医学统计学的基础知识
- 格式:pdf
- 大小:7.38 MB
- 文档页数:23
医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。
,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。
2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。
A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。
3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。
3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。
2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。
一是统计报表,二是经常性工作记录,三是专题调查或专题实验。
C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。
变异(variation):同质基础上的各观察单位间的差异。
变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。
变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。
医学统计学第一章绪论第一节医学统计学的定义和内容1.医学统计学的主要内容 :统计推断、统计描述第二节统计工作的基本步骤1.医学统计工作可分为四个步骤:统计设计搜集资料整理资料分析资料第三节统计资料的类型医学统计资料按研究指标的性质一般分为:定量资料、定性资料、等级资料一、定量资料(计量资料)定量资料(quantitative data)是用定量的方法测定观察单位(个体)某项指标数值的大小,所得的资料称定量资料。
如身高(㎝)、体重(㎏)、脉搏(次/分)、血压(kPa,mmHg)等为数值变量,其组成的资料为定量资料。
二、定性资料(计数资料)定性资料(qualitative data)是将观察单位按某种属性或类别分组,清点各组的观察单位数,所得的资料。
亦称无序分类资料。
如:男-女分组;中医的虚、实,阴、阳等分组;按生存-死亡分组;A、B、O、AB分组。
三、等级资料等级资料(ranked data)是将观察单位按属性的等级分组,清点各组的观察单位数,所得的资料为等级资料。
亦称有序分类资料。
如治疗结果分为治愈、显效、好转、无效四个等级。
:疾病的严重程度可以分为,轻、中、重;中医辨证中舌象的颜色有,淡、红、暗、紫。
♦根据需要,各类变量可以互相转化。
♦若按贫血的诊断标准将血红蛋白分为四个等级:重度贫血、中度贫血、轻度贫血、正常,可按等级资料处理。
有时亦可将定性资料或等级资料数量化,如将等级资料的治疗结果赋以分值,分别用0、1、2…等表示,则可按定量资料处理。
第四节统计学中的几个基本概念一、同质与变异同质(homogeneity)是指观察单位或研究个体间被研究指标的主要影响因素相同或基本相同。
如研究儿童的生长发育,同性别、同年龄、同地区、同民族、健康的儿童即为同质儿童。
变异(variation)由于生物个体的各种指标所受影响因素极为复杂,同质的个体间各种指标存在差异,这种差异称为变异。
如同质的儿童身高、体重、血压、脉搏等指标会有一定的差别。
1.一般来说,两均数比较用t检验,而两个以上均数的比较就必须用方差分析了。
t检验的应用条件:当样本含量n较小时(如n< 50=,理论上要求样本取自正态总体,两小样本均数比较时还要求两样本总体方差相等。
但在实际应用时,与上述条件略有偏离,只要其分布为单峰近似对称分布,则对结果亦影响不大。
u检验的应用条件:样本含量n较大,一般要求n>50。
其实,u检验和t检验都属同类,其方法步骤也基本相同,不同的地方仅在于确定P值时界值的选择。
2.两均数比较可选用t检验,(当样本含量较大,如n>100时可用u检验);两样本方差比较可选用F检验、率的比较可选用u检验或x2检验。
3.完全随机设计是分别从两个研究总体中随机抽取样本,对这两个样本均数进行比较,以推断它们所代表的总体是否一致。
4.t检验的基本步骤:①建立假设:H0、H1②确定检验水准:α=0.05③计算统计量t:根据不同的资料选用相应的计算公式④查t值表,确定P值:t ≥ tα,υP≤αt ≤ tα,υP≥α⑤统计推断结论P>0.05,接受H0,差别无显著意义;0.01<P≤0.05,拒绝H0,接受H1,差别有显著意义;P≤0.01 拒绝H0,接受H1,差别有非常显著意义。
5.t检验的注意事项①资料必须有可比性;②必须是计量资料;③资料必须呈正态或近似正态分布;④要根据不同的资料类型选用不同的计算公式;要正确理解统计结论的含义。
方差分析一、方差分析的用途及应用条件(一)用途1、检验两个或多个样本均数间的差异有无统计学意义;2、回归方程的线性假设检验;3、检验两个或多个因素间有无交互作用。
(二)应用条件1、各个样本是相互独立的随机样本;2、各个样本来自正态总体;3、各个处理组(样本)的总体方差方差相等,即方差齐。
二、 方差分析的基本思想 (一)方差分析中变异的分解此类资料的变异,可以分出三种:1、总变异:表现为所有数据大小不等,用总的离均差平方和表示,记为SS 总。
医学统计学基本知识•总体(population)指同质的研究对象中所有观察单位研究指标变量值的集合。
总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察单位数是无限的,称为无限总体。
•样本(sample)医学实践与研究中,要直接研究无限总体通常是不可能的,即使是有限总体,由于人力、物力、时间、条件等限制,要对其中每个观察单位进行研究或观察,有时也是不可能的,也不必要。
而只是从总体中随机抽取部分观察单位,其变量实测值构成样本,目的用样本指标推断总体特征。
这种推断不要经过严谨的实验设计,以样本的可靠性和代表性为基础。
样本的可靠性:主要是使样本中每一观察单位确属同质总体。
样本的代表性:使样本能充分反映总体的实际情况,要求抽样遵循随机化原则,目的是使每个观察单位被抽得的机会相等,避免主观取舍及偏性;还要保证足够的样本量,即保证足够的观察单位个数。
•参数(parameter)统计学上描述总体变量的特征称为参数。
如总体均数、中位数和众数等体参数称为样本指标。
如以样本均数()推算总体均数(m),以样本标准差(s)推算总体标准差(s)等,值得注意的是,选择统计量作为参数估计值时,通常选择无偏、有效且一致的估计量,即对总体变量渐进无偏估计量。
计量资料(measurement data)又称定量资料(quantitative data)或数值变量(numerical variable)资料。
为测定每个观察单位某项指标的大小而获得的资料。
其变量值是定量的,表现为数值大小,一般有度量衡单位。
计数资料(enumeration data)又称定性资料(qualitative data)或无序分类变量(unordered categorical variable)资料。
为将观察单位按某属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。
其变量值是定性的,表现为互不相容的属性或类别,如试验结果的阴阳性,家族史的有无等等。
医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。
它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。
本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。
一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。
总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。
由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。
1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。
定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。
了解数据类型对选择合适的统计方法至关重要。
1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。
推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。
推断统计学可通过假设检验和置信区间来实现。
二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。
标准差则衡量了数据的离散程度,即数据的波动情况。
2.2 相关分析相关分析用于研究两个变量之间的关系。
通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。
2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。
在医学中,生存分析常用于研究患者的生存时间、复发时间等。
2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。
它适用于一组分类变量和一个连续变量的比较。
三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。
医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。
3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。
医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
医学统计学知识点医学统计学是应用统计学原理和方法于医学领域的一门学科,通过对医学数据的收集、整理、分析和解释,可以帮助医学研究者和临床医生更好地理解和应用医学知识。
本文将介绍一些医学统计学中的重要知识点。
一、数据的类型在医学统计学中,我们常常需要处理各种类型的数据,其中最常见的数据类型包括:1. 定性数据:也称为分类数据,指描述事物性质或属性的数据,如性别、疾病类型等。
2. 定量数据:也称为连续数据,指可以用数字进行度量的数据,如身高、体重、血压等。
3. 二分类数据:指只有两种可能取值的数据,如阳性/阴性、生/死等。
4. 多分类数据:指有多种可能取值的数据,如血型、既往医疗史等。
二、描述统计学1. 描述性统计:描述性统计是对数据进行整理、总结和描述的过程,主要包括以下指标:- 频数与频率:频数是指某一数值在数据集中出现的次数,频率是频数与数据总数的比值。
- 中心趋势指标:包括均值、中位数和众数,用于描述数据的集中程度。
- 离散程度指标:包括标准差、方差和四分位差等,用于描述数据的分散程度。
2. 绘图方法:绘图是描述性统计的重要手段之一,常用的绘图方法包括:- 饼图:用于展示分类数据的比例关系。
- 条形图:用于展示不同类别之间的数量关系。
- 箱线图:用于展示数据的分布情况和异常值。
- 散点图:用于展示两个变量之间的相关性关系。
三、推断统计学推断统计学是从样本中得出总体特征的方法,通过对样本数据的分析来进行推断。
其中的重要概念和方法包括:1. 总体与样本:总体是我们研究的对象的全体,样本是从总体中选取的一部分。
2. 参数与统计量:参数是总体的特征值,统计量是样本的特征值,通过统计量来估计参数。
3. 抽样分布:抽样分布是样本统计量的概率分布,常用的抽样分布包括正态分布和t分布。
4. 假设检验:假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。
5. 置信区间:置信区间是对总体参数的一个范围估计,常用于估计总体均值和总体比例。
知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。
2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。
3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。
4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。
5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。
6.统计分析包括统计描述和统计推断。
统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。
7.医学原始资料的类型有:计量资料、计数资料、等级资料。
8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。
10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。
各属性之间有程度的差别。
等级资料的等级顺序不能任意颠倒。
11.同质:是指所研究的观察对象具有某些相同的性质或特征。
12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
13.总体是根据研究目的确定的同质研究对象的总体。
样本是总体中具有代表性的一部分个体。
14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。
抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。
16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。
概率的取值为0≤P≤1。
小概率事件是指P≤0.05的随机事件。
17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。
医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。
如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。
变异:同质的基础上个体间的差异。
“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。
分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。
统计推断:是使用样本信息来推断总体特征。
统计推断包括区间估计和假设检验。
第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。
标目:横标目和纵标目。
线条:通常采用三线表和四线表的形式。
没有竖线或斜线。
数字:表内数字一律用阿拉伯数字。
同一指标,小数位数应一致,位次对齐。
无数字用“—”表示。
暂缺用“…”表示。
“0”为确切值。
备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。
一张统计表的备注不宜太多。
二、制表原则1.(7理分布。
【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。
医学统计学知识点1.数据类型:医学研究中使用的数据包括定类数据和定量数据。
定类数据是非数值型的数据,例如性别、种族等;定量数据是数值型的数据,例如年龄、体重等。
了解数据类型是分析数据的第一步。
2.数据收集:医学研究中的数据可以通过不同的方式收集,例如问卷调查、实验研究、观察等。
在数据收集过程中,需要注意样本的选择、数据的完整性和准确性。
3.描述统计学:描述统计学包括对数据的整体特征进行描述和总结。
常用的描述统计学方法包括中心趋势度量(例如均值、中位数、众数)、离散程度度量(例如标准差、方差)和数据分布描述等。
4.推断统计学:推断统计学是从样本数据推断总体特征的一种方法。
通过推断统计学,可以根据样本数据的统计量(例如样本均值、样本比例)来推断总体参数的区间估计或假设检验。
5.假设检验:假设检验是根据样本数据对总体参数提出假设,并通过计算概率值来判断是否接受或拒绝该假设。
常用的假设检验方法包括t检验、卡方检验、方差分析等。
6.相关分析:相关分析用于研究两个或多个变量之间的关系。
常见的相关分析方法有皮尔逊相关系数、斯皮尔曼相关系数等。
相关分析可以帮助研究者了解变量之间的线性关系和方向。
7. 回归分析:回归分析用于研究因变量与自变量之间的关系,并可用于预测因变量的数值。
常用的回归分析方法有简单线性回归分析、多元线性回归分析和 logistic 回归分析等。
8. 生存分析:生存分析用于研究时间相关的数据,例如疾病患者的生存时间或事件发生的时间。
生存分析方法包括 Kaplan-Meier 曲线、Cox 比例风险模型等。
9.双盲试验和随机分组:在医学研究中,双盲试验和随机分组是常用的研究设计方法。
双盲试验是指研究中既不知道接受治疗的病人,也不知道给予治疗的医生;随机分组是指将研究对象随机分配到不同的治疗组和对照组。
10.统计软件:为了进行医学统计分析,研究者可以使用专业的统计软件,例如SPSS、SAS、R等。
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用x表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。
下面将介绍一些医学统计学中常见的知识点。
一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。
定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。
二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。
通过描述统计学可以更直观地了解疾病的流行病学特征。
三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。
常见的方法包括假设检验、置信区间估计和方差分析等。
推断统计学在临床研究和药物试验中有重要应用。
四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。
生存分析可以帮助医生评估疾病的进展速度和治疗效果。
五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。
通过因子分析可以揭示疾病的复杂发病机制和影响因素。
六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。
线性回归可以帮助医生更好地控制干预措施,提高治疗效果。
综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。
希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。
感谢阅读!。
医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。
定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。
等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。
总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。
样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。
(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。
概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。
定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。
同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。
第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。
【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。
变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。
如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。
2,分析时不能以构成比代替率。
3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。
4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。
医学统计知识点总结在医学领域中,统计学的应用非常广泛,它可以帮助医生和研究人员分析和解释医学数据,研究疾病的发病机制以及评估治疗方法的有效性。
本文将重点总结医学统计学中的重要知识点,包括描述统计学和推论统计学。
描述统计学描述统计学是研究数据集中各变量的集中趋势和离散程度的方法。
主要包括以下几个方面的内容。
1. 数据的整理和呈现在医学研究中,首先需要对收集到的数据进行整理和呈现。
常用的方法包括频数分布表、直方图、饼图、条形图等,这些方法可以直观地展示各变量的分布情况。
2. 中心趋势的度量中心趋势代表着数据集中值的位置,主要包括均值、中位数和众数。
均值是各观测值之和除以观测次数,中位数是按数值大小排列后位于中间位置的值,众数是出现次数最多的值。
3. 离散程度的度量离散程度描述了数据集中值的分散程度,通过方差和标准差进行度量。
方差是各观测值与均值之差的平方和的平均值,标准差是方差的平方根。
推论统计学推论统计学可以根据样本数据推断总体的特征,包括参数估计和假设检验两个方面。
1. 参数估计参数估计是根据样本数据估计总体特征的值,主要包括点估计和区间估计。
点估计是用样本数据求得总体参数的估计值,例如用样本均值估计总体均值。
区间估计是用样本数据求得总体参数的估计区间,例如用置信区间估计总体均值。
2. 假设检验假设检验是通过样本数据推断总体参数是否符合某种假设,主要包括参数检验和非参数检验。
参数检验是对总体参数进行检验,例如对总体均值或总体比例进行检验。
非参数检验是不对总体参数进行具体假设的检验,例如对数据分布进行检验。
医学研究设计医学研究设计是医学统计学中非常重要的一部分,它关系到研究的可靠性和准确性。
主要包括以下几种设计。
1. 随机化对照试验随机化对照试验是医学研究设计中最可靠的一种设计,它可以有效地减少随机误差和系统误差。
研究对象被随机分配到不同的处理组中,其中一个组作为对照组,另一个组接受实验处理。
2. 横断面研究横断面研究是在特定时间点对研究对象进行一次观察,了解其疾病或特征的分布情况。