期末《解析几何》试卷讲解学习
- 格式:doc
- 大小:313.50 KB
- 文档页数:3
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
考点31直线的倾斜角与斜率、直线的方程【命题解读】直线的倾斜角与斜率以及直线的方程作为高考的一个知识点,主要是以基础题为主,在选择题中多有涉及,对于直线的方程更多的是与圆锥曲线相结合出题,难度以中高档题为主。
【命题预测】预计2021年的高考直线的倾斜角与斜率以及直线的方程出题还是以基础题为主,多出选择或者填空,与圆锥曲线的结合出现在解答题,单独出题可能性小。
【复习建议】1.理解直线的倾斜角与斜率的概念,会计算斜率并运用斜率判定直线的位置关系;2.掌握直线方程的各种形式。
考向一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫作直线l的倾斜角.当直l和x轴平行或重合时,直线l的倾斜角为0°.(2)范围:倾斜角α的取值范围是0°≤α<180°.2.直线的斜率(1)定义:一条直线的倾斜角α(α≠90°)的正切值叫作这条直线的斜率,该直线的斜率k= tan α..(2)过两点的直线的斜率公式:过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1若x1=x2,则直线的斜率不存在,此时直线的倾斜角为90°.1. 【2020350y --=的倾斜角为( ) A .6π B .3π C .23π D .56π 【答案】A350y --=的斜率为3,故倾斜角θ的正切值tan 3θ=,又[)0,θπ∈,故6πθ=.故选:A2. 若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2【答案】B【解析】由k =-3-2y -12-4=tan 3π4=-1, 得-4-2y =2,所以y =-3. 故选:B考向二 直线的方程名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x=x 0 斜截式 y=kx+b不含垂直于x 轴的直线两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x=x 1(x 1=x 2)和直线y=y 1(y 1=y 2) 截距式 x a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A 2+B 2≠0)平面内所有直线都适用1. 【2020全国课时练习】以(2,5)A -,(4,1)B -为端点的线段的垂直平分线方程是 A .290x y -+=B .230x y +-=C .290x y --=D .230x y ++=【答案】D【解析】由(2,5),(4,1)A B --,所以点,A B 中点坐标为(3,3)P -,又由斜率公式可得1(5)242ABk ---==-,所以垂直平分线的斜率为112AB k k =-=-,所以垂直平分线的方程为1(3)(3)2y x --=--,即230x y ++=. 故选D .2. 【2020全国课时练习】过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选:C.3. 【2020全国课时练习】已知ABC 的三个顶点都在第一象限,且(1,1),(5,1)A B ,45A ︒∠=,45B ︒∠=,求:(1)AB 边所在直线的方程; (2)AC 边和BC 边所在直线的方程. 【答案】见解析【解析】(1)因为(1,1),(5,1)A B ,所以直线AB 平行于x 轴,所以直线AB 的方程为1y =. (2)由题意知,直线AC 的倾斜角为A ∠,又45A ︒∠=,所以tan451AC k ︒==. 又直线AC 过点(1,1)A ,所以直线AC 的方程为11(1)y x -=⨯-,即y x =. 又直线BC 的倾斜角为180135B ︒︒-∠=,所以tan1351BC k ︒==-.又直线BC 过点(5,1)B ,所以直线BC 的方程为11(5)y x -=-⨯-,即6y x =-+.题组一(真题在线)1. 【2019山东淄博模拟】直线x +3y +1=0的倾斜角是( ) A .π6B .π3C .2π3D .5π62.【2020全国高二课时练习】直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .11,5⎛⎫- ⎪⎝⎭B .()1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭C .()1,,51⎛⎫-∞-+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭3. 【2020全国课时练习】若直线l 的向上方向与y 轴的正方向成60角,则l 的倾斜角为( )A .30B .60C .30或150D .60或1204. 【2020全国课时练习】 已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为 ( ) A .y =-34x +5 B .y =34x -5 C .y =34x +5 D .y =-34x -5 5. 【2020全国课时练习】直线0(0)ax y a a ++=≠在两坐标轴上的截距之和为( ) A .1a -B .1a -C .1a +D .1a --6. 【2020全国课时练习】直线132y x =-+的斜率和在y 轴上的截距分别是( ) A .12-,3 B .3,12-C .12,3- D .3-,127. 【2020全国课时练习】若直线26(30)t x y -++=不经过第一象限,则t 的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .3,2⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭8. 【2020江苏建邺高一期中】下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α︒≤≤︒ B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有斜率, 但不一定有倾斜角D .任意一条直线都有倾斜角,但不一定有斜率9. 【2020全国课时练习】已知直线10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10,m x +=则l m ⊥C .点到直线l 的距离是2D .过与直线l 平行的直线方程是40y --=10. 【2020全国课时练习】已知直线L 过点(2,1)P 且倾斜角为135︒,则l 的点斜式方程为_______.11. 【2020全国课时练习】已知点(0,1)A ,点B 在直线:0l x y +=上运动则当线段AB 最短时,直线AB 的一般式方程为__________.12. 【2020全国高二课时练习】直线l 被两条直线1:430l x y ++=和2:3550l x y --=截得的线段的中点为(1,2)P -,则直线l 的方程为_________.题组一1.D【解析】将直线方程化为y =-33x -33,故其斜率k =-33,倾斜角为5π6. 故选:D .【解析】设直线的斜率为k ,则直线方程为y -2=k (x -1),令y =0,得直线l 在x 轴上的截距为21k -,则2313k -<-<,解得12k >或1k <-. 故选:D. 3. C【解析】直线l 的位置可能有两种情形,如图所示,故直线l 的倾斜角为30或150.故选:C. 4. C【解析】由直线2x ﹣y=0和x+ay=0垂直可得a=2, 则P (0,5),设()2112A 2B 2x x x x ⎛⎫- ⎪⎝⎭,,,, 于是有122102102x x x x +=⎧⎪⎨-=⎪⎩,解得1244x x =⎧⎨=-⎩. 于是A (4,8),B (﹣4,2), ∴AB 所在的直线方程为248244y x -+=-+,即y =34x +5. 故选C 5. D【解析】将方程0(0)ax y a a ++=≠化为截距式得11x ya+=--, 从而可知直线在x 轴,y 轴上的截距分别为1,a --, 故截距之和为1a --. 故选:D【解析】直线方程可化为132y x =-,因此该直线的斜率为3,在y 轴上的截距为12-. 故选:B 7. D【解析】直线方程可化为(32)6y t x =--,因为直线不经过第一象限,所以320t -,解得32t. 故选:D 8. BD【解析】对A ,若α是直线的倾斜角,则0180α︒≤<︒,故A 错误; 对B ,根据tan k α=,即正切函数的值域为实数,故B 正确; 对C ,因为倾斜角为90︒时没有斜率,故C 错误;对D ,由倾斜角的定义可得任意一条直线都有倾斜角,由直线的斜率定义可得,倾斜角为2π的直线,没有斜率,故D 正确; 故选:BD. 9. CD【解析】对于A.直线10l y -+=的斜率k =tanθ=l 的倾斜角是3π,故A 错误;对于B .因为直线10m x +=:的斜率k′=kk ′=1≠﹣1,故直线l 与直线m 不垂直,故B 错误;对于C.点)到直线l 的距离d==2,故C 正确;对于D .过()2与直线l 平行的直线方程是y ﹣2=x ﹣,整理得:40y --=,故D 正确.综上所述,正确的选项为CD . 故选:CD .10. 1(2)y x -=--.【解析】由题意知直线L 的斜率tan1351k ︒==-,所以l 的点斜式方程为1(2)y x -=--. 故答案为:1(2)y x -=--. 11. 10x y -+=【解析】当线段AB 最短时,AB l ⊥,所以1AB k =,所以直线AB 的方程为1y x =+, 化为一般式方程为10x y -+=. 故答案为:10x y -+=. 12. 310x y ++=【解析】设直线l 与1l 的交点为()00,A x y ,直线l 与2l 的交点为B.由已知条件,得直线l 与2l 的交点为00(2,4)B x y ---.联立()()0000430,325450,x y x y ++=⎧⎨-----=⎩即0000430,35310,x y x y ++=⎧⎨-+=⎩解得002,5,x y =-⎧⎨=⎩即(2,5)A -.所以直线l 的方程为2(1)522(1)y x ---=----,即310x y ++=. 故答案为:310x y ++=.考点32两直线的位置关系、直线的交点坐标与距离公式【命题解读】两直线位置关系及交点坐标、距离公式是高考中常考知识点,在近几年的高考中主要是以选择或者填空题的形式出现,题目难度以中低档题为主,主要是考查学生的计算能力和思维转化能力。
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
专题二平面解析几何A卷必备知识全优一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.已知过点,的直线的斜率为,则( )A. B. C. 1 D. 22.若直线平分圆的周长,则b的值为( )A. 2B.C.D. 33.椭圆的离心率为( )A. B. C. D.4.已知双曲线C:的一个焦点和抛物线的焦点相同,则双曲线C的渐近线方程为( )A. B. C. D.5.已知椭圆C:的左、右顶点分别为A、B,P为椭圆上异于A,B两点的动点,则( )A. B. C. D.6.已知椭圆C:的左、右焦点分别为,,焦距为2c,直线与椭圆C的一个交点为在第一象限满足,则该椭圆的离心率为( )A. B. C. D.7.抛物线上到直线的距离最短的点的坐标是( )A. B. C. D.8.我们把离心率等于黄金比的椭圆称为“优美椭圆”.设为优美椭圆,F、A 分别为它的左焦点和右顶点,B是短轴的一个端点,则等于( )A. B. C. D.二、多选题(本大题共4小题,共20分。
在每小题有多项符合题目要求)9.设直线l经过点,且在两坐标轴上的截距相等,则直线l的方程为( )A. B. C. D.10.下列说法正确的是( )A. 过,两点的直线方程为B. 点关于直线的对称点为C. 直线与两坐标轴围成的三角形的面积是2D. 经过点且在x轴和y轴上截距都相等的直线方程为11.2020年11月28日,“嫦娥五号”顺利进入环月轨道,其轨道是以月球的球心F为一个焦点的椭圆如图所示已知它的近月点离月球表面最近的点距离月球表面m千米,远月点离月球表面最远的点距离月球表面n千米,AB为椭圆的长轴,月球的半径为R千米.设该椭圆的长轴长,焦距分别为2a,2c,则下列结论正确的有( )A. B. C. D.12.在平面直角坐标系xOy中,动点P与两个定点和连线的斜率之积等于,记点P的轨迹为曲线E,直线l:与E交于A,B两点,则( )A. E的方程为B. E的离心率为C. E的渐近线与圆相切D. 满足的直线l有2条三、填空题(本大题共4小题,共20分)13.设双曲线的渐近线方程为,则a的值为__________.14.已知圆C:及直线l:,当直线l被圆C截得的弦长最短时,直线l的方程为__________.15.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为__________.16.已知抛物线E:的焦点F到准线的距离为4,则__________;过点F作斜率为k的直线l交抛物线E于两个不同点A、B,若,则实数k的值为__________.四、解答题(本大题共6小题,共70分。
解析几何大题的解题步骤和策略
当涉及解析几何大题时,下面是一般的解题步骤和策略:
1.阅读理解:仔细阅读题目,理解问题陈述、已知条件和要求,
确保对问题的要求和约束有清晰的理解。
2.建立坐标系:根据题目描述和已知条件,确定合适的坐标系。
选择适当的坐标可以简化问题的计算和分析。
3.列出方程:根据题目的几何关系,用已知条件建立方程。
可
以利用距离公式、斜率公式、点斜式等几何关系公式来列出方程。
4.解方程组:利用求解方程组的方法来找到未知变量的值。
可
以使用代入法、消元法、梯度下降法等方法来求解方程组。
5.分析图形特征:通过计算、分析和绘制图形,找出图形的性
质和特征。
可以利用角度、长度等几何性质来推断和解答问题。
6.检查和回答:在得出计算结果之后,进行合理性检查,确保
计算的准确性。
最后,回答问题,给出相应的解释和结论。
在解析几何大题时,要善于运用几何知识和创造性思维,注意问题的合理性和准确性。
同时,从不同的角度分析和解决问题,灵活运用几何性质和解题策略,可以更好地应对解析几何大题。
根据具体的题目和难度,可能需要使用不同的方法和技巧,因此灵活性和实践经验也是很重要的因素。
2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
解析几何综合题解题方法总结富源县第一中学解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.一、判别式案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k k x k的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2判别式与韦达定理例2 .已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
解析几何基础100题一、选择题:2 2 c1.若双曲线与与1的离心率为5,则两条渐近线的方程为a, b, 4八XY XYc^XY XYcA ——0B — - 0C - - 0D - - 09 16 16 9 3 4 4 3解答:C易错原因:审题不认真,混淆双曲线标准方程中的a和题目中方程的a的意义。
2.椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是A 8 .5B 4 ,5C 8,3D 久35 5 3 3解答:D易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆x2 y2 kx 2y k2 15 0相切,则k的取值范围是A k>2B -3<k<2C k<-3 或k>2D 以上皆不对解答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑D2 E2 4F 02 24 .设双曲线4 匕1(a b 0)的半焦距为C,直线L过(a,0),(0,b)两点, a b已知原点到直线L的距离为 % ,则双曲线的离心率为A 2B 2 或毡C 屐D 273 3 3解答:D易错原因:忽略条件a b。
对离心率范围的限制。
5.已知二面角l 的平面角为,PA , PB , A, B为垂足,且PA=4,PB=5设A、B到二面角的棱l的距离为别为x,y,当变化时,点(x,y)的轨迹是下列图形中的A B C D解答:D易错原因:只注意寻找x,y的关系式,而未考虑实际问题中x,y的范围。
6.若曲线y 值~4与直线y k(x 2)+3有两个不同的公共点,则实数k的取值范围是3 一 3 _A 0 k 1B 0 k -C 1 k -D lkO 4 4解答:C易错原因:将曲线y 犷7转化为x2y24时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x平行的直线与双曲线的位置关系。
7. P(-2,-2)、Q(0,-1)取一点R(2,m)使PR| 十 | RQ| 最小,则m=A 1B 0C - 1D - -2 3正确答案:D 错因:学生不能应用数形结合的思想方法,借助对称来解题。
解析几何试题山东财政学院2005—2006学年第一学期期末考试《解析几何》试卷(A )一、填空(40分,每题4分)1. 设向量{3,6,1},{1,4,5},{3,4,12},a b c =--=-=-a b c + 那么向量在上的射影为.2.设{2,1,1},{1,2,1},,a b e a b =-=-单位向量同时垂直于与那么e = .3.球面的中心在点(1,3,2),-而且球面通过原点,那么该球面的方程为 . 4.点(1,1,1)到平面x+3y -2=0的距离是 . 5. 点(0,0,1)到直线z y x =+=-2121的距离是 . 6.直线的与直线21123212-+=-=-=+=-z y x z -y x 距离是 .7. 过直线?=-=-113y x y x 和点(0,2,0)的平面是 .8.准线是9122x +y =z =,母线方向是(1,2,3)的柱面方程为 .(请用x,y,z 的一个方程表示) 9.直线0y z y z x -=??=?绕轴和轴旋转所生成的旋转曲面的方程分别为和 .10.中心二次曲线346843022x xy y x y -+--+=的中心为 ,线心二次曲线44632022x xy y x y -++-+=的中心直线的方程为 . 二.已知四面体的体积V =5,它的三个定点为(2,1,1),(3,0,1),(2,1,3)A B C --,又知它的第四个定点D 在y 轴上,试求点D 的坐标和从定点D 所引出的高的长h.三.,,a b c d设是三个两两垂直的非零向量,试证明任意向量可表示成222a d b d c d d a b c a b c=++四试求通过点(1,0,4)M -,垂直于平面34100,x y z π-+-=:13:312x y zl +-==且与直线平行的平面方程。
五. 求过点0(1,1,1)M 且与直线50:0x y z l x y z --=??+-=?垂直相交的直线的方程。
解析几何大题的答题规范与技巧以吾真心换尔信心一、过点(x 0,y 0)的直线可以设为)(00x x k y y -=-或)(00y y m x x -=-选择的依据是斜率不存在的直线(0x x =)是否满足题意有关!举例:1、过点(1,0)的直线与椭圆1222=+y x 相交A ,B 两点, 求三角形AOB 面积的最大值。
2、过点P(0,1)的直线与抛物线x y 22=相交于A ,B 两点,且3=, 求直线方程。
二、对于没有确定条件(如斜率、定点)已知的情况下,可以设直线为b kx y +=或b my x +=。
举例:与圆122=+y x 相切,且与椭圆1222=+y x 相交于A ,B 两点, 求三角形AOB 面积的最大值。
三、在未知椭圆焦点位置的情况下,可以设椭圆方程为122=+ny mx (0,>n m ) 举例:求过点A(1,2),B(2,1)的椭圆的标准方程。
四、当直线或曲线方程中含有参数时,要分离参数,判断是否过定点。
⎩⎨⎧==⇒=+0),(0),(0),(),(y x g y x f y x bg y x af ,此方程组的解为坐标的点就是定点。
举例:1、求证圆)(1)(222R a a y a x ∈+=+-过定点,并求出此定点。
2、当实数a ,b ,c 成等差数列时,求证:直线ax+by+c=0过定点。
五、中点坐标(2,22121y y x x ++ ),三角形重心坐标(2,2321321y y y x x x ++++ )。
六、直线与圆锥曲线相交的弦长公式:||14)(1||2212212a k x x x x k AB ∆⨯+=-++=; 七、求三角形的面积常用ah S 21=,或分割法。
八、关于两直线AB 、AC 垂直时有以下的理解:1、斜率之积为—1;2、向量之积为0;3、勾股定理;4、点A 在以BC 为直径的圆周上。
九、直线与圆锥曲线相交或相切时韦达定理的常见应用1、求中点坐标;2、求弦长;3、已知一个交点求另一交点;4、相切时求切点坐标。
解析几何题怎么解高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这点值得考生在复课时强化.例1 已知点T 是半圆O 的直径AB 上一点;AB=2、OT=t (0<t<1);以AB 为直腰作直角梯形B B A A '';使A A '垂直且等于AT ;使B B '垂直且等于BT ;B A ''交半圆于P 、Q 两点;建立如图所示的直角坐标系.(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;(3)证明:由点P 发出的光线;经AB 反射后;反射光线通过点Q.讲解: 通过读图, 看出'',B A 点的坐标.(1 ) 显然()t A -1,1', (),,‘t B +-11 于是 直线B A '' 的方程为1+-=tx y ;(2)由方程组⎩⎨⎧+-==+,1,122tx y y x解出 ),(10P 、),(2221112t t t t Q +-+; (3)tt k PT 1001-=--=,t t t t t tt t t k QT1111201122222=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知;由点P 发出的光线经点T 反射;反射光线通过点Q. 需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?例2 已知直线l 与椭圆)0(12222>>=+b a by a x 有且仅有一个交点Q ;且与x 轴、y轴分别交于R 、S ;求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程,由已知;直线l 不过椭圆的四个顶点;所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得.)2(22222222b a m kmx x k a x b =+++ 化简后;得关于x 的一元二次方程.02)(222222222=-+++b a m a mx ka x b k a于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=∆ 由已知;得△=0.即.2222m b k a =+ ①在直线方程m kx y +=中;分别令y=0;x =0;求得).,0(),0,(m S kmR -令顶点P 的坐标为(x ;y ); 由已知;得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=-=.,.,y m x y k m y k m x 解得 代入①式并整理;得 12222=+yb x a , 即为所求顶点P 的轨迹方程.方程12222=+y b x a 形似椭圆的标准方程, 你能画出它的图形吗?例3已知双曲线12222=-by a x 的离心率332=e ;过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ;D 且C ;D 都在以B 为圆心的圆上;求k 的值.讲解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b cabb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ;整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ;则.11,315531152002002210kx y k k kx y k k x x x BE-=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kkk k 又 故所求k=±7.为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.例4 已知椭圆C 的中心在原点;焦点F 1、F 2在x 轴上;点P 为椭圆上的一个动点;且∠F 1PF 2的最大值为90°;直线l 过左焦点F 1与椭圆交于A 、B 两点;△ABF 2的面积最大值为12.(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解:(1)设cF F r PF r PF 2||,||,||212211===, 对,21F PF ∆ 由余弦定理, 得1)2(2441244242)(24cos 22122212221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F0212=-=e ; 解出 .22=e(2)考虑直线l 的斜率的存在性;可分两种情况:i) 当k 存在时;设l 的方程为)(c x k y +=………………①椭圆方程为),(),,(,122112222y x B y x A b y a x =+由.22=e 得 2222,2c b c a ==.于是椭圆方程可转化为 022222=-+c y x ………………② 将①代入②;消去y 得 02)(22222=-++c c x k x ,整理为x 的一元二次方程;得 0)1(24)21(22222=-+++k c x ck x k .则x 1、x 2是上述方程的两根.且221221122||k k c x x ++=-;2212221)1(22||1||k k c x x k AB ++=-+=;AB 边上的高,1||2sin ||22121k k c F BF F F h +⨯=∠=c k k k k c S 21||)211(2221222+++=.2141224412221||122224242422222c k k c k k k k c k k k c<++=+++=++=也可这样求解:||||212121y y F F S -⋅=||||21x x k c -⋅⋅=ii) 当k 不存在时;把直线c x -=代入椭圆方程得22221,2||,22c c S c AB c y ⨯==±=由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x -=…………① (这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:),(),,(,122112222y x B y x A by a x =+由.22=e 得:,,22222c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m于是21,y y 是上述方程的两根.||1)()(||122221221y y m y y x x AB -+=-+-=2)2(441222222++++=m m c c m m2)1(2222++=m m c , AB 边上的高212mc h +=,从而222222)2(122122)1(2221||21++=+⨯++⨯==m m c m c m m c h AB S.221111222222c m m c ≤++++=当且仅当m=0取等号;即.22max c S =由题意知1222=c , 于是 212,26222===a c b .故当△ABF 2面积最大时椭圆的方程为: .12621222=+y x例5 已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点;且线段AB 的中点在直线02:=-y x l 上. (1)求此椭圆的离心率;(2 )若椭圆的右焦点关于直线l 的对称点的在圆422=+y x 上;求此椭圆的方程.讲解:(1)设A 、B 两点的坐标分别为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由 得02)(2222222=-+-+b a a x a x b a ,根据韦达定理;得,22)(,2222212122221ba b x x y y b a a x x +=++-=++=+ ∴线段AB 的中点坐标为(222222,b a b b a a ++). 由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e . (2)由(1)知,c b =从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线02:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得 b y b x 545300==且 由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .例6 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点;QA ;QB 分别切⊙M 于A ;B两点; (1)如果324||=AB ;求直线MQ 的方程; (2)求动弦AB 的中点P 的轨迹方程.讲解:(1)由324||=AB ;可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理;得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中;523||||||2222=-=-=MO MQ OQ ;故55-==a a 或; 所以直线AB 方程是;0525205252=+-=-+y x y x 或(2)连接MB ;MQ ;设),0,(),,(a Q y x P 由 点M ;P ;Q 在一直线上;得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ;并注意到2<y ;可得).2(161)47(22≠=-+y y x适时应用平面几何知识;这是快速解答本题的要害所在;还请读者反思其中的奥妙. 例7 如图;在Rt △ABC 中;∠CBA=90°;AB=2;AC=22。
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
解析几何专项训练试题答案一、选择题1. 若点A(2,3)关于直线x=3的对称点为A',则A'的坐标为:A. (4,3)B. (2,3)C. (1,3)D. (5,3)答案:D解析:点A(2,3)关于直线x=3的对称点A'的横坐标为3-(2-3)=4,纵坐标不变,因此A'的坐标为(4,3)。
2. 已知圆的标准方程为$(x-a)^2+(y-b)^2=r^2$,则其圆心坐标为:A. (a, b)B. (a, r)C. (b, r)D. (r, a)答案:A解析:根据圆的标准方程$(x-a)^2+(y-b)^2=r^2$,可知圆心坐标为(a, b)。
3. 直线2x-3y=6的斜率为:A. 2/3B. -2/3C. 3/2D. -3/2答案:B解析:直线方程2x-3y=6可以转化为y=(2/3)x-2,其斜率为2/3,因此答案为-2/3。
4. 已知三角形ABC的三个顶点分别为A(1,2),B(4,6),C(7,2),求三角形ABC的面积。
A. 4B. 6C. 8D. 10答案:C解析:首先计算线段AB和AC的斜率,分别为1和-1,说明AB和AC 垂直。
然后计算AB的长度为3,由于AC与AB垂直,所以三角形ABC 为直角三角形,其面积为1/2 * AB长度 * BC长度 = 1/2 * 3 * 5 = 7.5。
选项中没有7.5,但最接近的是8,因此选择C。
5. 已知椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,则其焦点坐标为:A. (a, 0)B. (0, b)C. (a, b)D. (0, 0)答案:D解析:椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其焦点位于y轴上,且焦距为2c,因此焦点坐标为(0, c)或(0, -c)。
由于题目未给出具体数值,无法确定c的值,但焦点坐标的形式为(0, c),因此答案为D。
解析几何综合题解题思路案例分析解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:y ,令判别式0=∆l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
一、填空题(共 7 题, 2 分 / 空,共 20 分)1. 四点 O (0,0,0) , A(1,0,0) , B(0,1,1) , C (0,0,1) 组成的四面体的体积是 ___ ___.2. 已知向量 a (1,1,1)(1,2,3) , c (0,0,1) , 则 ( a b ) c =__(-2,-1,0)____. , b3. 点 (1,0,1) 到直线x y 的距离是 ___ 66 ___________. 3x z114. 点 (1,0,2) 到平面 3x y2z 1的距离是 __314 ___________.75. 曲线 C:x 2y 2z对 xoy 坐标面的射影柱面是 ___ x 2 x y 21 0 ____,z x 1对 yoz 坐标面的射影柱面是 __ ( z 1)2 y 2 z 0 _________, 对 xoz 坐标面的射影柱面是 ____ z x 1 0 __________.6. 曲线 C:x 22 y绕 x 轴旋转后产生的曲面方程是 __ x 44( y 2 z 2 ) _____,曲线z 0C 绕 y 轴旋转后产生的曲面方程是 ___ x 2 z 2 2y _______________.7. 椭球面 x2y 2 z 2 1 的体积是 _____ ____________.94 25二、计算题(共 4题,第 1题10分,第 2题15分,第 3题20分, 第4题 10分,共55分)1. 过点 P(a, b, c) 作 3 个坐标平面的射影点 , 求过这 3 个射影点的平面方程 . 这里a, b, c 是 3 个非零实数 .解 : 设点 P( a, b, c) 在平面 z 0 上的射影点为 M 1 (a,b,0) ,在平面 x0 上的射影点为 M 2 (0, a, b) ,在平面上的射影点为 M 3 (a,0, c)uuuuuur( a,0, c) ,y0 ,则MM12uuuuuurM 1M 3 (0, b, c)uuuuuur uuuuuurx a y b z于是 M 1 所确定的平面方程是 a 0 c 0, M M 2, M M 3110 b c即 bc( x a)ac( y b) abz.2. 已知 空间 两 条直 线 l 1 :x y 0 x y 0z 1 0 , l 2 : 1 .z 0(1) 证明 l 1 和 l 2 是 异面 直 线 ;(2) 求 l 1 和 l 2 间的 距离 ;(3) 求公 垂线 方程 . 证明: (1) l 1 的 标准 方程 是xyz 1, l 1 经 过点 M 1 (0,0,1),方向向量11v 1 {1, 1,0}l 2 的标准方程是xy z 2, l 2 经过点 M 2 (0,0, 2) ,方 向 向量 v 2 {1,1,0} ,于1 1是uuuuuur0 0 3( M 1M 2 , v 1 , v 2 ) 1 10 6 0 ,所以 l 1 和 l 2 是 异面 直 线 。