桩基风机基础图
- 格式:pdf
- 大小:2.13 MB
- 文档页数:10
工程设计施工与管理\ China Science & Technology Overview风机基础选型与桩基础设计优化郝渊博(内蒙古能源建设投资(集团)有限公司,内蒙古呼和浩特010010)摘 要:风机基础的选型是整个机组正常运行的关键,由于风机塔架的高度问题,对应产生的弯距就会比较大,这主要是根据其风机基础的整体设计和荷载量所控制的,对风机基础的位置和沉降的要求比较高。
在风电场投资项目中,选择适合工程的风机基础, 对整个项目工程的合理有效开展具有重要意义。
本文主要根据当前的基础选型进行系统分析和总结,进而为后期的基础选型提供一定参考。
关键词:风机基础选型;桩基础;优化中图分类号:TU476.1文献标识码:A文章编号:1671-2064(2020)16-0070-020.引言由于风机选型的基础在实际的设计过程标准比较高,在进行具体的风机基础设计过程中,要综合考虑多种设计 参数,经统筹考虑后,进而为整个基础的选型提供一定的参考意义。
此外,有些地区地基土为软弱土层或高压缩性 土层,常规基础方案很难满足相应的要求,但是桩基础却能够更好地适应各种地质条件。
在实际的设计过程中,一 定要对现场的地质情况进行详细勘察,一方面是由于地基处理的费用在工程实际实施过程中所占比例较大,另一方 面,根据地质情况的不同对地基处理的方案也有区别,只有综合把握各方面的数据信息后,方可进行统筹设计和优 化。
总之,需考虑多方面的因素,进而为后期的基础选型 创造有利的条件。
1.风机基础选型根据基础具体埋深的大小,基础主要分为浅基础与深基础。
目前风电机组单机容量逐步增大,风力发电机组基 础的结构形式一般可以分为以下几类(以下以锚栓式为例示意,实际中采用基础环式的也较多):第一类风机基础为普通扩展式基础,具体分为:方 形、多边形及圆形,目前设计中,以圆形扩展基础及八边形扩展基础应用最为广泛,此类基础埋深较浅,一般约 为3.0m 〜4.0m 左右(具体埋深与风机荷载、基础持力 层深度、冻深有关),结构形式较为简单,施工难度相对 较小,塔筒与风机基础的连接采用预埋基础环或锚栓连接。
近些年,随着新能源在我国的蓬勃发展,风电场项目建设的重要性就愈发明显。
由于风电场建设选址的特殊性,其建设中常会遇到些软土地基、湿陷性黄土地基、膨胀土地基等特殊性不良地基,再加上风电场风机高耸结构对建筑设计要求的特殊性,因此,不良地基上的风机基础的建设方案设计就成为了风电场建筑工程中的重点。
随着风电场相关工程技术的不断发展,不良地质条件下新型钢桩和钢筋混凝土桩在工程建设中用途越来越广泛。
而不同的桩型特点亦有不同。
下面就由小编细数风电场施工建设中常用的几款桩型。
1、按桩身的材料不同①钢筋混凝土桩可以预制也可以现浇。
根据设计,桩的长度和截面尺寸可任意选择。
钢筋混凝土桩在风电场工程建设中应用最多、最广,下面小编也将着重介绍其施工方法。
②钢桩常用的有直径250~1200mm的钢管桩和宽翼工字形钢桩。
钢桩的承载力较大,起吊、运输、沉桩、接桩都较方便,但消耗钢材多,造价高。
③木桩目前已很少使用,只在某些加固工程或能就地取材临时工程中使用。
在地下水位以下时,木材有很好的耐久性,而在干湿交替的环境下,极易腐蚀。
④砂石桩主要用于地基加固,挤密土壤。
⑤灰土桩主要用于地基加固。
2、按混凝土灌注桩按施工方法不同①沉管灌注桩后沉入土中后,在套管内吊放钢筋骨架,然后边浇注混凝土边振动或锤击拔管,利用拔管时的振动捣实混凝土而形成所需要的灌注桩。
这种施工方法适用于在有地下水、流砂、淤泥的情况。
利用锤击沉桩设备沉管、拔管成桩,称为锤击沉管灌注桩;利用振动器振动沉管、拔管成桩,称为振动沉管灌注桩。
多用于一般黏性土、淤泥质土、砂土和人工填土地基。
②弗朗克桩★弗朗克桩在欧洲流行甚广,在我国建设工程中使用较少。
这种方法适用于松散砂、砾及超固结粘土,桩身直径30~60cm,桩长10~24m,管心锤重25~50kN,落距3~5m,单桩容许承载力可达1500kN。
旋转钢管下沉成孔的灌注桩,在钢管底部装有经过淬火的钢齿,可沉入至页岩或砂岩层,直径可达1.5米。
xxx(49.5MW)风电场工程风机基础桩基打试桩施工方案目录一、工程概况2二、工程地质2三、施工依据4四、施工组织和施工准备44.1、施工组织44.2、施工准备4五、预应力管桩施工要点、方法及质量控制措施........ .......... (6)5.1、打桩前的施工准备.................................................................. ................... . (6)5.2、打桩设备选择.......................................................................................... ... ............ ... . (7)5.3、打试桩顺序.................................................................................................... .. (7)5.4、打桩施工要点...................................................................................... .. .......................... (8)5.5、质量保证措施................................................................................................. ... .. (9)5.6、施工防护措施.................................................................................................. . .. (13)六、施工安全防护措施13七、文明施工措施14施工方案一、工程概况:xxx二期49.5MW风电场 33台风机分布大概分成 3个区域,1~8号等 8台风机位于东部近海虾池内,9~24号等 16台风机位于沧浪渠河堤,25~33号等 9台风机位于捷地引河河床侧边。
实例探讨风电场风机基础设计风能是太阳能的一种转化形式,属于无污染能源。
随着环境污染日益严重,开发可再生的清洁能源成为世界各国解决能源问题的主要手段。
与其他能源相比,风能具有可再生、无污染、储量充足、前景广阔等优势,对风能的开发和利用已经引起全世界的重视。
风力发电机基础是风电场建设的重要组成部分,其主要作用是为塔筒与其上部风机叶轮提供坚实的基础。
风机基础形式根据风电场所处的场地地质条件不同而各异。
本文结合黑龙江省某风电场的风机基础对风机基础结构设计进行简单的说明。
1注意问题1.1指导规范风机基础具有大偏心受力的特性,这决定了风机基础设计不同于普通工民建基础的设计,早期国内主要参照国外设计经验以及《高耸结构设计规范》,近几年,随着国内风电行业兴起,大量风电场开始建设,我国也于2007年发布了《风电机组地基基础设计规定(试行)》(FD003-2007),这也是我国风电基础设计的主要指导规范。
1.2地质条件风电场相比于普通工民建的占地面积巨大,所建设的场址大部分又处于山区、丘陵等地质条件复杂地区,每台风机的地质情况也不同,因此地勘报告要对每台风机所处位置给出详细地层参数。
如果地质条件的变化不显著,则以最不利地质条件为准设计风场的所有风机基础;如果每台风机基础所处地质条件差异巨大,则需要单独考虑设计或者分组考虑设计不同的基础以适用不同的地质条件。
1.3计算控制标准风机基础主要分为桩基础和扩展基础。
扩展基础的控制标准主要是基础底面脱开面积比、地基承载力、基础抗冲切承载力、基础沉降值、基础倾斜率、基础配筋率、混凝土裂缝、钢筋与混凝土的疲劳强度;桩基础的控制标准主要包括基桩平均竖向力、桩基最大轴向力、单桩竖向承载力、抗拔桩基承载力、单桩桩身弯矩。
2场区地质条件风电场地质条件是风机基础设计的主要依据。
本文所介绍的风电场位于黑龙江省中部,小兴安岭南麓,松花江中游北岸的高漫滩,地势平坦,属半湿润半干旱大陆性季风型气候。
风机基础选型与桩基础设计优化作者:徐佰峰来源:《装饰装修天地》2019年第22期摘; ; 要:机组运行的过程中风机基础有着重要的应用意义,通常来说风机有着较高的塔支架,这一过程中的弯矩也会影响到控制性荷载。
关键词:风机基础;桩基础设计;设计优化1; 相关背景风机基础是机组安全运行的重要保障,由于风机塔架较高,水平风荷载在基础顶面产生的弯矩较大,该弯矩往往是风机基础设计的控制性荷载。
风机对基础的水平位移和不均匀沉降要求高,基础选型时应选用具有较好抗变形能力的基础方案。
在整个风电场投资中,风机基础的土建投资占较大比例,因此开展风机基础的优化选型具有重要的意义。
2; 特点根据埋深大小,基础可分为浅基础(一般3; 风机桩基础优化要点3.1; 基础体型由于风机上部荷载的随机性,风机基础应采用中心对称布置方案,圆形基础是比较合理的基础体型。
3.2; 承台半径减小承台半径可显著减少承台混凝土用量,还可以减少基础开挖、回填工程量。
承台(含承台以上回填土)自重的减少有利于减小由于恒载引起的单桩竖向压力;但减小承台半径会使上部风机荷载引起的外圈桩单桩竖向压力和上拔力增大;因此减小承台半径对桩基础内力的影响需要综合评价上述两种因素的相对影响程度。
通过优化承台半径,可达到优化基础综合工程量的目的。
3.3; 承台埋深承台埋深一般由桩顶标高决定,尽量使承台座落于较好持力层上。
承台埋深及覆土自重会对单桩竖向压力和上拔力大小有影响,应予以综合考虑,当承台底面位于地下水位以下时,应采用上覆土体和承台混凝土的浮重度进行计算。
3.4; 承台厚度承台厚度应满足抗冲切强度要求,要求承台有足够的刚度保证内力传递,使桩基承台和内外桩协同工作。
应保证风机塔架在基础混凝土中有足够的嵌固深度,风机塔架与基础连接节点(基础环或预埋螺栓)是风机疲劳的关键部位,应进行专门节点设计。
承台厚度对承台配筋量也有一定影响。
3.5; 承台配筋根据承台弯矩包络图确定承台截面配筋,并确定钢筋的截断位置,因此绘制可靠、准确的弯矩包络图是承台配筋优化的关键。
海上风电场风机基础介绍技术服务中心业务筹备部前言近年来,国家对清洁能源特别是风电的发展在政策上给予了很大支持,使得中国风电得到蓬勃发展。
风力发电作为新能源领域中技术最成熟、最具规模化开发条件和商业化发展前景的发电方式,获得了迅猛发展。
随着风电机组从陆地延伸到海上,海上风电正成为新能源领域发展的重点。
本文结合国内外海上风电场具体的风机基础,对现有的海上机组的基础类型逐一介绍,目的是对海上风机基础形成一个初步的了解,为公司日后的海上服务业务做铺垫。
为人类奉献白云蓝天,给未来留下更多资源。
2目录1 风机基础类型--------------------------------------- 4 1.1 重力式基础----------------------------------------- 4 1.2 单桩基础------------------------------------------- 6 1.3 三脚架式基础--------------------------------------- 8 1.4 导管架式基础-------------------------------------- 10 1.5 多桩式基础---------------------------------------- 111.6 其他概念型基础------------------------------------ 122 海上风力发电机组基础维护 -------------------------- 14为人类奉献白云蓝天,给未来留下更多资源。
3为人类奉献白云蓝天,给未来留下更多资源。
4 1 风机基础类型1.1 重力式基础重力式基础,顾名思义是是靠重力来追求风机平衡稳定的基础,重力式基础主要依靠自身质量使风机矗立在海面上,其结构简单,造价低且不受海床影响,稳定性好。
缺点是需要进行海底准备,受环境冲刷影响大,且仅适用于浅水区域。
风机基础选型与桩基础设计优化1. 引言1.1 概述风机基础选型与桩基础设计优化是风电行业中一个重要的研究领域,通过对风机基础选型和桩基础设计进行优化,可以提高风机的稳定性和安全性,降低施工和维护成本,提高风电场的发电效率。
本文将围绕风机基础选型和桩基础设计的优化展开讨论,探讨如何选择适合的风机基础类型和桩基础设计方案,并结合实际案例进行深入分析。
我们将介绍风机基础选型的原理与方法,包括不同类型风机基础的特点、适用范围及优缺点,帮助读者了解各种风机基础的特点和选择原则。
接着,我们将深入探讨桩基础设计的优化策略,包括桩基础的类型、布设方式、桩长计算方法等内容,帮助读者了解如何设计出更加稳定和经济的桩基础方案。
在我们将进一步讨论风机基础选型与桩基础设计的结合优化方法,探讨如何在实际工程中综合考虑风机基础和桩基础的设计要求,以实现最佳的工程效果和经济效益。
我们还将通过案例分析的方式,展示不同风电场风机基础选型与桩基础设计的优化实践经验,帮助读者更好地理解和应用相关技术。
在我们将总结本文的研究成果,展望未来风机基础选型与桩基础设计的发展趋势,以及该研究领域的实践意义和应用前景。
通过本文的探讨,我们希望能为风电行业的发展和进步提供一些有益的参考和启示。
1.2 研究背景研究背景:随着风力发电逐渐成为清洁能源领域的重要组成部分,风机基础选型与桩基础设计优化也变得越来越重要。
风力发电项目的成功运行不仅依赖于风机的性能,还与其基础的选型和设计有着密切的关系。
而桩基础作为风机基础中的重要组成部分,更是承担着承载风机重量和受风荷载的重要任务。
然而,在风力发电项目建设中,有时会出现因为基础选型不当或者设计不合理导致的问题,比如基础不稳定、安全性不足等,这些问题直接影响到了风机的稳定性和整体性能。
因此,对风机基础选型与桩基础设计进行优化,不仅能够提升风机的性能和安全性,还能够降低风力发电项目的建设成本和运行成本。
通过深入研究风机基础选型与桩基础设计的优化方法和案例分析,可以为相关领域的研究提供宝贵的经验和参考,促进风力发电项目的可持续发展和推广。