分布式数据挖掘
- 格式:ppt
- 大小:369.50 KB
- 文档页数:18
1791 数据挖掘的简单概述Ha do o p是一个分布式系统基础架构,它实现了一个分布式文件系统,具有极高的容错性,在因特网上是最受欢迎的搜索关键字的内容分类工具,能够解决许多具有伸缩性的问题,能提高文件搜索效率[1]。
而数据挖掘系统是在Hadoop平台建立的,因此,数据挖掘系统的发展与Hadoop 平台紧密结合。
数据挖掘主要是在大量数据中寻找有价值的信息技术,主要由以下三个阶段组成,数据准备阶段,需要对大量的信息进行清理,并对数据整合,同时还对数据格式进行转换;数据挖掘阶段,根据相应的智能算法对数据进行分析,然后形成一定的数据模式;结果评估阶段,主要根据挖掘出的数据模式的运行效果进行评判,对没有任何效果的评估模式全部排除。
2 数据挖掘的主要任务与具体计算方法2.1 数据挖掘基本任务分析数据挖掘的任务是由大数据发展的方向决定的,同时为数据挖掘工作提供了方向,由于数据挖掘以寻找数据模式为主,并且数据模式也是随着数据的应用领域不同而发生变化,因此,在数据挖掘期间,其任务主要分为描述性挖掘和预测性挖掘两种。
描述性挖掘任务主要根据数据的一般特征,对数据库中的数据进行概括、总结,然后寻找数据之间的关系和类型,最终形成固定的数据模式;对于预测性挖掘主要根据接触的数据做出相应的判断,并加入与之相对应的新的数据的模式[2]。
2.2 数据挖掘的具体计算方法数据聚类算法是对数据进行拆分合并同类项计算,也就是将数据项划分为多层次的子集,对具有相似特性的数据项进行归类,然后对同一个子集中的数据进行计算,该计算方法主要根据数据自身的特性来划分。
具体如下所示:在数据库B 中,所有数据的集合为未知数X ={X 1,X 2,X 3……X n },而在许多的X 中有一部分具有相似性,因而X i (i =1,2,3……n)。
其中对于一个整体集合X,被许多具有相似的X 组合分割成m 个子集,出现了许多的C 1,C 2,C 3……C n 。
基于分布式计算的时空数据挖掘技术研究一、引言随着信息技术的发展,数据的产生和存储量不断增长,数据挖掘也成为了科技领域中的热门话题。
由于“时空数据”与传统的数据存在很大的差异,如存储方式、特征、时序性等,因此时空数据的挖掘技术也逐渐受到了广泛的重视。
本文将针对基于分布式计算的时空数据挖掘技术进行探讨和研究。
二、时空数据的特点1. 存储方式不同传统的数据是以表格的形式存储的,而时空数据常常采用三维、四维的空间坐标系进行存储。
这样,时空数据可以准确表达不同位置和时间的信息。
2. 特征不同时空数据具有时间维度和空间维度的特点,同时还存在时空相互影响,以及时空信息不确定性和动态变化等复杂特征,这就给时空数据的挖掘带来了难度。
3. 时序性强时空数据通常是随着时间的变化而不断更新的,因此具有很强的时序性和动态性。
这就使得时空数据挖掘要求具有及时处理能力,所以需要采用基于分布式计算的技术。
三、时空数据挖掘的相关工作1. 时空数据预处理由于时空数据具有复杂的特征和大量的维数,可以使用多种预处理技术对其进行处理。
例如在标准化、降维、特征选择、异常检测等方面进行预处理可以使得挖掘结果更加准确和可靠。
2. 时空数据聚类时空数据聚类是指根据时空数据的特征将其分为一定数量的簇,以便进行分析和挖掘。
在分布式计算技术中,可以采用K-means算法和DBSCAN算法进行聚类。
3. 时空数据分类进行时空数据分类可以帮助用户更好地理解数据,找到数据之间的关联。
在时间序列分类中,将时序数据分为多个离散事件是一种常见的分类方式。
此外,还可以使用支持向量机、决策树等机器学习算法进行分类。
4. 时空关联分析时空数据挖掘的关联分析研究相对较少,大多数都借鉴传统数据的关联分析方法。
时空数据的关联分析不仅需要考虑空间关系、时间关系、属性关系等因素,还应考虑时空因素之间的关联,因此需要考虑基于时空关联规则的分析方法。
四、采用分布式计算技术的时空数据挖掘系统分布式计算是指将一项任务分解成多个子任务,分配给不同的计算节点来完成,并将所有的结果合并起来形成最终结果。
基于XML的Web分布式数据挖掘系统研究摘要:在目前很多网站都是基于html的,要对web进行挖掘面临很多困难。
xml的出现给基于web的数据挖掘带来便利。
利用xml 和分布式数据挖掘技术将分布在世界各地的web数据映射为结构化的数据,建立一个具有基本挖掘功能的分布式挖掘模型,并给出实现方案。
关键词:web;数据挖掘;分布式;agent中图分类号:tp311 文献标识码:a 文章编号:1009-3044(2013)13-2964-03internet出现以来,以其丰富的资源吸引了大量的用户。
随着计算机和网络技术的发展,web服务越来受欢迎,web页面的数量也在以惊人的速度增涨。
而蕴含在这些web中的知识却没能得到充分的利用。
近年来,数据挖掘与web的研究成为了两大研究课题,而两者的结合更是构成了一个新的课题,即web数据挖掘研究。
internet是一个开放性的全球分布式网络,web分布在全世界的各个地方,且web上的资源呈现出多样性、半结构化或非结构化等特点,这都给web数据挖掘带来了一定的困难。
xml能够将不同来源的数据很容易结合在一起,提供易于使用的数据,为web数据挖掘带来了新的契机。
结合web的分布式特性及web数据的特点,提出一种基于xml的web分布式数据挖掘模型。
1 web数据挖掘技术1.1 web数据挖掘概念数据挖掘就是从大量的、有噪声的、不完全的、模糊的、随机的数据中,提取隐含在其中的、人们感兴趣的、潜在有用的信息和知识的过程[1,2]。
随着internet的发展,越来越多的服务和信息通过web的形式提供给使用者。
这使得web数据挖掘日益受到重视。
相对在传统的数据库进行数据挖掘而言,web上的数据挖掘难度较大,体现出以下几个特点:1)半结构化是web上数据的最大特点。
2)web上的每一个站点就是一个数据源,每个数据源都是异构的,因而每一站点之间的信息和组织都不一样,这就构成了一个巨大的异构数据库环境。
3)本课题得到国家自然科学基金项目(60473113)、国家自然科学基金重点项目(60533080)资助。
庄 艳 硕士研究生,主要研究领域为分布式虚拟环境、Agent 技术;陈继明 博士研究生,主要研究领域为XML 、分布式虚拟环境;徐 丹 硕士研究生,主要研究领域为分布式虚拟环境、Agent 技术;潘金贵 教授,博士生导师,主要研究领域为多媒体信息处理、多媒体远程教育系统。
计算机科学2007Vol 134№112基于Multi 2agents 系统的分布式数据挖掘3)庄 艳 陈继明 徐 丹 潘金贵(南京大学计算机软件新技术国家重点实验室 南京210093)摘 要 计算机网络的发展以及海量数据的分布式存储,滋生了分布式数据挖掘(DDM )这一新的数据挖掘方式。
本文针对多agent 系统下的分布式数据挖掘进行了初步的研究,对agent 方法用于DDM 的优势、基于agents 的分布式数据挖掘的问题,以及典型的基于agent 的分布式数据挖掘系统和该领域的进一步研究方向作了一个概要的综述。
关键词 数据挖掘,分布式数据挖掘,基于多agent 系统的分布式挖掘 Distributed Data Mining B ased on Multi 2agent SystemZHUAN G Yan CH EN Ji 2Ming XU Dan PAN Jin 2Gui(State Key Lab for Novel Software Technology ,Nanjing University ,Nanjing 210093)Abstract The development of network and the storage of huge data in a distributed way bring on the distributed data mining (DDM ).The article gives a primary study focus on the Distributed Data Mining Based on Multi 2agent system.We summarize the advantages of agents for DDM ,problems in the agent 2based system for distributed data mining ,and some representative agent 2based Distributed Data Mining systems ,at last ,the f uture work of the area.K eyw ords Data mining ,Distributed data mining ,Data mining based on multi 2agent system 数据挖掘是用于在大规模数据集中获取感兴趣知识的过程。
1、分布式索引技术分布式索引是基于分布式并行技术的索引架构,不同于并行数据库的shared-nothing和shared-disk架构,数据文件与索引文件都存放在分布式文件系统之上。
B树索引MapReduce 数据在入库的同时B树索引在内存中同步生成,B树中的叶子节点存储的是数据文件路径与记录在文件中的偏移量,如图所示,在B树中的叶子节点达到设置上限后,索引将被序列化到分布式文件系统之上,在根据条件进行单表查询的时,job被提交到并行计算框架,master节点首先分析该表的索引文件根据索引文件所在的节点将task发送到相应的节点,每个节点在查询本地的索引文件之后将符合条件的数据文件路径+偏移量打包成task根据数据文件位置进行再次分发,在数据文件中的记录查询出来之后将结果返回,如上图所示。
1、分布式并行计算技术分布式并行计算架构(DPCA)DPCA架构图分布式并行计算的分布式并行架构(DPCA)是典型的主从结构,主Master与从Master 分别部署在HDFS的主从NameNode物理节点上,而Slave部署在DataNode物理节点上,主从Master使用Zookeeper同步,并共享系统日志,Master与Slave之间用心跳信息保持信息交换。
并行计算架构上作业执行过程图并行计算架构的三中分发方式图相对于MapReduce架构,DPCA具有实时性、计算的数据本地性以及数据平衡性。
MapReduce架构的job提交过程较为复杂,客户端将job 提交JobTracker有较长的延迟,JobTracker将job处理为MapReduce task后,通过TaskTracker的心跳信息将task任务返回给TaskTracker,此过程中也存在延迟。
MapReduce架构虽然也遵循数据本地性,但仍会有很大比例的数据处理不是本地的,相对于MapReduce架构,DPCA的job提交是实时性的,在提交job之前所需程序jar包已经分发到所有计算节点,在job提交之后,master在初始化处理之后即将task直接分发到所有slave节点上,如并行计算架构上作业执行过程图所示,在job提交后,master根据数据文件所在位置分配task,这样在每个计算节点上要处理的HDFS上的数据块就在本地,这样避免了数据的移动,极大地减少了网络IO 负载,缩短了计算时间,每个计算节点会根据Task中SQL解析器生成的执行计划对Task执行的结果进行分发,分发的方式有三种:分发所有中间数据到所有计算节点,分发所有中间数据到部分节点,根据数据所在位置分发,如并行计算架构的三中分发方式图所示。