4智能避障小车系统的设计与实现
- 格式:doc
- 大小:628.50 KB
- 文档页数:4
《基于Arduino的智能小车自动避障系统设计与研究》篇一一、引言随着科技的不断发展,智能化和自动化成为现代社会发展的重要方向。
其中,智能小车作为智能交通系统的重要组成部分,具有广泛的应用前景。
自动避障系统作为智能小车的关键技术之一,对于提高小车的安全性和智能化水平具有重要意义。
本文将介绍一种基于Arduino的智能小车自动避障系统的设计与研究。
二、系统设计1. 硬件设计本系统采用Arduino作为主控制器,通过连接超声波测距模块、电机驱动模块、LED灯等硬件设备,实现对小车的控制。
其中,超声波测距模块用于检测小车前方障碍物的距离,电机驱动模块用于控制小车的运动,LED灯则用于指示小车的状态。
2. 软件设计本系统的软件设计主要包括Arduino程序的编写和上位机界面的开发。
Arduino程序采用C++语言编写,实现了对小车的控制、数据采集和处理等功能。
上位机界面则采用图形化界面设计,方便用户进行参数设置和系统监控。
三、自动避障原理本系统的自动避障原理主要基于超声波测距模块的测距数据。
当小车运行时,超声波测距模块不断检测前方障碍物的距离,并将数据传输给Arduino主控制器。
主控制器根据测距数据判断是否存在障碍物以及障碍物的距离,然后通过控制电机驱动模块,使小车进行避障动作。
四、系统实现1. 超声波测距模块的实现超声波测距模块通过发射超声波并检测其反射时间,计算出与障碍物的距离。
本系统中,超声波测距模块采用HC-SR04型号,具有测量精度高、抗干扰能力强等优点。
2. 电机驱动模块的实现电机驱动模块采用L298N型号的H桥驱动芯片,可以实现对电机的正反转和调速控制。
本系统中,通过Arduino的PWM输出功能,实现对电机的精确控制。
3. 系统调试与优化在系统实现过程中,需要进行多次调试和优化。
通过调整超声波测距模块的灵敏度、电机驱动模块的控制参数等,使系统达到最佳的避障效果。
同时,还需要对系统的稳定性、响应速度等进行测试和优化。
智能小车避障系统的设计与实现智能小车避障系统是一种基于人工智能技术的智能设备,能够实现自主避免障碍物并沿着预设路径行驶的功能。
本文将介绍智能小车避障系统的设计原理和实现过程。
一、引言随着人工智能技术的发展,智能小车逐渐成为智能家居和智能工业设备中的重要组成部分。
智能小车避障系统是其中一个重要的功能之一,它能够通过传感器对周围环境进行感知,并根据感知结果做出相应的避障决策。
本文将详细介绍智能小车避障系统的实现过程。
二、设计原理智能小车避障系统的设计原理主要包括传感器模块、决策模块和执行模块。
1. 传感器模块传感器模块是智能小车避障系统中最重要的组成部分之一,它能够实时感知周围环境的障碍物位置和距离。
常用的传感器包括红外线传感器、超声波传感器和摄像头等。
通过这些传感器模块,智能小车能够获取周围环境的相关信息。
2. 决策模块决策模块是智能小车避障系统中的核心部分,它根据传感器模块获取到的环境信息进行处理和分析,并做出相应的决策。
常见的决策算法包括模糊逻辑算法、神经网络算法和遗传算法等。
通过这些算法,智能小车可以根据环境信息做出合理的避障决策。
3. 执行模块执行模块是智能小车避障系统中的最终执行部分,它负责根据决策模块的输出结果进行相应的控制。
通常,执行模块包括电机模块、舵机模块和通信模块等。
通过这些模块,智能小车能够根据避障决策结果自主行驶并避免障碍物。
三、实现过程智能小车避障系统的实现过程主要包括硬件搭建和软件编程两个步骤。
1. 硬件搭建硬件搭建是智能小车避障系统实现的第一步,它主要包括选择合适的传感器和执行模块,并进行连接和组装。
首先,选择适合的传感器模块,如红外传感器和超声波传感器,并将其连接到相应的接口。
然后,选择合适的执行模块,如电机模块和舵机模块,并进行连接和组装。
最后,将所有的模块连接到主控板,并确保其正常工作。
2. 软件编程软件编程是智能小车避障系统实现的关键步骤,它主要包括传感器数据处理、避障决策算法和执行控制程序的编写。
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。
本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。
二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。
其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。
传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。
电机驱动模块负责驱动小车行驶。
(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。
2. 传感器模块:包括超声波测距传感器和红外线测距传感器。
超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。
3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。
4. 电源模块:为整个系统提供稳定的电源供应。
(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。
2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。
3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。
4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。
(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。
在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。
三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。
当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。
智能避障小车报告智能避障小车报告一、引言智能避障小车是一种具有自主导航和避障功能的智能机器人,它利用传感器和算法来感知周围环境并做出相应的动作,以避免与障碍物发生碰撞。
本报告旨在对智能避障小车的设计原理、工作原理以及应用领域进行介绍和分析。
二、设计原理智能避障小车的设计原理包括感知系统、决策系统和执行系统三个部分。
1. 感知系统:感知系统主要负责获取环境信息,常用的感知器件包括超声波传感器、红外线传感器、摄像头等。
超声波传感器可以测量小车与障碍物之间的距离,红外线传感器可以检测障碍物的存在与否,摄像头可以获取环境图像。
2. 决策系统:决策系统根据感知系统获取的信息,通过算法进行分析和处理,决定小车的行动。
常用的算法包括避障算法、路径规划算法等。
避障算法通常基于感知数据计算出避障方向和速度,路径规划算法则是根据目标位置和环境地图计算出最优路径。
3. 执行系统:执行系统根据决策系统的指令控制小车的运动,包括驱动电机、舵机等部件。
驱动电机控制小车的前进、后退和转向,舵机控制车头的转动。
三、工作原理智能避障小车的工作原理如下:1. 感知环境:小车利用传感器获取环境信息,例如超声波传感器测量距离,红外线传感器检测障碍物,摄像头获取图像。
2. 数据处理:小车的决策系统对感知到的数据进行处理和分析,计算出避障方向和速度,或者根据目标位置和环境地图计算出最优路径。
3. 控制执行:决策系统根据计算结果发出指令,控制执行系统驱动电机和舵机,控制小车的运动。
如果遇到障碍物,小车会自动避开,如果目标位置发生变化,小车会自动调整路径。
四、应用领域智能避障小车在许多领域都有广泛的应用。
1. 家庭服务机器人:智能避障小车可以在家庭环境中执行一些简单的任务,如送餐、打扫卫生等。
2. 仓储物流:智能避障小车可以在仓库中自主导航,收集和组织货物,减少人力成本和提高效率。
3. 自动驾驶汽车:智能避障小车的避障和导航算法可以应用于自动驾驶汽车,提高安全性和稳定性。
智能避障小车电路控制系统设计第一章绪论随着科技的不断发展,现在社会上普及了各种智能设备,比如智能手机、智能电视等。
而在智能设备倡导的技术浪潮中,智能小车也逐渐走近了人们的生活。
智能小车可以自动行驶,具备避障和自主规划路径的功能,被广泛应用于工业生产、家庭宠物和商业领域。
本文主要针对一种智能避障的小车,介绍如何设计它的电路控制系统。
第二章智能避障小车的软件系统设计智能避障小车重要的部分是它的软件系统。
软件系统设计要完成小车的逻辑控制、数据记录、交互界面等功能。
首先,逻辑控制的设计分为嵌入式控制和上位机控制两部分。
嵌入式控制采用单片机控制,这里选取常用的STM32系列,对小车的控制和数据采集进行编程。
上位机控制在PC端,主要负责数据的传输和调试功能。
其次,数据记录的设计分为实时数据和历史数据,实时数据包括速度、角度、温度、湿度等采集数据,历史数据采用数据库进行存储,主要包括避障行驶的路径、时间等记录信息。
最后,交互界面的设计主要用QT设计,负责实时数据的显示和历史数据的查询;同时,在调试过程中需要通过串口进行调试,可使用XCOM等串口调试工具进行调试。
第三章智能避障小车的硬件系统设计智能避障小车的硬件系统设计主要包括硬件电路设计和机械设计两部分。
硬件电路设计主要包括电源设计、传感器设计、驱动和通信设计四部分内容。
电源设计采取锂电池供电,以保持小车的运行时间和速度;传感器设计应选用超声波传感器、红外传感器和陀螺仪进行检测和测量;驱动采用TB6612FNG驱动芯片,驱动小车的电机;通讯设计主要采用串口通信方式,将采集的数据和控制信号进行传输。
机械设计主要包括底盘、车轮、电机、连接器、支架和外壳等部分,实现车身的稳定和机动性能。
第四章实验流程及结果分析本文对智能避障小车的电路控制系统进行了设计和实现,并在实际小车平台上进行了测试。
实验流程主要是确保测试环境符合实验要求,然后对小车进行按照设计要求按照流程在PC端进行程序上传、采集和调试。
避障小车毕业论文避障小车的研究与设计摘要避障小车是一种可以自主避开障碍物的智能小车,其具有重要的应用价值。
本文从机器人控制原理、图像处理技术以及硬件设计等方面出发,对避障小车的设计及其实现方法进行了详细论述。
在硬件设计方面,本文采用了单片机控制器进行控制,采用了基于超声波和红外线的避障传感器,以及直流电机进行驱动。
在软件系统设计方面,本文采用了C语言进行编写,针对避障小车实现了避障、控制、传感器数据处理等功能。
通过实验验证,本文的避障小车能够比较准确地避开障碍物,具有一定的实用价值。
关键词:机器人控制原理、图像处理、硬件设计、软件设计、避障小车AbstractThe obstacle-avoiding robot car is an intelligent car that can autonomously avoid obstacles, with significant application value. This paper elaborates on the design and implementation methods of the obstacle-avoiding small car from the aspects of robot control principle, image processing technology, and hardware design. Interms of hardware design, this paper uses a single-chip microcontroller for control, obstacle-avoiding sensors based on ultrasonic and infrared, and DC motors for driving. In the software system design aspect, this paper uses C language for writing, and realizes the functions of obstacle avoidance, control, and sensor data processing for the obstacle-avoiding small car. Through experiments, the obstacle-avoiding small car in this paper can accurately avoid obstacles and has practical value.Keywords: robot control principle, image processing, hardware design, software design, obstacle-avoiding car引言随着人工智能的发展,智能小车在日常生活和工业环境中得到了广泛的应用。
智能小车避障系统的设计与实现智能小车避障系统的设计与实现智能小车的出现给我们的日常生活带来了极大的便利,然而在路线规划和避障能力方面,我们仍有许多改进和优化的空间。
针对这一问题,我们设计并实现了一款智能小车避障系统,旨在提高小车的自主导航和避障能力,以更好地适应复杂的环境。
首先,我们基于单片机控制系统搭建了整个智能小车避障系统。
该系统包括传感器模块、控制模块和执行模块三部分。
传感器模块采用红外避障传感器和超声波测距传感器相结合的方式,实时感知前方障碍物的距离和方向。
控制模块负责处理传感器模块的数据,并根据预设的避障算法确定小车的运动方向。
执行模块通过驱动直流电机控制小车的前进、后退、左转和右转等动作。
接着,我们对传感器模块进行了优化和改进。
针对现有传感器的局限性,我们使用更高精度的红外避障传感器,有效提高了障碍物的检测准确性和稳定性。
同时,我们还引入了图像识别技术,通过摄像头采集实时图像,利用机器学习算法判断图像中是否存在障碍物,并将结果传递给控制模块进行相应处理。
这种结合传感器和图像识别的方式,大大提高了小车对障碍物的感知能力。
在避障算法的设计上,我们采用了综合考虑距离、速度和方向等因素的全局路径规划算法。
该算法通过计算当前障碍物与小车之间的距离和方向,结合小车的速度和方向信息,选择最佳的绕行路径,以实现高效且安全的避障操作。
同时,我们还引入了动态避障策略,通过对障碍物运动轨迹的预测和实时调整,进一步提升小车的避障能力。
在系统实现方面,我们选择了基于Arduino的开发板作为控制模块,并利用C语言进行编程。
通过编写相应的驱动程序和算法逻辑,我们成功实现了智能小车的避障功能。
在实验中,我们设置了多个不同形状和高度的障碍物,并进行多次避障测试。
结果表明,我们设计的智能小车避障系统能够有效、灵活地避开各类障碍物,实现了自主导航与避障的目标。
综上所述,我们设计并实现了一款智能小车避障系统,通过优化传感器模块、设计全局路径规划算法和引入动态避障策略,成功提高了小车的自主导航和避障能力。
《基于Arduino的智能小车自动避障系统设计与研究》篇一一、引言随着物联网技术的发展和人工智能的普及,智能家居系统越来越受到人们的关注。
其中,智能小车作为智能家居的重要部分,具有广泛的应用前景。
自动避障系统作为智能小车的关键技术之一,其设计对于小车的智能性、稳定性和安全性具有重要意义。
本文将基于Arduino平台,设计并研究一款智能小车自动避障系统。
二、系统设计1. 硬件设计本系统硬件部分主要包括Arduino控制器、电机驱动模块、超声波测距模块、红外避障模块等。
其中,Arduino控制器作为整个系统的核心,负责接收传感器数据、处理数据并控制电机驱动模块,实现小车的运动控制。
电机驱动模块采用L298N驱动芯片,可实现小车的正反转和调速。
超声波测距模块和红外避障模块用于检测小车周围的障碍物,为避障提供依据。
2. 软件设计软件部分采用C语言编写,主要包括主程序、传感器数据处理程序、电机控制程序等。
主程序负责初始化系统、循环检测传感器数据并调用相应的处理程序。
传感器数据处理程序包括超声波测距程序和红外避障程序,用于处理传感器数据并判断是否存在障碍物。
电机控制程序根据传感器数据和障碍物情况,控制电机的运动,实现小车的自动避障。
三、系统实现1. 传感器数据采集与处理本系统采用超声波测距模块和红外避障模块进行障碍物检测。
超声波测距模块通过发射超声波并检测回波时间,计算与障碍物的距离。
红外避障模块通过检测红外线的反射情况,判断障碍物的存在与否。
两种传感器数据经过Arduino控制器处理后,可得到小车周围环境的实时信息。
2. 电机控制与运动规划根据传感器数据和障碍物情况,系统通过Arduino控制器控制电机驱动模块,实现小车的运动规划。
当检测到障碍物时,小车会根据障碍物的位置和距离,自动调整运动轨迹,实现避障。
同时,系统还具有自动寻路功能,可根据预设的路线进行运动。
四、实验与分析为了验证本系统的性能和效果,我们进行了多组实验。
《智能小车避障系统的设计与实现》篇一一、引言智能小车避障系统作为人工智能在车辆技术上的一个应用,其在当前及未来的技术发展趋势中,显得尤为关键和重要。
这一系统的核心目的是确保小车在未知的环境中可以自动、智能地避障,减少可能的碰撞危险。
本文主要对智能小车避障系统的设计与实现进行了深入的研究和探讨。
二、系统设计1. 硬件设计硬件部分主要包括小车底盘、电机驱动、传感器模块(如超声波传感器、红外传感器等)、微控制器(如Arduino或Raspberry Pi)等。
其中,传感器模块负责检测障碍物,微控制器负责处理传感器数据并控制电机驱动,使小车能够根据环境变化做出反应。
2. 软件设计软件部分主要分为传感器数据处理、路径规划和避障算法三个模块。
传感器数据处理模块负责收集并处理来自传感器模块的数据;路径规划模块根据环境信息和目标位置规划出最优路径;避障算法模块则根据实时数据调整小车的行驶方向和速度,以避免碰撞。
三、系统实现1. 传感器数据处理传感器数据处理是避障系统的关键部分。
我们采用了超声波和红外传感器,这两种传感器都能有效地检测到一定范围内的障碍物。
通过读取传感器的原始数据,我们可以计算出障碍物与小车的距离,进而做出相应的反应。
2. 路径规划路径规划模块使用Dijkstra算法或者A算法进行路径规划。
这两种算法都可以根据已知的地图信息和目标位置,规划出最优的路径。
在小车行驶过程中,根据实时数据和新的环境信息,路径规划模块会实时调整规划出的路径。
3. 避障算法避障算法是智能小车避障系统的核心部分。
我们采用了基于PID(比例-积分-微分)控制的避障算法。
这种算法可以根据障碍物的位置和速度信息,实时调整小车的行驶方向和速度,以避免碰撞。
同时,我们还采用了模糊控制算法进行辅助控制,以提高系统的稳定性和鲁棒性。
四、系统测试与结果分析我们对智能小车避障系统进行了全面的测试,包括在不同环境下的避障测试、不同速度下的避障测试等。
《智能小车避障系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车避障系统已成为现代生活中不可或缺的一部分。
智能小车避障系统能够使小车在行驶过程中自动识别障碍物并采取相应的避障措施,极大地提高了小车的安全性和实用性。
本文将详细介绍智能小车避障系统的设计与实现过程。
二、系统设计1. 总体设计智能小车避障系统主要由传感器模块、控制模块和执行模块三部分组成。
传感器模块负责检测周围环境中的障碍物,控制模块根据传感器数据做出决策,执行模块则根据控制模块的指令驱动小车进行避障。
2. 传感器模块设计传感器模块采用超声波测距传感器,通过发射超声波并检测回波的时间来计算与障碍物的距离。
此外,还可以采用红外线传感器、摄像头等设备,以提高系统的检测范围和精度。
3. 控制模块设计控制模块采用单片机作为核心控制器,通过编程实现障碍物检测、路径规划、速度控制等功能。
单片机与传感器模块和执行模块通过电路连接,实现数据的传输和指令的执行。
4. 执行模块设计执行模块主要包括小车的电机和轮子。
根据控制模块的指令,电机驱动轮子转动,使小车完成避障动作。
此外,还可以通过调整电机的转速和转向来实现小车的速度控制和路径规划。
三、系统实现1. 硬件组装根据系统设计,将传感器模块、控制模块和执行模块进行组装。
首先将超声波测距传感器、单片机等硬件设备固定在小车上,然后通过电路将它们连接起来。
2. 软件编程软件编程是实现智能小车避障系统的关键步骤。
首先,需要编写程序实现单片机的初始化,包括设置IO口、定时器等。
然后,编写程序实现障碍物检测、路径规划和速度控制等功能。
在障碍物检测方面,通过读取超声波测距传感器的数据,判断障碍物的距离和位置。
在路径规划方面,根据检测到的障碍物信息和目标位置,制定出合适的行驶路线。
在速度控制方面,根据路况和障碍物情况,调整电机的转速和转向,使小车以合适的速度行驶。
3. 系统调试系统调试是确保智能小车避障系统正常工作的关键步骤。
智能避障小车系统的设计与实现
电子信息工程 200709837 王小龙
罗维薇
摘要
本设计以单片机STC89C52为控制核心,设计实现具有避障和里程显示功能的智能小车。
其主要由三部分组成:液晶显示模块、避障模块和电机驱动模块。
智能避障小车分别运用直接反射式红外传感器TCRT5000和霍尔传感器3144来进行路径检测和里程计算,并将实时数据传送到液晶显示模块和单片机分别进行显示和数据处理。
并用L298N电机驱动芯片控制小车的运行状态。
Abstract
This design based on the single chip computer STC89C52 as control core, design a car with obstacle avoidance and mileage display function. It mainly consists of three parts: the liquid crystal display module, obstacle avoidance module and motor driver module.
Intelligence obstacle avoidance car detecting external environment by direct reflex respectively infrared sensor TCRT5000 and hall sensor 3144, transfer the real-time data to LCD module and single chip microcomputer to display respectively and data processing. And use L298N motor drive chip to control the operation status of the car.
一、绪论
1.课题背景介绍
随着单片机技术的迅速发展,其控制能力越来越强大。
人们利用单片机强大的控制功能设计出各种各样的系统,全国电子设计大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。
本设计就是在这样的背景下提出的,设计的智能小车能够通过光电开关完成避障功能,并且可以计算和显示出小车的行驶距离。
2.设计的主要内容
(1)采用STC89C52单片机作为控制小车的核心器件,用收发一体的红外传感器光电TCRT5000来检测和感应外界环境。
(2)用L298N驱动芯片控制电动小车的运行。
(3)用霍尔传感器计算小车行驶的距离并用1602液晶显示器显示。
这种方案能实现对智能小车的运动状态进行实时控制,控制灵活、可靠,可满足对系统的各项要求。
二、系统的总体设计
1.硬件总体设计
以AT89C51单片机为核心的控制电路,采用模块化的设计方案,运用红外光电传感器、霍尔传感器,实现小车在行驶中自动躲避障碍物、测量里程等问题。
并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动小车的智能化控制。
在本系统中,反射式红外光电传感器检测障碍物,然后将信号传送到单片机系统进行处理,使小车沿轨道自主行走;通过霍尔元件测量小车行驶里程;采用L298N芯片控制电机的转向,实现电动小车的正反向行驶、快慢速行驶及转弯;采用1602液晶显示器显示小车行驶的路程。
此系统采用软件方法来解决复杂的硬件电路部分,使系统硬件简洁化,各类功能易于实现,能满足系统的要求,其原理图如图1所示。
0图2 主程序流程图
在主程序模块中,需要完成对各模块接口的初始化,LCD1602的初始化、中断向量的设计以及开中断、循环等等待工作。
另外,在主程序模块中还需要设置启动/清除标志寄存器,并对它们进行初始化,然后分别完成不同的操作,主程序流程图如图2所示。
三、系统的具体实现
1.硬件设计
(1) LCD液晶显示电路
图3 液晶显示器连接电路
(2)电机驱动电路
本设计采用L298N作为电机的驱动芯片,L298N是SGS公司的产品,内部包含四通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,内含两个H桥的高电压大电流双全桥式驱动器,接收标准TTL 逻辑电平信号,可驱动46V、2A以下的电机。
其连接如图4所示。
VCC
M2
图4 L298N驱动电路原理图
(1)液晶显示模块程序
进入主函数后,执行完1602LCD的初始化函数,然后用write_com(0x80)指令,命令先将数据指针定位在第一行第一个字处,然后写入第一行要显示的数据;在第二行重新定位数据指针write_com(0x80+0x40),将数据指针定位在第二行,然后再将第二行所要显示的数据写入,继而显示。
(2)里程计算程序
设车轮转动了N次,智能小车车轮的半径为R,则里程S为:S=N×2π×R。
四、系统测试及总结
1.测试
(1)测试仪器
测试仪器包括数字万用表、MCS51仿真机、直流稳压电源等。
(2)测试结果
在程序烧入完成之后,将智能小车放在如图5所示的迷宫入口处,小车根据光电开关等装置发送和接收的信息,基本在距墙面12mm处能够躲避障碍,最终顺利地走出迷宫。
2.实物图
图5 智能避障小车实物图
3.结论
本次设计的智能小车能够显示智能小车行驶的路程,能够控制智能小车避开障碍物或走出迷宫。
但是由于自己的能力有限,本次设计还存在许多不足之处。
如:不能控制小车行驶的速度、小车的转弯速度较慢、红外传感器的检查距离过短仅有12mm。
希望今后有机会再对此设计进行改进。
参考文献
[1] 潘晓宁.单片机程序设计实践教程.北京:清华大学大学出版社,2009
[2] 江志红.51单片机技术与应用系统开发案例精选.北京:清华大学大学出版社,2008
[3] 来清民.传感器与单片机接口及实例.北京:航空航天大学出版社,2008
[4] 蔡明文.单片机课程设计.湖北:华中科技大学出版社,2007
[5] 刘同法.单片机外围接口电路与工程实践.北京:航空航天大学出版社,2009。