运筹学指派问题
- 格式:doc
- 大小:131.00 KB
- 文档页数:10
运筹学课件ch5指派问题[全文] 指派问题assignment problem 运筹学课件一种特殊的线性规划问题,我们也经常遇到指派人员做某项工作的情况。
指派问题的许多应用都用来帮助管理人员解决如何为一项将要开展进行的工作指派人员的问题。
其他的一些应用如为一项任务指派机器、设备或者是工厂。
指派问题运筹学课件指派问题的形式表述:给定了一系列所要完成的任务(tasks)以及一系列完成任务的被指派者(assignees),所需要解决的问题就是要确定出哪一个人被指派进行哪一项任务。
指派问题模型运筹学课件指派问题的假设:被指派者的数量和任务的数量是相同的每一个被指派者只完成一项任务每一项任务只能由一个被指派者来完成每个被指派者和每项任务的组合有一个相关成本目标是要确定怎样进行指派才能使得总成本最小指派问题模型运筹学课件指派问题assignment problem 【例51></a>.14】人事部门欲安排四人到四个不同的岗位工作,每个岗位一个人(经考核四人在不同岗位的成绩(百分制)如表5-34所示,如何安排他们的工作使总成绩最好。
88809086丁90798382丙95788795乙90739285甲DCBA工作人员表5-34【解】设1 数学模型运筹学课件数学模型为:甲乙丙丁ABCD图5. 3指派问题assignment problem运筹学课件假设m个人恰好做m项工作,第i个人做第j项工作的效率为cij?0,效率矩阵为[cij](如表5-34),如何分配工作使效率最佳(min或max)的数学模型为指派问题assignment problem运筹学课件2 解指派问题的匈牙利算法匈牙利法的条件是:问题求最小值、人数与工作数相等及效率非负【定理5.1】如果从分配问题效率矩阵[cij]的每一行元素中分别减去(或加上)一个常数ui(被称为该行的位势),从每一列分别减去(或加上)一个常数vj(称为该列的位势),得到一个新的效率矩阵[bij],其中bij=cij,ui,vj,则[bij]的最优解等价于[cij]的最优解,这里cij、bij均非负(指派问题assignment problem【证】运筹学课件【定理5.2】若矩阵A的元素可分成“0”与非“0”两部分,则覆盖“0”元素的最少直线数等于位于不同行不同列的“0”元素(称为独立元素)的最大个数( 如果最少直线数等于m,则存在m个独立的“0”元素,令这些零元素对应的xij等于1,其余变量等于0,这时目标函数值等于零,得到最优解(两个目标函数相差一个常数 u+v,约束条件不变,因此最优解不变。
三类指派问题1. 简介三类指派问题是运筹学中的一类经典问题,它的目标是找到一种最优分配方案,将若干个任务分配给若干个执行者,使得总体成本或效益达到最小或最大。
这类问题通常可以用线性规划模型来描述和求解。
三类指派问题包括: - 任务分配问题:将若干个任务分配给若干个执行者,使得总体成本最小或效益最大。
- 作业调度问题:将若干个作业安排在若干台机器上进行处理,使得总体完成时间最短或机器利用率最高。
- 设备调度问题:将若干个任务安排在若干台设备上进行处理,使得总体完成时间最短或设备利用率最高。
2. 任务分配问题2.1 模型描述假设有n个任务和n个执行者,每个任务只能由一个执行者完成,并且每个执行者只能处理一个任务。
每个任务与每个执行者之间都有一个成本或效益值。
我们的目标是找到一种分配方案,使得总体成本最小或效益最大。
可以使用二维数组C表示各任务与各执行者之间的成本或效益值,其中C[i][j]表示第i个任务分配给第j个执行者的成本或效益值。
定义一个二进制变量X[i][j],如果第i个任务分配给第j个执行者,则X[i][j]=1,否则X[i][j]=0。
任务分配问题可以用下面的线性规划模型来描述:minimize ∑(i=1 to n)∑(j=1 to n) C[i][j] * X[i][j]subject to∑(i=1 to n) X[i][j] = 1, for j = 1,2,...,n∑(j=1 to n) X[i][j] = 1, for i = 1,2,...,nX[i][j] ∈ {0, 1}, for i,j = 1,2,...,n2.2 求解方法常用的求解任务分配问题的方法有匈牙利算法和线性规划方法。
匈牙利算法是一种经典的图论算法,它通过构建增广路径来找到最优分配方案。
该算法的时间复杂度为O(n^3),适用于小规模问题。
线性规划方法则通过将任务分配问题转化为线性规划模型,并利用线性规划求解器进行求解。
物流运筹学运输问题及指派问题第 3 章运输和指派问题本章知识结构本章教学目标与要求掌握产销平衡运输问题的数学模型及其特点; 掌握运输问题的表上作业法,包括初始调运方案的确定、检验数的计算、运输方案的调整方法; 掌握产销不平衡运输问题转化为产销平衡问题的处理办法;掌握运输问题在实践中的典型应用; 掌握标准指派问题的求解方法,会将各种非标准指派问题转化为标准指派问题。
导入案例运储物流的运输问题运输成本占物流总成本的35,-50,左右,占商品价格的4,-10,,运输对物流总成本的节约具有举足轻重的作用。
运储物流在物流运输管理中要着重考虑:运输方式的选择,运输路线的选择,编制运输计划等问题。
运输方式合适与否决定了运输时间的长短,决定了成本的高低,各种运输工具都有其使用的优势领域,对运输工具进行优化选择,按运输工具特点进行装卸运输作业,最大限度地发挥所用运输工具的作用;选择运输路线要与交通运输工具结合起来,尽量安排直达运输,以减少运输装卸、转运环节,缩短运输时间;编制运输计划还要从全局出发,深入调查研究,综合平衡,积极组织计划运输、合理运输、直达运输、均衡运输,按照成本最低的原则来制定合理的计划。
3.1 运输问题概述运输问题的典型提法是将某种物质从若干个产地调运到若干个销地,已知每个产地的产量和每个销地的销量,如何在许多可行调运方案中选择一个总运费最少的调运方案。
根据总产量与总销量是否相等的数量关系,运输问题通常可划分为产销平衡(相等)和产销不平衡(不相等)两大类别。
产销平衡的运输问题主要在这一节介绍,产销不平衡的运输问题将在后面节中讨论。
3.1.1 运输问题的引入在生产、交换活动中,不可避免地要进行物资调运工作。
某时期内将生产基地的煤、钢铁、粮食、矿砂、木材等各类物资,分别运送到需要这些物资的地区。
3.1 运输问题概述【例3.1】某物流公司从两个产地A1 内蒙、A2 山西将煤炭运往三个销地B1 北京、B2 山东、B3上海,各产地的产量、各销地的销量、各产地运往各销地的每单位煤炭运费数据见下表,问:应如何调运煤炭可使总运输费用最小, 销地产地 B1 B2 B3 产量 6 4 6 A1 200 x11x12 x13 6 5 5 A2 300 x21 x22 x23 销量 150 150 200 500 解: 此为产销平衡的运输问题(总产量总销设量)。
运筹学作业-----关于指派问题的求解算法设计学院:计算机科学与技术学院班级:信息与计算科学1202班学号:1208060220姓名:韩雪平2014、7、31.问题描述与数学模型:在现实生活中,有各种各样的指派问题。
例如,有若干项工作(或者任务,事情)需要分配给若干人(或者部门,设备等)来完成;有若干项合同需要选择若干个投标者来承包;有若干条交通线(如航空线,航海线,公路线等)需要配置若干交通运输工具(如飞机,船只,汽车等)来运营;有若干班级需要安排在不同的教师里上课;等等/诸如此类问题,它们的基本要求就是来满足特定的指派要求时,使指派方案的总体效果最佳。
由于指派总就是多样性的,有必要定义指派的特定问题的标准形式。
指派问题的标准形式(以人与事为例):设有n个人与n件事,已知第i个人做第j件事的费用为cij(i,j=1,2,、、、、n),求人与事之间一一对应的指派方案,使完成的这n件事的总费用最少。
一般称矩阵c11 c12 c13 c14 (1)c21 c22 c23 c24 (2)c31 c32 c33 c34 (3)C= 、、、、、、、、、、、、、、、cn1 cn2 cn3 cn4……cn5为指派问题的系数矩阵。
在实际问题中,根据cij的具体意义,矩阵C可以有不同的名称,如费用矩阵,成本矩阵,时间矩阵等。
系数矩阵C中,第i行各元素表示第i人做各事的费用,第j列各元素表示第j件事由各个人做的费用。
为建立标准的指派问题的数学模型,引入n^2个0-1变量1 当指派第i人去做第i件事时Xij={ (i,j=1,2,3……,n)0 当不指派第i人去做第j件事时然后对矩阵进行化解,当然作为可行解,矩阵中每一列都有且只有一个1,每行有且仅有一个1,以满足约束条件2.算法思想:标准的指派问题就是特殊的整数规划问题,也就是特殊的0—1规划问题与特殊的运输问题。
因此它可以用很多相应的解法来求解。
匈牙利解法的依据就是指派问题的最优解的一下性质:设指派问题的系数矩阵C=(cij)n*n、若将C的一行或列分别减去一个常数K,则得到一个新的矩阵C'=(c'ij)n*n,那么C’为系数矩阵的指派问题与以C为系数矩阵的原指派问题有相同的最优解。
虽然不要求指派问题系数矩阵中无负元素,但就是匈牙利解法求解指派问题时,为了从已变换后的系数矩阵中判别能否得到最优指派方案,要求此时的矩阵中无负元素因为只有这样,才能使用总费用为零这一特征来判断指派问题就是否为最优方案。
3、算法流程或步骤:步骤1 变换系数矩阵,使各行与各列皆出现零元素。
如各行各列分别减去本行及本列最小元素,这样可以保证每行及每列都有零元素,同时也避免出现负元素。
步骤2 求能覆盖所有零元素的最少数目的直线集合。
若直线数等于n,则可得出最优解。
否则,转步骤3。
步骤3 变换系数矩阵,使未被直线覆盖的元素中出现零元素。
回到步骤2。
4、算法源程序:/*设计算法用匈牙利法求解指派问题:比如:4 8 7 15 127 9 17 14 10C= 6 9 12 8 76 7 14 6 106 9 12 10 6求出它的最优指派问题////////*////////////////////////////////////////////////////////////////////////////////////#include<stdio、h>int main(void){int i,j,min,a[5][5],m=0,cnt1=0,cnt2=0;printf("请输入一个二维数组:\n");for(i=0;i<5;i++) //输入目标矩阵for(j=0;j<5;j++)scanf("%d",&a[i][j]);for(i=0;i<5;i++)//对每行进行减去行中最小值处理{min=a[i][0];for(j=1;j<5;j++){if(a[i][j]<min)min=a[i][j];}for(j=0;j<5;j++)//对列进行减去减去列中最小值处理a[i][j]=a[i][j]-min;}for(j=0;j<5;j++){min=a[0][j];for(i=1;i<5;i++){if(a[i][j]<min)min=a[i][j];}for(i=0;i<5;i++)a[i][j]=a[i][j]-min;}//while(m!=5)//{/* for(i=0;i<5;i++)//记录每行的零个数{for(j=0;j<5;j++){if(a[i][j]==0)// i1++;cnt1++;//记录输入的每行元素个数}c[i]=cnt1;cnt1=0;//清零}for(j=0;j<5;j++)//记录每列的零个数{for(i=0;i<5;i++){ if(a[i][j]==0)// j1++;cnt2++;}d[j]=cnt2;cnt2=0;//清零}*///}printf("输出变换后的矩阵:\n");for(i=0;i<5;i++){ for(j=0;j<5;j++)printf("%3d",a[i][j]);printf("\n");}printf("\n");/* for(i=0;i<5;i++)printf("%5d",c[i]);printf("\n");for(i=0;i<5;i++)printf("%5d",d[i]);printf("\n");*////////通过边算边验证,此时给第二行与第三行减去它们行中除零的最小值////////printf("给第二行与第三行减去它们行中除零最小的数得:\n");for(j=0;j<5;j++)a[1][j]=a[1][j]-1;for(j=0;j<5;j++)a[2][j]=a[2][j]-1;printf("输出变换后的矩阵:\n");for(i=0;i<5;i++){ for(j=0;j<5;j++)printf("%3d",a[i][j]);printf("\n");}printf("\n");///继续通过边求边验证,此时给第一列加上1///printf("再给第一列加上1后的矩阵如下:\n");for(i=0;i<5;i++)a[i][0]=a[i][0]+1;printf("输出变换后的矩阵:\n");for(i=0;i<5;i++){ for(j=0;j<5;j++)printf("%3d",a[i][j]);printf("\n");}printf("\n");//此时圈零进行调整让每行每列都保有一个零//for(i=0;i<5;i++){ for(j=0;j<5;j++){ if(a[i][j]!=0)a[i][j]=0;elsea[i][j]=1;}}printf("输出变换后的矩阵:\n");for(i=0;i<5;i++){ for(j=0;j<5;j++)printf("%3d",a[i][j]);printf("\n");}printf("\n");//此时继续验证继续调整舍去第二行第一个的数与第四行第二列的数使它们等于0//a[1][0]=0;a[3][1]=0;a[2][4]=0;printf("输出变换后的矩阵:\n");for(i=0;i<5;i++){ for(j=0;j<5;j++)printf("%3d",a[i][j]);printf("\n");}printf("\n");return 0;}////////////////////////////////5、算例与结果:目标矩阵:进行行列变换后处理的矩阵截图如下:对没覆盖的行进行减去行中最小值处理截图://///////////////////////////////////// ////////////////////////对列中的负数进行加上负数最小值处理截图://////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////对行列中不为零与就是零的元素进行处理,使不为零变0,为零变1:///////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// 调整1的个数,使每行每列都保持有一个1://///////////////////////////////////////////////////////////////////////////////////////////////////6、结论与总结:本次课程设计主要运用了C语言去编写与实现它,通过本次的课程设计,使我在运用C 语言的过程中更加体会到了运筹学这一本课程的实用性,运筹学主要的设计方向就是使一个普通问题变为最优化问题,它就是在研究在有限种或无限中可行方案中选择最优方案,构造寻求最优的计算方法。