的稳定性并有效减低了输电能耗,提高了一次能源利用率。
随着分布能源技术的不断发展,以天然气为主要燃料,推动燃气轮机或内燃机发电,再利用发电余热向用户供冷、供热的燃气冷热电三联供系统已成为分布式能源的一种主要形式。
基本原理燃气冷热电三联产系统基本原理是温度对口、梯级利用,其原理图如图1所示。
首先洁净的天然气在燃气发电设备内燃烧产生高温高压的气体用于发电做功,产出高品位的电能,发电做功后的中温段气体通过余热回收装置地回收利用,用来制冷、供暖,其后低温段的烟气可以通过再次换热供生活热水后排放。
通过对能源的梯级利用,充分利用了一次能源,提高了系统综合能源利用率。
图2 典型冷热电联产系统示意图2、系统特点1)能源综合利用率提高大型发电厂的发电效率为35%-55%,而冷热电三联供可实现能源的梯级利用,使燃料的利用效率(冷、热、电综合利用效率)达到80%左右。
有良好的环保效益天然气是洁净能源,烟气中NO x 等有害成分远低于相关指标要求,具有良好的环保性能。
美国有关专家预测如果将现有建筑实施CCHP 的比例从4%提高到8%,到2020年二氧化碳的排放量将减少30%。
2)电力和燃气双重削峰填谷目前城市天然气基本用于采暖,冬夏城市的峰谷日差已经高达近8倍。
用气结构的不合理导致了天然气资源浪费以及输配管道、门站等天然气设施利用率的下降,引起供气成本增加和燃气价格上升。
冷热电联产夏季可以替代电空调制冷而节约大量电力,减小大电网负担。
因此,以天然气为燃料的热电冷联产系统具有燃气系统、电力系统双重调峰的作用。
冷热电联产(CCHP)技术方案1.概述项目所在地无法提供外部电源供电系统,因此业主决定采用燃气发电机组孤岛运行,作为全厂电力供应。
本项目考虑配套余热锅炉,以回收燃气发电机组高温烟气余热,副产低压蒸汽作为工艺装置热源(脱酸单元再沸器、脱水再生气蒸汽加热器);同时配套溴冷机组回收燃气发电机组缸套水热量,并为工艺装置提供冷源(原料气预冷、冷剂压缩机段间冷却)的冷热电联产(CCHP)方案。
根据工艺装置所需的冷、热、电消耗,优选与之相配套的燃气发电机组、余热锅炉和溴冷机组,以达到最大程度的回收利用发电机组烟气余热,优化主体工艺装置设备选型以及降低运行能耗的目的。
2.设计范围该方案为燃气机组冷热电联产系统,即利用管输天然气及工艺装置所产BOG,通过燃气机组(燃气内燃机或燃气轮机)发电,机组高温尾气配套余热锅炉副产低压饱和蒸汽供工艺装置使用,机组冷却循环生成热水配套溴化锂机组副产7℃空调水供工艺装置制冷。
电、蒸汽、空调水全部自用,实现冷热电联产,提高能源利用率,获得最高的系统效率,减少大气污染。
3.设计基础甲方供气≤50×104Nm3/d,经20km长输管线进入厂区附近,降压至0.8MPaG,分为三部分:一部分(15×104Nm3/d)进入公司原有天然气液化工厂作原料气;一部分(30×104Nm3/d)加压后进入本次新建天然气液化工厂作原料气,剩余部分(3.6×104Nm3/d,折~1500Nm3/h)与BOG之间的关系进入燃气机组发电,配套余热锅炉副产低压蒸汽,同时配套热水溴化锂机组副产空调水,均供工艺装置使用。
1)电规格:10kV(±7%),50Hz(±1%),三相三线。
30×104Nm3/d天然气液化工厂全厂有功负荷~5.4MW(已考虑照明、空调、锅炉系统、发电机组自用电以及溴化锂机组用电,~0.6MW)。
2)低压蒸汽规格:0.6MPaG饱和蒸汽(~165℃)液化工厂脱酸单元共需蒸汽~1.6t/h。
天然气冷、热、电三联供系统简介1、背景天然气是洁净能源,在其完全燃烧后及采取一定的治理措施,烟气中NOx等有害成分远低于相关指标要求,具有良好的环保性能。
美国有关专家预测如果将现有建筑实施冷、热、电三联供(Combined cooling heating and power,简称CCHP)的比例从4%提高到8%,到2020年CO2的排放量将减少30%。
2、概念与优势燃气冷、热、电三联供简单地说即为:天然气发电、余热供热、余热制冷。
相比于常规供能燃煤发电、燃气供热、电制冷,具有能源梯级利用,综合能源利用率高;清洁环保,减少排放CO2,SO2;与大型电网互相支撑,供能安全性高的优势及对燃气和电力有双重削峰填谷作用。
以天然气为燃料的动力装置,例如燃气轮机、燃气内燃机、斯特林发动机、燃料电池等,在发电的同时,其排放的余热被回收,用于供热或驱动空调制冷装置,如吸收式制冷机或除湿装置等,这种以天然气为燃料,同时具备发电、供热和供冷功能的能源转换和供应系统,就是天然气冷、热、电联供系统。
相比传统的集中式供能,天然气冷、热、电三联供系统是建立在用户侧的小型的、模块化的能源供给系统,避免了长距离能源输送的损失,为能源供应增加了安全性、可靠性和灵活性。
3、天然气冷、热、电三联供分类天然气冷、热、电三联供系统应用于商业、工业等各个领域,一般分为楼宇型和区域型两种。
楼宇型冷、热、电三联供系统,规模较小,主要用于满足单独建筑物的能量需求(如医院、学校、宾馆、大型商场等公共设施)。
单独建筑物一天内的负荷变化较大,会出现高峰或低谷的情况,而系统的运行需要不断进行调整,与负荷需求相匹配。
因此,楼宇型冷、热、电三联供系统对设备的启停机及变工况运行性能有较高的要求,同时在系统集成方面,发电设备、热源设备、蓄能设备之间的优化设计以及与电网配合的优化运行模式也十分必要。
区域型分布式冷、热、电三联供系统主要应用于一定区域内的由多栋建筑物组成的建筑群。
青岛新机场冷热电三联供系统方案介绍发表时间:2020-08-24T16:49:26.743Z 来源:《基层建设》2020年第10期作者:田志刚[导读] 摘要:近10年来,中国民航机场基础设施建设取得了显著的成果,始终保持快速发展态势,数以千亿百亿计的大型机场建设项目在行业内已经不鲜见。
青岛新机场建设指挥部 266000摘要:近10年来,中国民航机场基础设施建设取得了显著的成果,始终保持快速发展态势,数以千亿百亿计的大型机场建设项目在行业内已经不鲜见。
民航局近期发布《推进四型机场建设行动纲要》,明确 “平安、绿色、智慧、人文” 四型机场的建设路径,其中绿色作为机场建设目标之一,正在贯彻到大型机场建设中来。
本篇着重介绍青岛新机场绿色环保措施之一——冷热电三联供系统关键词:节能,电机,燃料;青岛新机场近期规划目标年2025年年旅客吞吐量3500万人次,货运吞吐量50万吨。
本期航站楼(T1)总建筑面积45.6万平方米,根据《综合能耗计算通则》(GB/T2589-2008)预计2025年本期建设完成并投入使用后年总耗电量为5737.22万KWh,耗水量602.8万m³,市政热力20485万MJ,汽油耗量124.6吨,柴油耗量615.1吨。
节能关键在规划,青岛新机场的能源规划采用多种能源相结合的方式,提高能源利用率,其中冷热电三联就是其中一种提高能源利用的有效方式。
冷热电三联供技术发展已经比较成熟,符合国家能源正常推广技术,具有显著的经济、节能和环保效益。
一、冷热电三联供冷热电三联供(CCHP),是指以天然气为主要燃料带动燃气轮机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,发电后排出的余热通过余热回收利用设备向用户供热、供冷,实现了能源的梯级利用,可以获得 40%左右的发电效率,能源综合利用率达80%,大大提高一次能源利用率。
青岛新机场三联供系统选用一台双良制冷量2326KW烟气回收式溴化锂冷水机组和一台卡特彼勒发电量2486KW燃气发电机组,三联供工艺流程如下:二、工艺流程介绍燃气发电机GG-01以天然气为能源,将天然气转化为2489KW电力输出至电网,发电机烟气(385℃)通过消声和烟尘处理(脱硝)经烟气三通阀进入烟气热水型吸收式机组AB-01。
燃气冷热电三联供技术及其应用情况信息来源:互联网更新日期:09-05-25分布式能源系统(DistributedEnergySystem)在许多国家、地区已经是一种成熟的能源综合利用技术,它以靠近用户、梯级利用、一次能源利用效率高、环境友好、能源供应安全可靠等特点,受到各国政府、企业界的广泛关注、青睐。
分布式能源系统有多种形式,区域性或建筑群或独立的大中型建筑的冷热电三联供(CombinedCoolingheatingandpowe r,简称CCHP)是其中一种十分重要的方式。
燃气冷热电三联供系统是一种建立在能量的梯级利用概念基础上,以天然气为一次能源,产生热、电、冷的联产联供系统。
它以天然气为燃料,利用小型燃气轮机、燃气内燃机、微燃机等设备将天然气燃烧后获得的高温烟气首先用于发电,然后利用余热在冬季供暖;在夏季通过驱动吸收式制冷机供冷;同时还可提供生活热水,充分利用了排气热量。
提高到80%左右,大量节省了一次能源。
燃气气冷热电三联供系统按照供应范围,可以分为区域型和楼宇型两种。
区域型系统主要是针对各种工业、商业或科技园区等较大的区域所建设的冷热电能源供应中心。
设备一般采用容量较大的机组,往往需要建设独立的能源供应中心,还要考虑冷热电供应的外网设备。
楼宇型系统则是针对具有特定功能的建筑物,如写字楼、商厦、医院及某些综合性建筑所建设的冷热电供应系统,一般仅需容量较小的机组,机房往往布置在建筑物内部,不需要考虑外网建设。
燃气热电冷三联供的特点1)与集中式发电-远程送电比较,燃气热电冷三联供可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而经过能源的梯级利用cchp使能源利用效率从常规发电系统的40%左右提高到80~90%,且没有输电损耗。
热电产生过程就是天然气燃烧产生热量,然后通过能量转换得到电能或机械能。
天然气在燃气轮机或发动机中燃烧产生电能或机械能用于空气调节或压缩空气,泵水等,在这个过程中,热能没有浪费而被利用,并被广泛应用。
热电冷联供(CCHP: combined cooling, heating and power) 系统是以燃料作为能源.同时满足小区域或建筑物内的供热(冷)和供电需求的分布式能源供应系统。
节能、削峰填谷、安全、环保和平衡能源消费是热电冷联供系统的主要优点。
由于热电冷联供系统可实现对能源的梯级利用.高品位能源用于发电.然后利用发电机组排放的低品位能源(烟气余热、热水余热)来制冷(供热).能源综合利用率高达80%以上(最高可达90%).对节约能源和促进国民经济可持续发展具有重要意义.用户也可大幅度节省能源费用。
热电冷联供系统中的主要设备从实现同时供热(冷)和供电需求的功能来说.热电冷联供系统中的主要设备有发电机组、制冷机组和供热机组。
其中.制冷机组多采用溴化锂吸收式制冷机。
因能量转换和余热利用方式的不同.有的系统中还需在发电机组和溴化锂吸收式制冷机之间配置余热锅炉.将发电机组排放的高温烟气热量转换成蒸汽热量或热水热量。
但在实际应用中.受负荷(空调负荷和电负荷)大小、负荷比例、负荷变化模式、运行控制目标、设备投资回收期等因素的影响.系统中还需要同时或分别配置直燃型溴化锂吸收式冷热水机组、电力螺杆式冷水机组、电力离心式冷水机组、燃油/燃气锅炉等冷(热)负荷调节设备才能使系统的综合经济性能达到最佳。
结论:1)在热电冷联供系统中配置溴化锂吸收式制冷机,可充分发挥其利用低品位能源的优势,有效提高系统的能源综合利用率,节约能源,提高系统经济性。
2)设计热电冷联供系统前,应进行必要的经济性分析,合理确定设备配置方案和配置容量,使系统达到节能、经济和高效的运行目的。
3)以燃气轮机发电机组和烟气型溴化锂吸收式冷热水机组为主要设备组成的热电冷联供系统,烟气系统的设计和安装连接是关键,烟气系统的烟气流动阻力必须小于等于燃气轮机的允许排烟背压,烟气系统控制部件的运行必须满足系统的控制要求,满足燃气轮机及烟气型溴化锂吸收式冷热水机组的安全运行要求。