第四章 第四节 变换
- 格式:ppt
- 大小:172.00 KB
- 文档页数:21
语言学概论第四章语法提纲第四章语法【内容简介及重点】主要要掌握语法结构的基本规律,包括:语法的结构单位——句子、词组、词、语素;语素和词组合成更大的语法单位的类型;语法结构的层次性与递归性特点;语法的聚合规则;句子的变换、语言结构的类型和普遍特征。
难点是学会运用已学的语法理论分析和阐释常见的语法现象。
第一节语法和语法单位一语言结构是有规则的1.1 语言结构是有规则的1.1.1 语言语法规则的存在客观性用什么样的形式体现符号之间的结构关系,是有规则的。
1.1.2 从母语者和二语习得者的材料看1.2 语法和语法研究1.2.1 语法语法是词的构成和变化的规则(词法)以及组词成句的规则(句法)的总和。
The rules of syntax combine words into phrases and phrases into sentences.(1)语言中现成的词不能任意更换其中的构成成分,同时也不能任意挪动它们的位置。
(2)一句话可以只有一个词,也可以有几个词。
(3)词法和句法是不同的语法规则,但二者有密切的关系。
1.2.2 语法是客观存在的,语法研究则是对这种客观存在进行客观的归纳、总结和描写。
语法研究不能带有研究者的主观性。
1.2.3 几个概念(1)语法中的任何成分都是内容和形式的统一体。
语法成分的内容是语法意义,语法意义的表达者是语法形式。
(2)在词的范围内的语法形式称为形态,如英语表示“复数”的“-s”就是一种形态。
词序表示词与词的关系,超出了词的范围,因此词序不是形态。
(3)把具有共同特点的语法形式概括起来就成为一种语法手段。
如附加语素和词序就是两种语法手段。
(4)语法最重要的特点是它的抽象性。
二语法的组合规则和聚合规则2.1 语法的两个基本规则2.1.1 组合规则语法单位互相连接起来构成更大的语言片断的规则叫做语法的组合规则。
2.1.2 聚合规则指语法单位的归类的规则。
语法上能够出现在相同句法位置上的词形成一个聚合,如果用来替换的不是从这个聚合里选出的词,句子也不能成立。
实变函数论课后答案第四章4第四章第四节习题 1.设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()()|]22n n n n E x f x g x f x g x E x f x f x E x g x g x εεε+-+≥⊂-≥⋃-≥ A B εε⋃(否则,若[||()()(()())|n n x E x f x g x f x g x ε∈+-+≥,而x A B εε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+ 2.设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K ≤.a e于E证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()kn fx 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()kn f x f x →于A ,从条件|()|kn f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B B A +∞==⋂ ,则B K ⊂,且11(\)()(()(())k k ccccc n n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 3.举例说明mE =+∞时定理不成立解:取(0,)E =+∞,作函数列1(0,](){0(,)n x n f x x n ∈=∈+∞ 1,2,n =显然()1n f x →于E 上,但当01ε<<时[;|1|](,)n E x f n ε->=+∞,[;|1|](,)n mE x f m n ε->=+∞=+∞不0→故mE =+∞时定理不成立,即n f f →.a e 于E 不能推出()()n f x f x ⇒于E周民强《实变函数》P108Th2.25 若:n n T R R →是非奇异线性变换,n E R ⊂,则**(())|det |()m T E T m E =⋅ (2.8)|det |T 表示矩阵T 的行列式的绝对值.证明:记{}012(,,,);01,1n i I x i n ξξξξ==≤<≤≤{}12(,,,);02,1k n i I x i n ξξξξ-==≤<≤≤显然0I 是2nk 个I 的平移集{}j I x +(1,2,2nk j = )的并集,0()T I 是2nk个{}()j T I x +(1,2,2nk j = )的并集,且有{}{}***()()()j j m T I x m TI T x m TI +=+=,{}()()j mT I x m TI += 1,2,2nk j =现在假定(2.8)式对于0I 成立00(())|det |()|det |m T I T m I T =⋅= (2.9)则 0|det |(())2(())nk T m T I m T I ==因为()2nk m I -=,所以得到()2|det ||det |()nk m TI T T m I -=⋅=⋅这说明(2.8)式对于I 以及I 的平移集成立,从而可知(2.8)式对可数个互不相交的二进方体的并集是成立的(对任意方体0a ∀>,{}12(,,,);0a n iI x a ξξξξ==≤< 000(())()|det()|()|det ||det ||det |()n a m T I m T aI T aE m I T aE a T m I =⋅=⋅== 0|det |()|det |()aT m aE I T m I =⋅=) 对一般开集G ,1i i G I +∞== ,i I 为二进方体,i I 互补相交则111()()()|det |()|det |i i i i i i m TG m TI m TI T m I T mG +∞+∞+∞=======∑∑T 1-1 1i i TG TI +∞== ,T 连续,1T -连续 G 开,则()T G 开,从而可测于是应用等测包的推理方法立即可知,对一般点集(2.8)式成立 设G 为有界G δ集1i i G G +∞== ,i G 开,1nn i i S G == ,则n S 开,1n n G S +∞== 且不妨设11S G =有界,否则令1S G U =⊂ U 有界,令 1G G U =⋂即可. 1T -连续,则i TG 开,n TS 开,TG 可测(1n n T G T S +∞== ),12TS TS ⊃⊃ ,12n S S S ⊃⊃⊃⊃故1()()lim ()lim |det |()n n n n n n m TG m TS m TS T m S +∞→+∞→+∞====⋅1|det |lim ()|det |()|det |n n n n T m S T m S T mG +∞→+∞==== (n S 开)若G 为无界G δ集,令{};||m E x x m =<,则1m m G G E +∞==⋂ ,m G E ⋂为有界G δ集1()(())lim (())m m n m m TG m T G E m T G E +∞→+∞==⋂=⋂1lim |det |()|det |lim ()|det |()|det |m m m n n m T m G E T m G E T m G E T mG+∞→+∞→+∞==⋅⋂=⋂=⋂= n E R ∀⊂,T 线性,则n E R ∀⊂若0mE =,则(())0m T E =(后面证) n E R ∀⊂,则由注释书P69定理3,存在G δ集G E ⊃,*mG m E =,若E 有界,*m E <+∞则*(\)0m G E =,故**0((\))(\))m T G E m TG TE == (T 1-1)****()(\))()0()()m TG m TG TE m TE m TE m TG ≤+=+≤则*()()m TE m TG =,故**()()|det ||det |m TE m TG T mG T m E ===若E 无界,{};||m E x x m =<则1m m E E E +∞==⋂ ,m E E ⋂****1()(())lim (())lim |det |()m m m n n m m TE m T E E m T E E T m E E +∞→+∞→+∞==⋂=⋂=⋂**11|det |lim ()|det |()|det |(())m m m n m m T m E E T m G E T m E E +∞+∞→+∞===⋂=⋂=⋂*|det |()T m E =:n n T R R ∀→线性,若*()0m E =,则*()0m TE =证明:(0,,1,0,,0)n i e R =∈ 为n R 的基,()i i T e x =,n x R ∀∈,12(,,,)n x ξξξ= ,1122n n Tx x x x ξξξ=+++ ,令1221(||)i i M x +∞==∑,则112222112211|()|||||||||||||(||)(||)||nnn n i i i i T x x x x x M x ξξξξ==≤+++≤=∑∑则|()()|||,,n T x T y M x y x y R -≤-∀∈(即T 是Lipschitz 连续的)∀一边平行于坐标平面的开超矩体{}121122(,,,),(,)(,)(,)n i i i n n I x a b a b a b a b ξξξξ==<<=⨯⨯⨯ 于12n I I I ⨯⨯⨯ 221()(||)n ni i i diamI b a +∞==-∑12n TI TI TI TI =⨯⨯⨯ ,(,)i i i I a b =开,1T -连续,则i TI 是1R 中开集从而可测,从而12TI TI ⨯是2R 中可测集,由归纳法知12n TI TI TI ⨯⨯⨯ 是可测集若(2.9)式成立*0()|det |()o m TI T m I =,则∀矩体{},i i iI x a b ξ=<< , 1ni i I I == ,iI 为正方体,则对开集G 也有()|det |()m TG T m G =,特别对开区间{},i i i I x a b ξ=<<这一开集有*()|det |()m TI T m I =则可知n E R ∀∈,若*()0m E =,则*()0m TE =事实上,0ε∀>,{}1i i I +∞=∃开区间,1i i E I ∞=⊂ ,1||i i I ε∞=<∑****111()(())()()i i i i i i m TE m T I m TI m TI ∞∞∞===≤=≤∑111|det |()|det |()|det ||||det |i i i i i i T m I T m I T I T ε∞∞∞======<∑∑∑令0ε→知*()0m TE =若(2.9)成立,则T 将可测集映为可测集,还要看(2.8)证明过程是否用到T 将可测集映为可测集或*()0m E =推出*()0m TE =这一性质!下面证(2.9)成立.任一线性变换至多可分解为有限个初等变换的乘积(i )坐标12,,,n ξξξ 之间的交换 (ii )11,i i ξβξξβξ→→ (2,,)i n = (iii) 112,i i ξξξξξ→+→ (2,,)i n = 在(i )的情形显然00|det |1,T TI I ==(2.9)成立在(ii )的情形下,T 矩阵可由恒等矩阵在第一行乘以β而得到{}1211()(,,,),01,2,3,,,0(0),0(0)o n i T I x i n ξξξξξβββξβ==≤<=≤<><≤< 当当 从而可知0(())||m T I β= (2.9)式成立在(iii )的情形,此时det 1T = (1100010000100001T ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦) 而且{}01212()(,,,),01(1),01n i T I x i ξξξξξξ==≤<≠≤-< X ({}{}00122();,(,,,),01,1n i T I y x I y Tx i n ξξξξξ=∃∈==+≤<≤≤01221221(),(,,,),01,01n i y T I y ξξξξξξξξξ∀∈=+≤<≤+-=<则{}01212()(,,,),01(1),01n i T I x i ξξξξξξ⊂=≤<≠≤-< 反过来,12(,,,)n y X ξξξ∀=∈ ,01(1)i i ξ≤<≠则1201ξξ≤-<令122(,,,)n x ξξξξ=- 则0x I ∈,12(,,,)n Tx y ξξξ==则0()y T I ∈,0()X T I ⊂ ) 记{}1201(,,,)(),1n A x T I ξξξξ==∈< {}012()(,,,),01(1)n i T I x i ξξξξ==≤<≠10(1,0,,0),()\e B T I A == ,则{}12021(,,,),n A x I Y ξξξξξ==∈≤ {}112012\(,,,),n B e x I C ξξξξξ==∈<(12(,,,)n x Y ξξξ∀=∈ ,则01,1i i n ξ≤<≤≤,21ξξ≤,则12001,()x T I ξξ≤-<∈,且11ξ<,则x A ∈反过来,y A ∀∈,则存在120(,,,)n x I ξξξ=∈ ,01i ξ≤<,使122(,,,)n y Tx ξξξξ==+ ,12001,y I ξξ≤+<∈,且212,y YOK ξξξ≤+∈!1y B e ∀∈-,存在00()\z T I A ∈,使1\y z e =, 0x I ∃∈,122(,,,)01n i z Tx ξξξξξ==+≤<121z A ξξ∉+≥,,1122\(1,,,)n z e ξξξξ=+- , 12210011,\z e I ξξξ≤+-≤<∈1221111,\y z e C ξξξξ+-≤⇔<=∈反过来,y C ∀∈,12012(,,,),,01,1n i y I i n ξξξξξξ=∈<≤<≤≤112(1,,,)n z y e ξξξ=+=+ ,则 1212011(,01)i ξξξξξ≤-+<<≤<则0()z T I ∈,又10111,()\,\,z A z T I A B z e y z B ξ+≥∉∈==∈, 则11\,\,y B e C B e C B ∈∈=得证)由此得到0011(),{(),()T I A B A B I A B e A B e =⋃⋂=∅=⋃-⋂-=∅010(())(\)1|det |m T I mA mB mA m B e mI T =+=+===故(2.9)式成立 这里用到A,B可测,(),(,)(,)(A TIHH =⋂=-∞+∞⨯-∞+∞,0()T I 可测,H 开,则A 可测,0()\T I A B =可测故还是需要:若:n n T R R →为非奇异线性变换,则Borel ∀集n E R ⊂,()T E 是可测集,从而∀方块I ,()T I 可测,0()T I 可测有了,这就有(2.9),从(2.9)知T 将零测集E 变为零测集,从而有T 将可测集变为可测集1:n f R R →可测11()BorelB R f B -⇔∀⊂为可测集(江则坚P109习题10)现设:n n f R R →连续,则∀开集n O R ⊂,1()f O -是开集, 记{}1|()n n B R f B R -=⊂是中的可测子集1B ,可证1B 是一个σ-代数,且包含全部开集,从而包含全部Borel 集证1)1()f -∅∈∅=∅,1B 可测2)若A ∈1B ,则1111()()()()c n n f A f R A f R f A ----=-=-显然也可测,c A ∈1B3)若,(1,23,)i A i ∈= 1B ,则i ∀,1()i f A -可测,1111()()i i i i f A f A +∞+∞--=== 可测1B 是σ-代数 f 连续,则1()open Of O -∀∈1B ,1B 包含全部开集,从而包含全部Borel 集:n n T R R →为非奇异线性,1T -显然连续I ∀方体半开半闭(显然为Borel 集),11()T I TI --=可测 1[,)n i i i I a b ==∏为Borel ,111[,)ni i i m I a b m+∞===-∏ 事实上,0ε∀>从()()mkm m n f x g x →(当k →+∞)知00(,)N N m ε∃=,使当0k N ≥时|()()|m km m n f x g x ε→<而当0m a x (,(,))k m N m ε≥时,k mk k n n ≥,故|()()|k km m n f x g x ε→< (kkn 是{}1m k k n+∞=的子列中的一个元,故,m kk m k k l n n +=,0l ≥则0(,)k N m ε≥时,0m k k l N +≥ 则,|()()||()()|k mkk l m km m m m n nf xg x f x g x ε+→=→<)()k m f x 收敛于1()m g x R ∈,即k f 在E 上收敛.若条件改为:F 是一族一致有界的[,]a b 上的函数族,则结论成立 令{}123,,,[,]E x x x a b =⊂ 则0,|()|,[,]M f x M x a b ∃>≤∀∈, {}11()|x f x f =∈F F ,则1x F 是1R 中的有界集,由聚点原理∃一列n f ∈F 和1()g x R ∈,11()()kn f g x n →→∞同样令{}11(2)2()|1,2,kx n f x k == F (n f 为上述取定的一列n f ∈F )故12|()|kn f x M ≤,由聚点原理,存在1kn f 的子列2kn f 和1()g x R ∈(21k k n n k ≥≥)使22()kn f g x →,由此用归纳法可作出m N ∀∈,{}1mkn k f +∞=⊂F (m kn f 为1m kn f -的子列)使1()m km n f g x R →∈令k kk n f f =,则n f ∈F 且m ∀有()k km n f g x →故由Berstein 定理即知(0,1)B C c ≤≤=,C c =方法②建立十进位小数的展式中缺7的所有无尽十进位小数之集A 和(0,1)上一切无尽九进位小数之集B 之间的一一对应.集A 中每个十进位小数对应B 中这样的小数,该小数是前一个小数中凡是数字9都有数字7代替后而得到的,这个对应是一一的(九进小数中不含9,而A 中不含7,将9 7,而其他不动)显然(0,1),B c A c === 周民强书P35思考题:6.设F 是定义在[,]a b 上的实值函数族,[,]E a b ⊂是可数集,则存在n f ∈F (1,2,n = )使得{}()n f x 在E 上收敛.我怀疑本题有错:若不假设F 是[,]a b 上一致有界的,会有反例: 令[,]a b =[0,1],设{}|1,2,m f m == F 这里(),[,]m f x m x a b =∀∈,则显然任取无穷个(1,2,)()kkk n n f k f x n ∈==→+∞ F 于[,]x a b ∀∈,故()n f x 不会收敛!0a =时,{}111|lim ()0[|()]n j n k n i n j iE x f x E x f x k +∞+∞+∞+∞→∞====>=>故还有:[|lim ()][|lim(())][|lim(())]n n n n n n E x f x a E x f x a E x f x a →∞→∞→∞<=--<=->- 111111[|()][|()]j j k n i n j ik n i n j i E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞+∞=========->-+=<-鄂强91:介于0与1之间,而十进展开式中数字7的一切实数所成立之集具有什么势?证明:①从江则坚CH1§4.3题知2N c =,且从证明中知2N A ∀⊂与之1-1对应的是(1)(2)0.(0,1)A A χχ∈ ,故(0,1)中小数点全是0,1两位数字构成的数组成的集合,(0,1)B 满足(0,1)2N B c ==,而十进展开式中缺数字7的一切实数之集C 满足(0,1)B C ⊂⊂附加题:徐森林书P15.8设()(1,2,)i f x i = 为定义在n R 上的实函数列,适用点集 1{|()},1,2,i x f x i j j ≥= 表示点集[|lim ()0]n n x f x →∞> 证明:江则坚书第一章第一节习题8:若()()n f x f x →于E ,则1a R ∀∈有11[|()]liminf [|()]n k E x f x a E x f x a k +∞=≤=≤+ 111111[|()]liminf [|()][|()]cn i k k k n i n E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞=====⎛⎫>=≤+=>+ ⎪⎝⎭ 即111[|lim ()][|()]n i n k n i n E x f x a E x f x a k+∞+∞+∞→∞===>=>+ 另一方面,{}()n f x ∀易知{}|sup ()[|()]m m m n m n E x f x a E x f x a +∞≥=>=> 故{}1|lim ()[|inf sup ()]n m n n m n E x f x a E x f x a →∞≥≥>=> 111111[|limsup ()][|sup ()][|()]m m m n m n m i k n i n k n i n m i E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞→∞≥≥========>=>+=>+思考:若A 不可测, B 也不可测,且(,)0A B ρ>,则A B ⋃不可测? ((,)0A B ρ=显然不对, 1,,(,)0,R Q B R Q R Q R R ρ===⋃=可测 至少当,A B 有一个有界时,结论是对的? 若存在开集G 使G A ⊂,G B ⋂=∅,不妨设A 有界, mG <+∞,则若A B ⋃可测,则****(())(())()c mG m G A B m G A B m A m G A =⋂⋃+⋂⋃=+- )。
第四章 语法第一节 语法和语法单位一、语言结构是有规则的语法规则是客观存在的,使用者必须共同遵守,违背这种规则,就会使听话者感到别扭甚至产生误会。
二、语法的组合规则和聚合规则语法单位:凡是能在组合的某一位置上被替换下来的片段都是语法单位。
这些语法单位如果其中的构成成分还可以被替换,可以继续切分为更小的语法单位。
语法单位有大有小,最大的是句子,最小的是语素,依次是词组(短语)、词、语素。
语法规则包含组合规则和聚合规则组合关系和聚合关系是语言结构的两种根本关系。
语法的组合规则:语法单位一个接着一个组合起来的规则。
如:“我 看 书”。
语法的聚合规则:语法单位归类的规则。
如:书、电影、小说,这三个词能够出现在相同的句法位置上,这三个词形成一个聚合。
三、语法单位语素:语言中音义结合的最小单位,也是最小的语法单位。
1词:造句的时候能够自由运用的最小单位。
p.862实词:实词有实在的意义,能作句子的主要成分,有许多能够单说,单独回答问题。
虚词:虚词是意义比较虚的词,它能帮助造句,但一般不能单说,不能作句子的主要成分。
词组:词组是词的组合,它是句子里面作用相当于词而本身又是由词组成的大于词的单位。
4自由词组:根据表达需要,按照语法规则把有关的词组织起来的词组。
固定词组:语言中必须完整地记住的词的固定的组合,如成语(四面楚歌)或专有名词(人民代表大会)。
3句子:具有一个句调,能够表达一个相对完整的意思的语言单位。
句子是语言中最大的语法单位,又是交际中基本的表述单位。
5句类:句子按其语气划分的类叫做句类,包括陈述句、疑问句、祈使句、感叹句等。
句型:句子按其结构划分的类叫做句型,包括单句和复句。
语法:是句法和词法的汇集。
句法主要研究词组合成句子的规则;词法研究内容包括构词法(语素组合成词的规则)和词形变化规则。
第二节 组合规则一、语素组合成词的规则 p.89构词法:语素组合成词的规则。
词法:构词法和词的变化规则合在一起叫做词法。