人教新课标版数学高二-选修2-2课时作业16 综合法
- 格式:doc
- 大小:175.50 KB
- 文档页数:4
选修2-2 第二章 2.2 2.2.11.(2013·江西理,3)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24 [答案] A[解析] 由等比中项公式(3x +3)2=x (6x +6),即x 2+4x +3=0.∴x =-1(舍去) x =-3.∴数列为-3,-6,-12,-24.故选A.2.若a 、b 、c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A .a 2+b 2+c 2≥2B .(a +b +c )2≥3C .1a +1b +1c≥23 D .abc (a +b +c )≤13[答案] B[解析] ∵a 、b 、c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ac =1,又(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac=a 2+b 2+c 2+2≥3.3.已知a 、b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43. [证明] ∵a 3-b 3=a 2-b 2且a ≠b ,∴a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得(a +b )2>a +b ,又a +b >0,∴a +b >1,要证a +b <43,即证3(a +b )<4, ∵a +b >0,∴只需证明3(a +b )2<4(a +b ),又a +b =a 2+ab +b 2,即证:3(a +b )2<4(a 2+ab +b 2),也就是证明(a -b )2>0.因为a 、b 是不等正数,故(a -b )2>0成立.故a +b <43成立. 综上,得1<a +b <43.4.已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2. 求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.[证明] 欲证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证12(tan x 1+tan x 2)>tan x 1+x 22, 只需证12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>sinx 1+x 22cos x 1+x 22, 即证12×sin (x 1+x 2)cos x 1cos x 2>sin (x 1+x 2)2cos 2⎝⎛⎭⎫x 1+x 22 =sin (x 1+x 2)1+cos (x 1+x 2). 因为x 1、x 2∈⎝⎛⎭⎫0,π2,所以x 1+x 2∈(0,π), 所以sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,cos x 1cos x 2>0,所以只需证1+cos(x 1+x 2)>2cos x 1cos x 2,即证cos(x 1-x 2)<1.因为x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2, 所以cos(x 1-x 2)<1显然成立,所以原不等式成立.[点评] (1)本题主要考查了三角函数与不等式证明的综合应用,题目中的条件与结论之间的关系不明显,因此可以用分析法挖掘题目中的隐含条件,在证明过程中注意分析法的格式与步骤.对于与三角函数有关的证明题,在证明过程中注意角的取值范围及三角恒等变形公式的灵活应用.(2)本题的几何意义是见而易见的,如图A (x 1,tan x 1),B (x 2,tan x 2),AB 的中点,C x 1+x 22,tan x 1+tan x 22,D ⎝⎛⎭⎫x 1+x 22,tan x 1+x 22,则有tan x 1+tan x 22>tan x 1+x 22,其中x 1、x 2∈⎝⎛⎭⎫0,π2.。
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
§2.2 直接证明与间接证明2.2.1 综合法与分析法一、选择题1.若实数x ,y 满足不等式xy >1,x +y ≥0,则( )A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >02.在非等边三角形ABC 中,A 为钝角,则三边a ,b ,c 满足的条件是( )A .b 2+c 2≥a 2B .b 2+c 2>a 2C .b 2+c 2≤a 2D .b 2+c 2<a 23.若P =a +a +7,Q =a +3+a +4 (a ≥0),则P 与Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定4.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D.a 2+b 22<ab <1 5.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a 索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<06.若A 、B 为△ABC 的内角,则A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若x >0,y >0,且x +y ≤a x +y 恒成立,则a 的最小值是( )A .2 2 B.2 C .2D .1二、填空题8.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.9.如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为____________),只需证____________,只需证AE ⊥BC (因为__________),只需证BC ⊥平面SAB ,只需证BC ⊥SA (因为______________).由SA ⊥平面ABC 可知,上式成立.10.设a >0,b >0,则下面两式的大小关系为ln(1+ab )________12. 三、解答题11.设f (x )=ln x +x -1,证明:当x >1时,f (x )<32(x -1).12.如果a ,b 都是正数,且a ≠b ,求证:a b +b a>a +b .13.在△ABC 中,三边a ,b ,c 成等比数列,求证:a cos 2C 2+c cos 2A 2≥32b .四、探究与拓展14.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一个条件即可,不必考虑所有可能的情形)15.已知a,b,c,d∈R,求证:ac+bd≤(a2+b2)(c2+d2).(你能用几种方法证明?)答案精析1.A 2.D 3.C 4.B 5.C 6.C 7.B8.a >b >c9.EF ⊥SC AE ⊥平面SBC AE ⊥SB AB ⊥BC10.≤11.证明 记g (x )=ln x +x -1-32(x -1), 则当x >1时,g ′(x )=1x +12x -32<0. 又g (1)=0,故当x >1时,g (x )<0,即f (x )<32(x -1). 12.证明 方法一 (综合法)a b +b a -a -b =a a +b b -a b -b a ab =(a -b )(a -b )ab=(a -b )2(a +b )ab>0, 故a b +b a>a +b . 方法二 (分析法)要证a b +b a >a +b , 只需证a 2b +b 2a+2ab >a +b +2ab , 即证a 3+b 3>a 2b +ab 2,只需证(a +b )(a 2-ab +b 2)>ab (a +b ),即需证a 2-ab +b 2>ab ,只需证(a -b )2>0,因为a ≠b ,所以(a -b )2>0恒成立,所以a b +b a>a +b 成立.13.证明 ∵左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12(a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc) =12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边. ∴a cos 2C 2+c cos 2A 2≥32b . 14.对角线互相垂直(答案不唯一)15.证明 方法一 (分析法)①当ac +bd ≤0时,显然成立.②当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2).即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2.即证2abcd ≤b 2c 2+a 2d 2,即证0≤(bc -ad )2.因为a ,b ,c ,d ∈R ,所以上式恒成立.故原不等式成立,综合①②知,命题得证.方法二 (综合法)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2acbd +b 2d 2)+(b 2c 2-2bcad +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2. ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd .方法三 (比较法)∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2, ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd .方法四 (放缩法)为了避免讨论,由ac +bd ≤|ac +bd |,可以试证(ac +bd )2≤ (a 2+b 2)(c 2+d 2).由方法一知上式成立,从而方法四可行.方法五 (构造向量法)设m =(a ,b ),n =(c ,d ),∴m·n=ac+bd,|m|=a2+b2,|n|=c2+d2.∵m·n≤|m|·|n|=a2+b2·c2+d2.故ac+bd≤(a2+b2)(c2+d2).。
§2.2 直接证明与间接证明2.2.1 综合法和分析法一、选择题1.要证明3+6<19,可选择的方法有下面几种,其中最合适的是( )A .综合法B .分析法C .特殊值法D .其他方法2.已知a ,b ,c 为互不相等的正数,且a 2+c 2=2bc ,则下列关系中可能成立的是( )A .a >b >cB .b >c >aC .b >a >cD .a >c >b3.若实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c的值( ) A .一定是正数B .一定是负数C .可能是0D .正、负不能确定4.设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( ) A .aB .bC .cD .不能确定5.已知A 、B 为△ABC 的内角,则A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件6.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是( )A .1B .2C .3D .4二、填空题7.定义在(-∞,+∞)上的函数y =f (x )在(-∞,2)上是增函数,且函数y =f (x +2)为偶函数,则f (-1),f (4),f ⎝⎛⎭⎫512的大小关系是______________.8.已知函数y =x +2a x在[3,+∞)上是增函数,则a 的取值范围是__________. 9.函数y =a 1-x (a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为________. 10.当n ∈N *时,定义函数N (n )表示n 的最大奇因数.如N (1)=1,N (2)=1,N (3)=3,N (4)=1,N (5)=5,N (10)=5,记S (n )=N (2n -1)+N (2n -1+1)+N (2n -1+2)+…+N (2n -1)(n ∈N *),则:(1)S (3)=__________;(2)S (n )=__________.三、解答题11.已知函数y =f (x )(x ∈R ),若函数f (x +1)与f (x )的图象关于y 轴对称,求证y =f ⎝⎛⎭⎫x +12为偶函数.12.如图所示,M 是抛物线y 2=x 上的一点,动弦ME ,MF 分别交x 轴于A ,B 两点,且MA =MB .若M 为定点,证明:直线EF 的斜率为定值.13.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. (1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.[答案]精析1.B2.C [由a 2+c 2>2ac ,a 2+c 2=2bc ,得2bc >2ac .又∵c >0,∴b >a ,可排除A ,D.令a=2,b =52,可得c =1或c =4,可知C 可能成立.] 3.B [∵(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ac )=0,且a 2+b 2+c 2>0(由abc >0,知a ,b ,c 均不为零),∴ab +bc +ac <0,∴1a +1b +1c =ab +bc +ca abc<0.] 4.C [∵b -c =(1+x )-11-x =1-x 2-11-x =-x 21-x<0, ∴b <c .又∵b =1+x >2x =a ,∴a <b <c .]5.C [由正弦定理a sin A =b sin B,又A 、B 为三角形的内角, ∴sin A >0,sin B >0,∴sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .]6.B [若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确;若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确;若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确;若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确.]7.f (4)>f (-1)>f ⎝⎛⎭⎫512 [解析] f (x +2)为偶函数,∴f (x +2)=f (-x +2),故f (x )关于x =2对称,且开口向下,画出图象(图略),显然有f (4)>f (-1)>f ⎝⎛⎭⎫512. 8.⎝⎛⎦⎤-∞,92 [解析] 若函数y =x +2a x 在[3,+∞),上是增函数,则y ′=1-2a x 2在[3,+∞)大于等于0恒成立,只需x ∈[3,+∞)时2a x 2≤1恒成立,即2a ≤x 2,只需2a ≤(x 2)min =9,∴a ≤92.9.4[解析] ∵函数y =a 1-x (a >0且a ≠1)恒过点A (1,1),点A 在直线mx +ny -1=0上,∴m +n -1=0即m +n =1.又m ·n >0,∴m >0,n >0.1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n≥2+2n m ·m n =2+2=4(当且仅当m =n =12时取等号).10.(1)16 (2)4n -1[解析] (1)依题意知,S (3)=N (4)+N (5)+N (6)+N (7)=1+5+3+7=16.(2)依题意得,N (2n )=1.当n 为奇数时,N (n )=n .在从2n -1到2n -1这2n -1个数中,奇数有2n -2个,偶数有2n -2个.在这2n -2个偶数中,不同的偶数的最大奇因数一定不同.注意到N (2n -1)=1,N (2n -1)=2n -1,且从N (2n -1)到N (2n -1)共有2n -1项,它们分别为互不相等的正奇数,其中最小的项是1,最大的项是2n -1,而从1到2n -1共有2n -1个连续的奇数,因此N (2n -1)+N (2n -1+1)+N (2n -1+2)+…+N (2n -1)=1+3+5+…+2n -1 =2n -1(1+2n -1)2=4n -1,即S (n )=4n -1. 11.证明 设点P (x ,y )是函数y =f (x )上任一点,∵f (x +1)与f (x )的图象关于y 轴对称.则点P ′(-x ,y )在函数y =f (x +1)的图象上.∴y =f (-x +1),又y =f (x ),∴f (x )=f (-x +1).∴f ⎝⎛⎭⎫-x +12=f ⎣⎡⎦⎤-⎝⎛⎭⎫-x +12+1=f ⎝⎛⎭⎫x +12, ∴y =f ⎝⎛⎭⎫x +12为偶函数. 12.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,∴直线ME 的方程为y -y 0=k (x -y 20). 由⎩⎪⎨⎪⎧y -y 0=k (x -y 20),y 2=x 消去x ,得ky 2-y +y 0(1-ky 0)=0. 解得y E =1-ky 0k ,∴x E =(1-ky 0)2k 2.同理可得y F =1+ky 0-k,∴x F =(1+ky 0)2k 2. ∴k EF =y E -y F x E -x F =1-ky 0k -1+ky 0-k (1-ky 0)2k 2-(1+ky 0)2k 2=2k -4ky 0k 2=-12y 0(定值).∴直线EF 的斜率为定值. 13.(1)解 当n =1时,2S 11=2a 1=a 2-13-1-23=2, 解得a 2=4.(2)解 2S n =na n +1-13n 3-n 2-23n ,① 当n ≥2时,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),② ①-②得2a n =na n +1-(n -1)a n -n 2-n ,整理得na n +1=(n +1)a n +n (n +1),即a n +1n +1=a n n +1,a n +1n +1-a n n=1,当n =1时,a 22-a 11=2-1=1.所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为首项, 1为公差的等差数列.所以a n n=n ,即a n =n 2. 所以数列{a n }的通项公式为a n =n 2,n ∈N *.(3)证明 因为1a n =1n 2<1(n -1)n =1n -1-1n(n ≥2), 所以1a 1+1a 2+…+1a n =112+122+132+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74.。
一、选择题1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法【解析】 结合分析法及综合法的定义可知B 正确. 【答案】 B2.(2013·台州高二检测)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B.a 2+b 22<ab <1 C .ab <a 2+b 22<1 D .ab <1<a 2+b 22【解析】 ∵a +b =2且a ≠b ,∴ab <(a +b 2)2=1,a 2+b 22>(a +b2)2=1. ∴a 2+b 22>1>ab ,故选D.【答案】 D3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定【解析】 欲比较P ,Q ,只需比较P 2=2a +7+2a 2+7a 与Q 2=2a +7+2a2+7a+12,只需比较a2+7a与a2+7a+12,显然前者小.【答案】 C4.设甲:函数f(x)=|x2+mx+n|有四个单调区间,乙:函数g(x)=lg(x2+mx +n)的值域为R,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.以上均不对【解析】对甲,要使f(x)=|x2+mx+n|有四个单调区间,只需要Δ=m2-4n>0即可;对乙,要使g(x)=lg(x2+mx+n)的值域为R,只需要u=x2+mx+n 的值域包含区间(0,+∞),只需要Δ=m2-4n≥0,∴甲是乙的充分不必要条件.【答案】 A5.(2013·黄冈高二检测)下列不等式不成立的是()A.a2+b2+c2≥ab+bc+caB.a+b>a+b(a>0,b>0)C.a-a-1<a-2-a-3(a≥3)D.2+10>2 6【解析】对A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab +bc+ca;对B,∵(a+b)2=a+b+2ab,(a+b)2=a+b,∴a+b>a+b;对C,要证a-a-1<a-2-a-3(a≥3)成立,只需证明a+a-3 <a-2+a-1,两边平方得2a-3+2a(a-3)<2a-3+2(a-2)(a-1),即a(a-3)<(a-2)(a-1),两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D错误.【答案】 D二、填空题6.若lg x+lg y=2lg(x-2y),则log2xy=________.【解析】由条件知lg xy=lg(x-2y)2,∴xy=(x-2y)2,即x2-5xy+4y2=0,即(xy)2-5x y+4=0,∴x y=4或x y=1,又x>2y,故x y=4.∴log2xy=log24=4.【答案】 47.已知a,b是不相等的正数,x=a+b2,y=a+b,则x,y的大小关系是________.【解析】x2-y2=a+b+2ab2-(a+b)=2ab-a-b2=-(a-b)22≤0,∴x2≤y2.∵a,b是不相等的正数,∴x>0,y>0,x≠y,∴x2<y2即x<y. 【答案】x<y8.已知数列{a n}的前n项和为S n,f(x)=2x-1x+1,a n=log2f(n+1)f(n),则S2 011=________.【解析】a n=log2f(n+1)f(n)=log2f(n+1)-log2f(n),∴S2 011=a1+a2+a3+…+a2 011=+++…+=log 2f (2 012)-log 2f (1) =log 24 024-12 012+1-log 22-11+1=log 21 341671+1. 【答案】 log 21 341671+1 三、解答题9.(2013·东城高二检测)用分析法证明:若a >0,则a 2+1a 2-2≥a +1a -2.【证明】 要证 a 2+1a 2-2≥a +1a -2.只需证a 2+1a 2+2≥a +1a + 2.∵a >0,∴两边均大于零, 因此只需证(a 2+1a 2+2)2≥(a +1a +2)2,只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a 2+4+22(a +1a ), 只需证a 2+1a 2≥22(a +1a ),只需证a 2+1a 2≥12(a 2+1a 2+2), 即证a 2+1a 2≥2,它显然成立, ∴原不等式成立.10.(2013·武汉高二检测)(1)求证:a 2+b 2+3≥ab +3(a +b ). (2)已知a ,b ,c 均为正实数,且a +b +c =1. 求证:(1a -1)(1b -1)(1c -1)≥8.【证明】 (1)∵a 2+b 2≥2ab ,a 2+3≥23a ,b2+3≥23b,将此三式相加得2(a2+b2+3)≥2ab+23a+23b,∴a2+b2+3≥ab+3(a+b).(2)∵a,b,c均为正实数,且a+b+c=1,∴(1 a -1)(1b-1)(1c-1)=a+b+c-aa·a+b+c-bb·a+b+c-cc=b+ca·a+cb·a+bc≥2bca·2acb·2abc=8.故(1a -1)(1b-1)(1c-1)≥8.11.(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a≤b≤c,证明log a b+log b c+log c a≤log b a+log c b+log a c.【证明】(1)由于x≥1,y≥1,所以x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得-=-=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由于x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=1xy,log b a=1x,log c b=1y,log a c=xy.于是,所要证明的不等式即为x+y+1xy≤1x+1y+xy.又由于1<a≤b≤c,所以x=log a b≥1,y=log b c≥1. 故由(1)知所要证明的不等式成立.。
课时作业(二十二)一、选择题1.(2010·全国卷Ⅰ)设a =log 32,b =ln 2,c =5-12,则( ) A .a <b <c B .b <c <a C .c <a <b D .c <b <a答案 C解析 a =log 32=ln 2ln 3<ln 2=b ,又c =5-12=15<12,a =log 32>log 33=12,因此c <a <b ,故选C.2.已知a ≥0,b ≥0,且a +b =2,则( ) A .ab ≤12 B .ab ≥12 C .a 2+b 2≥2 D .a 2+b 2≤3答案 C解析 由a +b =2,可得ab ≤1. 又a 2+b 2=4-2ab ,∴a 2+b 2≥2.3.(2010·福建卷)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 答案 A解析 当x =4时,a =(4,3),则|a |=5;若|a |=5,则x =±4.故“x=4”是“|a |=5”的充分而不必要条件.4.a >0,b >0,则下列不等式中不成立的是( ) A .a +b +1ab ≥2 2B .(a +b )(1a +1b )≥4 C.a 2+b 2ab ≥a +bD.2ab a +b ≥ab 答案 D解析 ∵a >0,b >0,∴2aba +b ≤ab .二、填空题5.设a >0,b >0,c >0,若a +b +c =1,则1a +1b +1c 的最小值为________.答案 9解析 ∵a >0,b >0,c >0,a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +a b +c a +a c +c b +b c ≥3+2b a ·a b +2c a ·ac +2c b ·bc =9.当且仅当a =b =c =13时等号成立.6.函数y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (2.5),f (3.5)的大小关系是________.答案 f (3.5)<f (1)<f (2.5)解析 y =f (x +2)是偶函数,则x =2是f (x )的对称轴. 又f (x )在(0,2)上为增函数,∴f (1)<f (1.5)=f (2.5),f (3.5)=f (0.5)<f (1). ∴f (3.5)<f (1)<f (2.5).7.已知a 、b 、u ∈R +,且1a +9b =1,则使得a +b ≥u 恒成立的u 的取值范围是________.答案 (-∞,16]8.(2010·山东卷)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为________.答案 3解析 因为1=x 3+y 4≥2x 3·y 4=2xy12=xy3,所以xy ≤3.当且仅当x 3=y 4,即x =32,y =2时取等号,故xy 的最大值为3.9.(2010·浙江卷)若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.答案 18解析 由基本不等式,得xy ≥22xy +6,令xy =t ,得不等式t 2-22t -6≥0,解得t ≤-2(舍去)或者t ≥32,故xy 的最小值为18.10.(2010·安徽卷)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的编号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤1a +1b ≥2.答案 ①③⑤解析 两个正数,和为定值,积有最大值,即ab ≤(a +b )24=1,当且仅当a =b 时取等号,故①正确;(a +b )2=a +b +2ab =2+2ab ≤4,当且仅当a =b 时取等号,得a +b ≤2,故②错误;由于a 2+b 22≥(a +b )24=1,故a 2+b 2≥2成立,故③正确;a 3+b 3=(a +b )(a 2+b 2-ab )=2(a 2+b 2-ab ),∵ab ≤1,∴-ab ≥-1.又a 2+b 2≥2,∴a 2+b 2-ab ≥1,∴a 3+b 3≥2,故④错误;1a +1b =(1a +1b )a +b 2=1+a 2b +b 2a≥1+1=2,当且仅当a =b 时取等号,故⑤正确.三、解答题11.已知a 、b 、c ∈R +,求证:a 2+b 2+c 23≥a +b +c3. 证明 要证a 2+b 2+c 23≥a +b +c3, 只需证a 2+b 2+c 23≥(a +b +c 3)2, 只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证(c -a )2+(b -c )2+(c -a )2≥0,而这是显然成立的,所以a 2+b 2+c 23≥a +b +c3成立. 12.当a ≥2时,求证:a +1-a <a -1-a -2. 证明 方法一(分析法): 要证:a +1-a <a -1-a -2,只需证a +1+a -2<a +a -1, 只需证(a +1+a -2)2<(a +a -1)2,只需证a +1+a -2+2(a +1)(a -2)<a +a -1+2a (a -1), 只需证(a +1)(a -2)<a (a -1),只需证(a +1)(a -2)<a (a -1), 即证-2<0,而-2<0显然成立, 所以a +1-a <a -1-a -2成立.方法二(综合法): ∵a +1-a =1a +1+a, a -1-a -2=1a -1+a -2, 又∵1a +1+a<1a -1+a -2, ∴a +1-a <a -1+a -2.13.已知a ,b 是正数,且a +b =1,求证:1a +1b ≥4.证明 方法一:∵a ,b 是正数且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴ab ≤14,∴1ab ≥4. ∴1a +1b =a +b ab =1ab ≥4. 方法二:∵a ,b 是正数, ∴a +b ≥2ab >0,1a +1b ≥21ab >0.∴(a +b )(1a +1b )≥4. 又a +b =1,∴1a +1b ≥4.方法三:1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2b a ·a b =4.当且仅当a =b 时,取“=”号. 14.用向量法证明:已知四面体A -BCD ,若AB ⊥CD ,AD ⊥BC ,则AC ⊥BD .证明 取向量AB →、AC →、AD →为基向量. 则CD →=AD →-AC →,BC →=AC →-AB →, BD →=AD →-AB →, ∵AB ⊥CD ,AD ⊥BC , ∴AB →·CD →=0,AD →·BC →=0.∴AB →·(AD →-AC →)=0,AD →·(AC →-AB →)=0. ∴AB →·AD →=AB →·AC →,AD →·AC →=AD →·AB →. ∴AC →·BD →=AC →·(AD →-AB →) =AC →·AD →-AC →·AB → =AD →·AB →-AB →·AD →=0. ∴AC →⊥BD →,∴AC ⊥BD . ►重点班·选做题15.已知a >0,b >0,且a +b =1. 求证:(a +1a )2+(b +1b )2≥252. 证明 要证(a +1a )2+(b +1b )2≥252, 只需证(a 2+b 2)+(1a 2+1b 2)+4≥252,只需证(a 2+b 2)+(1a 2+1b 2)≥172.∵a >0,b >0,且ab ≤(a +b 2)2=14,∴1ab ≥4. ∴1a 2+1b 2≥2ab ≥8. 又∵a 2+b 2≥(a +b )22=12,∴(a 2+b 2)+(1a 2+1b 2)≥172(当且仅当a =b =12时等号成立).∴(a +1a )2+(b +1b )2≥252.16.已知a +b =1,求证:(a +1a )(b +1b )≥254. 证明 ∵a +b =1,a >0,b >0,∴a +b ≥2ab . ∴ab ≤14.∴(a +1a )(b +1b )-254=a 2+1a ·b 2+1b -254=4a 2b 2-33ab +84ab =(1-4ab )(8-ab )4ab ≥0. ∴(a +1a )(b +1b )≥254.1.设α,β,γ为平面,a ,b 为直线,给出下列条件: ①a ⊂α,b ⊂β,a ∥β,b ∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ; ④a ⊥α,b ⊥β,a ∥b .其中能使α∥β一定成立的条件是( ) A .①② B .②③ C .②④ D .③④答案 C解析 ①若α∩β=l ,a ∥l ,b ∥l 亦满足,③α可与β相交,④⎭⎬⎫a ∥b a ⊥α⇒⎭⎬⎫b ⊥αb ⊥β⇒α∥β.故选C.2.p =ab +cd ,q =ma +nc ·b m +dn (m 、n 、a 、b 、c 、d 均为正数),则p 、q 的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定答案 B 解析 q =ab +mad n +nbcm +cd ≥ab +2abcd +cd =ab +cd =p .3.已知a 、b 、c 、d ∈R +,且a b <cd ,则( ) A.a b <a +c b +d <c dB.a +c b +d <a b <c dC.a b <c d <a +c b +dD .以上均可能答案 A4.若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A.12 B .2ab C .a 2+b 2D .a答案 C5.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( ) A .一定是正数 B .一定是负数 C .可能是零 D .正、负不能确定答案 B6.已知a >0,b >0,m =lg a +b 2,n =lg a +b2,则m 与n 的大小关系为________.答案 m >n解析 因为(a +b )2=a +b +2ab >a +b >0,所以a +b 2>a +b2,所以m >n .7.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系是________.答案 a >c >b8.已知a ,b ,c 都是正实数,且ab +bc +ca =1. 求证:a +b +c ≥ 3.证明 考虑特征的结论“a +b +c ≥3”, 因为a +b +c >0,所以只需证明(a +b +c )2≥3, 即a 2+b 2+c 2+2(ab +bc +ca )≥3. 又ab +bc +ca =1,所以只需证明a 2+b 2+c 2≥1,即a 2+b 2+c 2-1≥0.因为ab +bc+ca =1,所以只需证明a 2+b 2+c 2-(ab +bc +ca )≥0, 只需证明2a 2+2b 2+2c 2-2(ab +bc +ca )≥0, 即(a -b )2+(b -c )2+(c -a )2≥0.由于任意实数的平方都非负,故上式成立. 所以a +b +c ≥ 3.9.已知a >b >c ,求证:1a -b +1b -c ≥4a -c. 证明 a >b >c ⇒a -b >0,b -c >0⇒⎩⎨⎧ a -c =(a -b )+(b -c )≥2(a +b )(b -c )>01a -b +1b -c≥21(a -b )(b -c )>0 ⇒(a -c )(1a -b +1b -c)≥2(a -b )(b -c )· 21(a -b )(b -c )=4⇒1a -b +1b -c ≥4a -c. 10.已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b . 证明 为了证明(a -b )28a <a +b 2-ab <(a -b )28b ,只需证(a -b )24a <a +b -2ab <(a -b )24b ,即证(a -b 2a )2<(a -b )2<(a -b 2b)2.∵a >b >0,∴a -b >0,a -b >0. 只需证a -b 2a <a -b <a -b 2b , 即证a +b 2a <1<a +b2b ,只需证1+b a <2<1+ab , 即证b a <1<a b ,即证b a <1<a b .∵a >b >0,∴b a <1<a b ,∴原命题成立.。
选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。
2.2 直接证明与间接证明 2.2.1 综合法和分析法一、选择题1.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定2.(2015·长春外国语学校高二期中)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定3.若a 、b 、c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A .a 2+b 2+c 2≥2 B .(a +b +c )2≥3 C.1a +1b +1c≥23 D .abc (a +b +c )≤134.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是( )A .aB .bC .cD .不能确定5.已知y >x >0,且x +y =1,那么( ) A .x <x +y 2<y <2xyB .2xy <x <x +y2<yC .x <x +y 2<2xy <yD .x <2xy <x +y2<y6.已知函数f (x )=⎝⎛⎭⎫12x ,a 、b ∈R +,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A 、B 、C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A二、填空题7.设a =2,b =7-3,c =6-2,则a 、b 、c 的大小关系为________________.8.如果a a+b b>a b+b a,则实数a、b应满足的条件是________________.三、解答题9.已知n∈N*,且n≥2,求证:1n>n-n-1.10.已知a、b、c表示△ABC的三边长,m>0,求证:aa+m+bb+m>cc+m.——★参考答案★——1.[[答案]] B[[解析]] 由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以,sin(B +C )=sin 2A ,∴sin A =sin 2A ,而sin A >0,∴sin A =1,A =π2,所以△ABC 是直角三角形.2.[[答案]] C[[解析]] 取a =1得P =1+8<4,Q =2+5>4, ∴P <Q ,故选C.证明如下:要证P <Q ,只要证P 2<Q 2,只要证2a +7+2a (a +7)<2a +7+2(a +3)(a +4), 只要证a 2+7a <a 2+7a +12, 只要证0<12,∵0<12成立,∴P <Q 成立. 3.[[答案]] B[[解析]] ∵a 、b 、c ∈R ,∴a 2+b 2≥2ab , b 2+c 2≥2bc ,a 2+c 2≥2ac , ∴a 2+b 2+c 2≥ab +bc +ac =1,又(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac =a 2+b 2+c 2+2≥3. 4.[[答案]] C[[解析]] 因为b -c =(1+x )-11-x =1-x 2-11-x =-x 21-x <0,所以b <c .又因为(1+x )2>2x >0,所以b =1+x >2x =a ,所以a <b <c .[点评] 可用特值法:取x =12,则a =1,b =32,c =2.5.[[答案]] D[[解析]] ∵y >x >0,且x +y =1,∴设y =34,x =14,则x +y 2=12,2xy =38.所以有x <2xy <x +y 2<y ,故排除A 、B 、C ,选D.6.[[答案]] A [[解析]]a +b 2≥ab ≥2ab a +b,又函数f (x )=(12)x 在(-∞,+∞)上是单调减函数, ∴f (a +b 2)≤f (ab )≤f (2aba +b ).7.[[答案]] a >c >b[[解析]]b=47+3,c=46+2,显然b<c,而a2=2,c2=8-212=8-48<8-36=2=a2,所以a>c.也可用a-c=22-6=8-6>0显然成立,即a>c.8.[[答案]]a≠b且a≥0,b≥0[[解析]]a a+b b>a b+b a⇔a a+b b-a b-b a>0⇔a(a-b)+b(b-a)>0⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0只需a≠b且a,b都不小于零即可.9.[证明]要证1n>n-n-1,即证1>n-n(n-1),只需证n(n-1)>n-1,∵n≥2,∴只需证n(n-1)>(n-1)2,只需证n>n-1,只需证0>-1,最后一个不等式显然成立,故原结论成立.10[证明]要证明aa+m+bb+m>cc+m,只需证明aa+m+bb+m-cc+m>0即可.∵aa+m+bb+m-cc+m=a(b+m)(c+m)+b(a+m)(c+m)-c(a+m)(b+m)(a+m)(b+m)(c+m),∵a>0,b>0,c>0,m>0,∴(a+m)(b+m)(c+m)>0,∵a(b+m)(c+m)+b(a+m)(c+m)-c(a+m)(b+m)=abc+abm+acm+am2+abc+abm +bcm+bm2-abc-bcm-acm-cm2=2abm+am2+abc+bm2-cm2=2abm+abc+(a+b-c)m2,∵△ABC中任意两边之和大于第三边,∴a+b-c>0,∴(a+b-c)m2>0,∴2abm+abc+(a+b-c)m2>0,∴aa+m+bb+m>cc+m.。