数字图像处理实验
- 格式:doc
- 大小:7.73 MB
- 文档页数:30
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
哈工大数字图像处理实验报告(共10篇) 数字图像处理实验报告实验报告书实验类别数字图像处理学院信息工程学院专业通信工程班级通信1005班姓名叶伟超指导教师聂明新2013 年 6 月 3 日篇二:数字图像处理实验报告(全部)数字图像处理实验指导书125 200912512 班级:学号:姓名:田坤专业:电子信息科学与技术实验一数字图像的运算一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I)%输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。
(a)原始图像(b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I)%输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
数字图像处理实验实验报告要求:实验报告应包含实验名称、实验内容、思想及原理、算法设计、代码设计及实现、实验结果及分析、结论等内容。
实验结果必须包括原图像、结果图像和必要的数据图像。
实验1 直方图均衡化编码实现直方图均衡化算法(不能使用第三方直方图均衡化函数)。
代码如下:a=imread('e:\b.jpg');%读取图像b=rgb2gray(a); %转化为灰度图像imshow(b); %显示原图c=histeq(b); %直方图均衡化subplot(121),imshow(a);subplot(122),imshow(c); %显示处理后的图像图像如下:实验2 频率域滤波图像中含有周期性干扰,设计使用频率域分析方法检测和去除图像周期性干扰的算法(可以使用第三方傅里叶变换和反变换函数)。
代码如下:%频率域滤波clc;close all;f=imread('salt.bmp');f=im2double(f);F=fft2(double(f));%傅里叶变换F=fftshift(F);%将变换的原点移到频率矩形的中心[M,N]=size(f);%理想低通滤波D0=input('输入截止频率');h1=zeros(M,N);for i=1:Mfor j=i:Nif(sqrt(((i-M/2)^2+(j-N/2)^2))<D0)h1(i,j)=1;endendendG1=F.*hl;61=ifftshift(G1);g1=real(ifft2(G1));subplot(2,3,1);imshow(f);title('原图');subplot(2,3,2);imshow(g1);title('理想低通滤波’);%巴特沃斯低通滤波n=input('巴特沃斯滤波器的阶数 n=');n1=fix(M/2);n2=fix(N/2);h2=zeros(M,N);for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h2=1./(1+(d./D0).^(2*n));endendG2=F.*h2;G2=ifftshift(G2);g2=real(ifft(G2));subplot(2,3,1);imshow(f);title('原图'); subplot(2,3,4);imshow(g3);title('低通滤波'); 图像如下:原图巴特沃斯低通理想低通实验3彩色图像去噪对RGB彩色空间和HIS彩色空间去噪效果进行比较分析。
《数字图像处理》实验教案一、实验目的1. 使学生了解和掌握数字图像处理的基本概念和基本算法。
2. 培养学生运用数字图像处理技术解决实际问题的能力。
3. 提高学生使用相关软件工具进行数字图像处理操作的技能。
二、实验内容1. 图像读取与显示:学习如何使用相关软件工具读取和显示数字图像。
2. 图像基本操作:学习图像的旋转、缩放、翻转等基本操作。
3. 图像滤波:学习使用不同类型的滤波器进行图像去噪和增强。
4. 图像分割:学习利用阈值分割、区域增长等方法对图像进行分割。
5. 图像特征提取:学习提取图像的边缘、角点等特征信息。
三、实验环境1. 操作系统:Windows或Linux。
2. 编程语言:Python或MATLAB。
3. 图像处理软件:OpenCV、ImageJ或MATLAB。
四、实验步骤1. 打开相关软件工具,导入图像。
2. 学习并实践图像的基本操作,如旋转、缩放、翻转等。
3. 学习并实践图像滤波算法,如均值滤波、中值滤波等。
4. 学习并实践图像分割算法,如全局阈值分割、局部阈值分割等。
5. 学习并实践图像特征提取算法,如Canny边缘检测算法等。
五、实验要求1. 每位学生需独立完成实验,并在实验报告中详细描述实验过程和结果。
2. 实验报告需包括实验目的、实验内容、实验步骤、实验结果和实验总结。
3. 实验结果要求清晰显示每个步骤的操作和效果。
4. 实验总结部分需对本次实验的学习内容进行归纳和总结,并提出改进意见。
六、实验注意事项1. 实验前请确保掌握相关软件工具的基本使用方法。
3. 在进行图像操作时,请尽量使用向量或数组进行处理,避免使用低效的循环结构。
4. 实验过程中如需保存中间结果,请使用合适的文件格式,如PNG、JPG等。
5. 请合理安排实验时间,确保实验报告的质量和按时提交。
七、实验评价1. 实验报告的评价:评价学生的实验报告内容是否完整、实验结果是否清晰、实验总结是否到位。
2. 实验操作的评价:评价学生在实验过程中对图像处理算法的理解和运用能力。
数字图像处理实验报告(完整版)数字图像处理实验⼀ MATLAB数字图像处理初步⼀、显⽰图像1.利⽤imread( )函数读取⼀幅图像,假设其名为lily.tif,存⼊⼀个数组中;2.利⽤whos 命令提取该读⼊图像flower.tif的基本信息;3.利⽤imshow()函数来显⽰这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)⼆、压缩图像4.利⽤imfinfo函数来获取图像⽂件的压缩,颜⾊等等其他的详细信息;5.利⽤imwrite()函数来压缩这幅图象,将其保存为⼀幅压缩了像素的jpg⽂件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利⽤imwrite()函数将最初读⼊的tif图象另存为⼀幅bmp图像,设为flily.bmp。
7.⽤imread()读⼊图像Sunset.jpg和Winter.jpg;8.⽤imfinfo()获取图像Sunset.jpg和Winter.jpg的⼤⼩;9.⽤figure,imshow()分别将Sunset.jpg和Winter.jpg显⽰出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上⾯两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、⼆值化图像10.⽤im2bw将⼀幅灰度图像转化为⼆值图像,并且⽤imshow显⽰出来观察图像的特征。
数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。
通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。
实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。
(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。
这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。
(3) 图像的变换,以便于图像的频域处理。
实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。
该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。
要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。
2、灰度拉伸灰度拉伸和灰度线性变换相似。
不同之处在于它是分段线性变换。
表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。
要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。
3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。
要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。
4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。
实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。
数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。
a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。
s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。
一、实验目的与要求1. 目的通过本实验,使学生了解数字图像处理的基本概念、方法和算法,掌握MATLAB 软件在图像处理方面的应用,提高学生分析问题和解决问题的能力。
2. 要求(1)熟悉MATLAB软件的基本操作。
(2)了解数字图像处理的基本概念和常用算法。
(3)能够运用MATLAB实现图像处理的基本操作和算法。
二、实验内容与步骤1. 实验内容(1)图像读取与显示。
(2)图像的基本运算(如加、减、乘、除等)。
(3)图像的滤波处理。
(4)图像的边缘检测。
(5)图像的分割与标记。
2. 实验步骤(1)打开MATLAB软件,新建一个脚本文件。
(2)导入所需图像,使用imread()函数读取图像,使用imshow()函数显示图像。
(3)进行图像的基本运算,如加、减、乘、除等,使用imadd()、imsub()、imdiv()、imconcat()等函数。
(4)对图像进行滤波处理,如使用均值滤波、中值滤波等,使用imfilter()函数。
(5)进行图像的边缘检测,如使用Sobel算子、Canny算子等,使用edge()函数。
(6)对图像进行分割与标记,如使用区域生长、阈值分割等方法,使用watershed()函数。
(7)对实验结果进行分析和讨论,总结实验心得。
三、实验注意事项1. 严格遵循实验步骤,确保实验的正确进行。
2. 合理选择参数,如滤波器的尺寸、阈值等。
3. 注意图像数据类型的转换,如浮点型、整型等。
4. 保持实验环境的整洁,避免误操作。
四、实验评价1. 评价内容(1)实验步骤的完整性。
(2)实验结果的正确性。
2. 评价标准(1)实验步骤完整,得分20分。
(2)实验结果正确,得分30分。
总分100分。
五、实验拓展1. 研究不同滤波器对图像滤波效果的影响。
2. 尝试使用其他图像分割算法,如基于梯度的分割方法、聚类分割方法等。
3. 探索图像处理在其他领域的应用,如计算机视觉、医学影像处理等。
六、实验一:图像读取与显示1. 实验目的掌握MATLAB中图像的读取和显示方法,熟悉图像处理的基本界面。
数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。
图像处理是信号处理在图像域上的一个应用。
目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。
此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。
然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。
学院计算机与通信工程学院专业生物医学工程专业班级51111学号5111133姓名杨静指导教师贾朔2014年04月21日实验一图像的基本运算一、实验目的:1、掌握图像处理中的点运算、代数运算、逻辑运算和几何运算及应用。
2、掌握各种运算对于图像处理中的效果。
二、实验内容:1、(1)选择一幅图像lena8.jpg,设置输入/输出变换的灰度级范围,a=0.2,b=0.6,c=0.1,d=0.9.(2)设置非线性扩展函数的参数c=2.(3)采用灰度级倒置变换函数s=255-r进行图像变换(4)设置二值化图像的阈值,分别为level=0.4,level=0.7解:参考程序如下:I=imread('C:\lena8.jpg');figure;subplot(2,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); %设置灰度变换的范围subplot(2,3,2);imshow(J);title('线性扩展');I1=double(I); %将图像转换为double类型I2=I1/255; %归一化此图像C=2;K=C*log(1+I2); %求图像的对数变换subplot(2,3,3);imshow(K);title('非线性扩展');M=im2bw(I,0.5);M=~M;%M=255-I; %将此图像取反%Figuresubplot(2,3,4);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); %将此图像二值化,阈值为0.4N2=im2bw(I,0.7); %将此图像二值化,阈值为0.7subplot(2,3,5);imshow(N1);title('二值化阈值0.4');subplot(2,3,6);imshow(N2);title('二值化阈值0.7');2、选取两幅大小一样的灰度图像hough.bmp和rice.bmp,将两幅图像进行加法运算。
解:程序如下:I=imread('C:\hough.bmp');%I=rgb2gray(I);J=imread('C:\rice.bmp');I=im2double(I); %将图像转换成double型J=im2double(J);K=I+0.3*J; %两幅图像相加subplot(1,3,1);imshow(I);title('物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'C:\lena1.jpg');3、选取一幅混合图像,如相加得到的图像lenal.jpg,将混合图像与背景图像做减法运算。
解:程序如下:A=imread('C:\lena1.jpg');B=imread('C:\rice.bmp');A=im2double(A); %将图像转换成double型B=im2double(B);C=A-0.3*B;subplot(1,3,1);imshow(A);title('混合图');subplot(1,3,2);imshow(B);title('背景图');subplot(1,3,3);imshow(C);title('分离后的图');4、选取一幅尺寸为256*256像素的灰度图,如rice.bmp。
设置掩模模板,对于需要保留下来的区域,掩模图像的值置为1,而需要被抑制掉的区域,掩模图像的值置为0.解:程序如下:A=imread('C:\rice.bmp');A=rgb2gray(A);A=im2double(A);subplot(1,2,1);imshow(A);title('原图');B=zeros(256,256);B(40:200,40:200)=1;K=A.*B;subplot(1,2,2);imshow(K);title('局部图');5、选取一幅大小为256*256像素的图像,如lena8.jpg.分别将图比例放大1.5倍,比例缩小0.7倍,非比例放大到420*384像素,费比例缩小到15*180像素。
解:程序如下:A=imread('C:\lena8.jpg');Bl=imresize(A,1.5); %比例放大1.5倍,默认采用的是最近邻法进行线性插值B2=imresize (A, [420 384]); %非比例放大至420:384 Cl=imresize (A, 0 . 7) ; %比例缩小0.7 倍C1=imresize(A, 0.7) ;C2=imresize(A, [150 180]) ; %非比例缩小到150:180 figure;imshow(Bl);title('比例放大图');figure;imshow(B2);title('非比例放大图');figure;imshow(C1);title('比例缩小图');figure;imshow(C2);title('非比例缩小图');实验二图像的变换一、实验目的:1、掌握图像变换的目的就是简化图像的分析与处理。
2、图像变换在图像增强、图像恢复、图像压缩和图像特征提取等方面有着十分重要的作用。
二、实验内容:1、选取一幅图像,进行离散傅立叶变换,在对其分别进行X轴与Y轴上的平移,得其傅立叶变换,观察结果图。
解:实验程序如下:I=imread('C:\1.bmp');%I=imread('C:\lena8.jpg');%imshow(I);imshow(real(I));figure(1)I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real(sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2);imshow(real(a));I=imread('C:\2.bmp');figure(3);imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift (fftI) ; %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real(sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(4);imshow(real (a));I=imread('C:\3.bmp');figure (5);imshow(real (I));I=I(:,:,3);fftI=fft2 (I);sfftI = fftshift (fftI) ; %求离散傅里叶频谱%对原始图像进行二维离散傅里叶变换,并将其坐标原点移到频谱图中央位置RRfdpl=real (sfftI);IIfdpl=imag(sfftI);a=sqrt(RRfdpl.^2+IIfdpl.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(6);imshow(real(a));2、选取一幅图像,进行离散傅立叶变换,在对其进行一定角度的旋转,进行离散傅立叶变换。
解:程序如下:%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前一值是纵向比,后一值是横向比imshow(I);%求原始图像的傅里叶变换J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[5 50]);%对原始图像进行旋转figureimshow(J)%求旋转后图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figureImshow(J2,[5 50])3、选取一幅图像,进行离散傅立叶变换,并对其进行离散余弦反变换,观察其结果。
解:程序如下:%对lena24.ipg文件计算二维DCT变换RGB = imread('C:\lena24.jpg');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩色图像转换成灰度图像J = dct2(I);%计算二维DCT变换figure (2)imshow(log(abs(J)),[])%图像大部分能量集中在上左角处figure (3);J(abs(J) < 10) = 0;%把变换矩阵中小于10的值置换为0,然后用idct2重构图像K = idct2(J)/255;imshow(K)4、选取一幅图像,进行离散余弦变换,并对其进行压缩解压,观察其结果。
解:程序如下:RGB = imread('C:\lena24.jpg');I=rgb2gray(RGB);I = im2double(I); %转换图像矩阵为双精度型T = dctmtx(8); %产生二维00?变换矩阵,%矩阵T及其转置T‘是DCT函数P1*X*P2的参数B = blkproc(I, [8 8],'P1*x*P2',T,T');maskl= [ 1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];%二值掩模,用来压缩DCT系数B2=blkproc(B,[8 8],'P1.*x',maskl);%只保留DCT变换的10个系数I2=blkproc(B2,[8 8],'P1*x*P2',T',T);%重构图像figure,imshow(I);figure,imshow(B2);figure,imshow(I2);实验三图像的增强一、实验目的:1、掌握根据图像的特点采用一定的方法增强图像的视觉感知效果;2、熟练图像增强的技术。