基于AD603程控宽带放大器的设计
- 格式:docx
- 大小:418.87 KB
- 文档页数:21
ad603手册1. 简介AD603是ADI(Analog Devices Inc.)推出的一款低噪声,宽带可变增益放大器。
该芯片内部集成了一个控制电压输入端,可通过调节该输入电压实现增益的控制。
本手册将为您介绍AD603的主要特性,电路连接,使用方法和一些应用示例。
2. 主要特性2.1 低噪声:AD603采用了高性能放大器核心,能够在低噪声环境下提供出色的信号放大效果。
2.2 宽带性能:该芯片的带宽范围从DC到40MHz,可以满足多种应用场景的需求。
2.3 可变增益:AD603的增益范围为-14dB到20dB,通过控制电压输入端的电压,可以轻松地调节增益。
2.4 供电电压范围:AD603可以在单电源供电下工作,供电电压范围为5V到15V,非常适合嵌入式系统等低功耗应用。
2.5 稳定性:该芯片具有良好的温度稳定性和电源稳定性,保证了信号放大的一致性和可靠性。
3. 电路连接AD603的电路连接非常简单,下面是一种常见的连接方式:3.1 高频输入端(INHI和INLO):将要放大的信号输入到INHI和INLO引脚,可以通过串联电容和电阻来完成信号的直流分离和控制输入阻抗。
3.2 控制电压输入端(VGAIN):通过改变VGAIN引脚的电压,可以实现对增益的控制,增益和控制电压之间存在线性关系。
3.3 电源端(VD+和VD-):将正负电源连接到VD+和VD-引脚,供芯片工作所需的电能。
3.4 输出端(OUTHI和OUTLO):从OUTHI和OUTLO引脚输出放大后的信号,可以通过串联电阻和电容来滤除直流分量和控制输出阻抗。
4. 使用方法AD603的使用方法非常简单,下面是一般的步骤:4.1 电路连接:按照上述的电路连接方式,将AD603与其他电路元件连接好。
4.2 供电:将适当的电源电压接入VD+和VD-引脚,确保芯片正常工作。
4.3 增益控制:通过控制电压输入端(VGAIN)的电压,调节增益到合适的值。
AD603程控增益调整放大器AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。
因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。
在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。
在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。
AD603正是这样一种具有程控增益调整功能的芯片。
它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。
管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。
该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。
AD603的特点、内部结构和工作原理(1)AD603的特点AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。
可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。
(2)ad603引脚排列是、功能及极限参数AD603的引脚排列如图1所示,表1所列为其引脚功能。
引脚1 增益控制输入“高”电压端(正电压控制)引脚2 增益控制输入“低”电压端(负电压控制)引脚3 运放输入引脚4 运放公共端引脚5 反馈端引脚6 负电源输入引脚7 运放输出引脚8 正电源输入●电源电压Vs:±7.5V;●输入信号幅度VINP:+2V;●增益控制端电压GNEG和GPOS:±Vs;●功耗:400mW;●工作温度范围;AD603A:-40℃~85℃;AD603S:-55℃~+125℃;●存储温度:-65℃~150℃(3)AD603内部结构及原理AD603内部结构图如图2所示。
18淮北煤炭师范学院学报(自然科学版)2009年方法o¨.311输入端设计由于AD603本身输入阻抗仅有100Q,如此低的输入阻抗将带来功率、阻抗匹配等一系列问题,因此需要在信号输入端加上电压跟随器以提高输人阻抗,简单的电压跟随器可以采取由三极管搭建的射极跟随器,如图4.根据输入信号频率必须选取合适的三极管如2N2222.根据公式:输人电阻R户r6.。
+(1+口)(‰∥Rc)一卢(Re//Rt),式中Re=3K,RL为后级电路的输入阻抗,即AD603的输入电阻100Q,2N2222的届值为300,故可算出其输入阻抗Ri一口(Re//RL)=300(3kI///100Q)一2.9kD)81.3.2主体放大电路设计为了满足带宽的要求,必然损失部分增益,增益的补偿可采取两级AD603级联的方法,如图4所示.由于AD603本身是一种增益可变运放,因此可以根据需要调节图4中兄以满足不同的增益要求【91.在现实环境中,由于外界干扰的影响,收到的信号强弱变化可能很大.特别是电视信号,由于其频带宽,电磁干扰严重,信号幅度大小的变化会严重影响图像质量.为解决这个问题,应在电路当中加入自动增益控制(AGC)部分,如图4,其实质是一个负反馈电路.图4整体放大电路3.3抗干扰措施的预制系统整体最大增益接近80dB,同时信号频率较高,因此必须采取措施防止自激并抑制噪声,在电路实现时可采取以下措施:将输人部分和增益控制部分装在屏蔽盒中,避免级间干扰和高频自激;使用同轴电缆,输入级和输出级使用BNC接头;正负电源和地之间各用22“F钽电容滤波,防止前后级通过电源通道耦合产生自激现象n训.4仿真结果及分析电路波特图如图5中各图所示,此图是设计电路在Mutilsinl0.0中的仿真结果,各元件参数如图4中所示,由图5a可以看出,本电路的下限频率为零,最大增益为79.02dB,由图5b可以看出,3dB带宽在12.996MHz以上,由图5c可以看出,在6.376MHz通带内增益起伏小于IdB.由于AD603在模式2-r作条件下单级增益理论值为40dB,那么两级级联之后理论值应为80dB.综合上面的仿真结果,增益为79.02dB,接近理论值80dB,因此可以认为本电路设计基本合理.a最大增益第4期单巍等:基于AD603的一种微弱信号宽带放大器设计b一3dB带宽ldB起伏频率图5设计电路仿真结果5结论本设计采用分立元器件与集成电路结合的方案,集中了各自优势,收到设计简单、性能优良、实现较容易等效果.输入级采用由2N2222构成的射极跟随器作为输入缓冲级,主体放大电路由两块高性能集成宽带、低噪声可变增益放大器AD603级联而成,负责信号放大并且能够实现增益控制.系统采用电压反馈控制方式实现了自动增益控制,AGC范围较宽.设计中利用数模隔离、电源隔离、滤波和去耦等技术,有效减少了噪声和干扰的影响,同时提高了系统的稳定性.设计方案论证充分,各级电路参数确定,阻抗匹配设计合理.系统增益接近理论最大值.设计中还应进一步注意高频放大器增益与带宽之间的关系,从实际应用角度出发,二者兼顾,以获取更好的带宽性能.参考文献:【1】高俊,张玉兴.使用AD603和AD8318实现大动态范围IF接收机fJl.现代电子技术,2006(5):25—27.【2】陈永刚,刘立国.AD603及其在AGC电路中的应用IJ】.电子世界,2002(4):39—41.【3】许正望.可变增益放大器AD603及其使用【J】.湖北工学院学报,2000(3):33—35.【4】何乐生,王顺.AD603在振动信号采集系统中的应用【J】.电子产品世界,2002,5B:26—28.f51杨世忠,邢丽娟.增益可变运放AD603的原理及应用【J】.山西电子技术,2001(3):58—60.【6】吴建斌,田茂.基于AD603的时变增益放大器的实现IJ1.电子测量技术,2008(4):29—32.【7】刘春生,李小波.AD603在信号采集系统中的应用【J】.国外电子元器件,2000(11):15一17.【8]谢嘉奎,宣月清,冯军.电子线路线性部分『M】.北京:高等教育出版社,1999.f9】时雨,赵正予,陈曦.可变增益放大器AD603在雷达系统中的应用[J】.电子设计应用,2004(5):22—24.f10】张庆辉,陈慧敏.AD603在脉冲激光近炸引信中的应用【J].弹箭与制导学报,2008(4):116—118.WeakSignalWidebandAmplifierBasedonAD603DesignoftheSHANWei,ANGZhi—min(SchoolofCompeerandloformation,ttefeiUniversityofTechnology,230009,Hefei,Anhui,Oh/ha)Abstract:Theweaksignalreceivedbytheaerialofreceiverincommunicationsystemsisusuallymeasuredbymillivolt.Inordertoanalysisanddealit,theweaksignalmustbepre—amplified.AkindofweaksignalwidebandamplifiercircuitbasedonAD603isdesignedinthispaperasthepre—amplificationcircuit.Thesimulationshowthatthepre—amplificationcircuitisstable,reliableandexcellentinperformances.Keywords:amplifier;weaksignal;bandwidth基于AD603的一种微弱信号宽带放大器设计作者:单巍, 昂志敏, SHAN Wei, ANG Zhi-min作者单位:合肥工业大学计算机与信息学院,安徽,合肥,230009刊名:淮北煤炭师范学院学报(自然科学版)英文刊名:JOURNAL OF HUAIBEI COAL INDUSTRY TEACHERS COLLEGE(NATURAL SCIENCE)年,卷(期):2009,30(4)1.时雨;赵正予;陈曦可变增益放大器AD603在雷达系统中的应用[期刊论文]-电子设计应用 2004(05)2.谢嘉奎;宣月清;冯军电子线路线性部分 19993.刘春生;李小波AD603在信号采集系统中的应用[期刊论文]-国外电子元器件 2000(11)4.吴建斌;田茂基于AD603的时变增益放大器的实现[期刊论文]-电子测量技术 2008(04)5.杨世忠;邢丽娟增益可变运放AD603的原理及应用[期刊论文]-山西电子技术 2001(03)6.张庆辉;陈慧敏AD603在脉冲激光近炸引信中的应用[期刊论文]-弹箭与制导学报 2008(04)7.何乐生;王顺AD603在振动信号采集系统中的应用[期刊论文]-电子产品世界 2002(10)8.许正望可变增益放大器AD603及其使用[期刊论文]-湖北工学院学报 2000(03)9.陈永刚;刘立国AD603及其在AGC电路中的应用[期刊论文]-电子世界 2002(04)10.高俊;张玉兴使用AD603和AD8318实现大动态范围IF接收机[期刊论文]-现代电子技术 2006(05)本文链接:/Periodical_hbmsyxb200904004.aspx。
放大器AD603模块目录1. 模块功能 (2)2. 工作原理 (2)3. 内部结构 (3)3.1 AD630运放芯片 (3)3.2 TLV5618 DAC芯片 ................................................................ 错误!未定义书签。
4. 放大器AD603电路原理图 (4)4.1放大器AD603模块原理图 (4)4.2放大器AD603模块印制版图(顶层) (5)4.3放大器AD603模块印制版图(底层) (5)4.4放大器AD603模块印制版图(丝印层顶层) (5)4.5放大器AD603模块印制版图(丝印层底层) (5)5. 参考文献 (6)6. 使用方法 (6)7. 测试数据和截图 (7)8. 其他 (7)1. 模块功能AD603是一种具有程控增益调整功能的芯片,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。
它提供精确的、可由管脚选择的增益,它的增益是线性变化的,且在温度和电源电压变化时有很高的稳定性,增益变化的范围40dB,增益控制转换比例25mV/dB,响应速度为40dB,变化范围所需时间小于1μs。
AD603内部包含一个七级R-2R梯形网络组成的0dB到-42.14dB的可变衰减器和一个固定增益的放大器,此固定增益放大器的增益可通过外接不同反馈网络的方式改变,以选择AD603不同的增益变化范围。
增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽。
该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。
2. 工作原理AD603内部结构图如图2.1.1所示。
AD603由一个可通过外部反馈电路设置固定增益GF(31.07~51.07)的放大器、0~-42.14dB的宽带压控精密无源衰减器和40dB/V的线性增益控制电路构成。
宽带放大器摘要本设计全部采用集成电路,具有硬件电路形式简单,调试容易,频带宽,增益高,AGC动态范围宽的特点,且增益可调,步进间隔小。
本宽带放大器以可编程增益放大器AD603为核心,由三级放大器组成,前级放大主要是提高输入阻抗,对小信号进行放大;中间级为可变增益放大器,主要作用是实现增益可调及AGC功能,增益控制和AGC功能都由单片机控制,可预置并显示增益值,增益可调范围10dB~58dB,步进1dB,由单片机自动调节放大倍数可实现AGC功能,使输出电压稳定在4.5V~5.5V 之间;后级放大进一步增加放大倍数,扩大输出电流,提升放大器的带负载能力,提高输出电压幅度。
后级输出接峰值检波电路,检波电路输出由单片机采样并计算后,用液晶显示屏显示输出正弦波电压的有效值和峰峰值。
由于宽带放大器普遍存在容易自激及输出噪声过大的缺点,本系统采用多种形式的屏蔽措施减少干扰,抑制噪声,以改善系统性能。
一、方案论证与比较1、总体方案方案一:选用结电容小,f T高的晶体管,采用多种补偿法,多级放大加深度负反馈,以及组合各种组态的放大电路形式,可以组成优质的宽带放大器,而且成本较低。
但若要全部采用晶体管实现题目要求,有一定困难,首先高频晶体管配对困难,不易购买;其次,理论计算往往与实际电路有一定差距,工作点不容易调整;而且,晶体管参数易受环境影响,影响系统总体性能。
另外,晶体管电路增益调节较为复杂,不易实现题目要求的增益可调。
方案二:使用专用的集成宽带放大器。
如TITHS6022、NE592等集成电路。
通过外接少数的元件就可以满足本题目要求,甚至远超过题目要求的带宽和增益的指标,但这种放大器难以购买,价格较贵,灵活性不够,不易满足题目扩展功能要求。
方案三:市面上有多种型号、各具特色的宽频带集成运算放大器。
这些集成运算放大器有的通频带宽,有足够的增益,有的可以输出较高电压,使用方便,有的甚至可以实现增益可调及AGC的功能。
1宽带放大器简介什么是宽带放大器工作频率上限与下限之比甚大于1的放大电路。
习惯上也常把相对频带宽度大于20%~30%的放大器列入此类。
这类电路主要用于对视频信号、脉冲信号或射频信号的放大。
用于电视图像信号放大的视频放大器是一种典型的基带型宽带放大器,所放大的信号的频率范围可以从几赫或几十赫的低频直到几兆赫或几十兆赫的高频。
这类放大器通常以电阻器为放大器的负载,以电容器作级间耦合。
为了扩展带宽,除了使其增益较低以外,通常还需要采用高频和低频补偿措施,以使放大器的增益-频率特性曲线的平坦部分向两端延展。
可以归入宽带放大器的还有用于时分多路通信、示波器、数字电路等方面的基带放大器或脉冲放大器(带宽从几赫到几十或几百兆赫),用于测量仪器的直流放大器(带宽从直流到几千赫或更高),以及音响设备中的高保真度音频放大器(带宽从几十赫到几十千赫)等。
用于射频信号放大的宽带放大器(大多属于带通型),如雷达或通信接收机中的中频放大器,其中心频率为几十兆赫或几百兆赫,通带宽度可达中心频率的百分之几十。
放大器的分类将其分为甲、乙、丙三类工作状态。
甲类放大器电流的流通角为360o,适用于小信号低功率放大。
乙类放大器电流的流通角约等于 180o;丙类放大器电流的流通角则小于180o。
乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。
高频功率放大器大多工作于丙类。
但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。
由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。
集成运算放大器主要类别下面对不同特性的集成运算放大器进行介绍。
通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。
通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。
Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。
基于AD603的直流宽带放大器设计直流宽带放大器可以对宽频带、小信号、交直流信号进行高增益的放大,广泛应用于军事和医用设备等高科技领域上,具有很好的发展前景。
在很多信号采集系统中,经放大的信号可能会超过A/D转换的量程,所以必须根据信号的变化相应调整放大倍数,在自动化程度要求较高的场合,需要程控放大器的增益。
AD603是由美国ADI公司生产的压控放大器芯片,具有低噪声、宽频带、高增益精度(在通频带内增益起伏小于等于1dB)的特点。
压控输入端电阻高达50MΩ,在输入电流很小时,片内控制电路对提供增益控制电压的外电路影响较小,适于实现程控增益调节。
故该系统选择AD603为核心实现高增益、低噪声的程控直流宽带放大器。
1系统设计1.1技术指标输入电阻Ri≥50Ω;输入电压有效值Ui≤10mV;带宽0~10MHz,0~9MHz范围内,增益起伏小于等于1dB;程控增益40dB和60dB,以5dB步进;在60dB放大,带载50Ω时,最大输出10V,且无明显失真。
1.2总体设计宽带直流放大器的实现原理框图如图1所示。
该系统主要由宽带运放级联组成,输入信号经由AD603及外围电路构成的放大网络输出,输出增益为36.5dB,带宽15.6M,再由AD811放大,两级可实现40dB增益,在0~10MHz范围内无明显失真。
经AD811放大电路放大的信号再经过AD829实现60dB增益,输出电压有效值10V,信号经过AD829之后进入扩流电路,实现带载50Ω电阻。
单片机mega16通过DAC0832来控制预置增益,编程实现步进增益5dB,实时液晶显示。
图1总体设计框图1.3单元电路分析与参数计算1.3.1前置放大电路分析与设计AD603是一款8引脚的高增益、带宽可调放大器,带宽最大为90MHz.在-1~+41dB 的增益范围内,带宽可达30MHz;在9~51dB的增益范围内,带宽为9MHz.由于带宽增益积的关系,一级AD603无法实现60dB放大,需采取多级级联实现。
AD603是一款低噪声、电压控制型放大器,适用于射频(RF)和中频(IF)自动增益控制(AGC)系统。
以下是AD603的手册概述:
1. 功能特点
-低噪声:AD603具有极低的噪声系数,可提供优异的信号放大性能。
-电压控制型:AD603采用电压控制型放大器设计,可提供精确的增益控制。
-高增益:AD603的增益范围为+31dB至-11dB,可满足不同应用的需求。
-宽带宽:AD603的带宽可达到90MHz,可满足高频信号放大的需求。
2. 技术指标
-电源电压:+5V至+15V
-输出功率:最大2W(+20dBm)
-增益:+31dB至-11dB
-噪声系数:≤1.2dB@1MHz,≤1.8dB@10MHz
-工作温度:0℃至70℃
3. 应用
AD603适用于射频和中频自动增益控制系统,可广泛应用于雷达、卫星通信、无线电广播、卫星导航等领域。
4. 注意事项
-在使用AD603前,应仔细阅读手册,确保正确连接电路和电源。
- AD603的输入和输出阻抗应匹配,否则会影响放大效果。
-在使用AD603时,应注意保护器件和电路,避免过载和损坏器件。
以上是AD603的手册概述,如果需要更详细的操作指南,请查阅AD603的官方手册或在线教程。
基于AD603程控宽带放大器的设计摘要本设计是采用AD603可控增益放大器芯片设计的一款高增益,高宽带直流放大器,采用两级级联放大电路了,提高了放大增益,扩展了通频带宽,而且具有良好的抗噪声系数,采用AT89S52芯片控制数模转换(DAC0832芯片)进行程控放大控制,在0—20MHz频带内,放大倍数在0-40dB之间进行调节,增益起伏为1dB。
系统具有键盘输入预置,增益可调和液晶显示,具有很强的实际应用能力。
关键词:AD603,AT89S52,DAC0832,程控放大器,高增益放大器1、方案论证及比较1.1 总体方案框图本系统原理方框图如图1所示。
本系统由前置放大器、中间放大器、末级功率放大器、控制器、键盘及稳压电源等组成。
其中前置放大器、中间放大器、末级功率放大器构成了信号通道。
图1 系统原理框图1.2 增益控制部分方案一原理框图如图2所示,场效应管工作在可变电阻区,输出信号取自电阻与场效应管与对V’的分压。
采用场效应管作AGC控制可以达到很高的频率和很低的噪声,但温度、电源等的漂移将会引起分压比的变化,用这种方案很难实现增益的精确控制和长时间稳定。
图 2 场效应管放大器电路图方案二采用可编程放大器的思想,将输入的交流信号作为高速D/A的基准电压,这前置中间末级键51单片U U稳220V时的D/A作为一个程控衰减器。
理论上讲,只要D/A的速度够快、精度够高就可以实现很宽范围的精密增益调节。
但是控制的数字量和最后的增益(dB)不成线性关系而是成指数关系,造成增益调节不均匀,精度下降。
方案三使用控制电压与增益成线性关系的可编程增益放大器PGA,用控制电压和增益(dB)成线性关系的可变增益放大器来实现增益控制(如图3)。
根据题目对放大电路的增益可控的要求,考虑直接选取可调增益的运放实现,如AD603。
其内部由R-2R梯形电阻网络和固定增益放大器构成,加在其梯型网络输入端的信号经衰减后,由固定增益放大器输出,衰减量是由加在增益控制接口的参考电压决定;而这个参考电压可通过单片机进行运算并控制D/A芯片输出控制电压得来,从而实现较精确的数控。
此外AD603能提供由直流到30MHz以上的工作带宽,单级实际工作时可提供超过20dB的增益,两级级联后即可得到40dB以上的增益,通过后级放大器放大输出,在高频时也可提供超过60dB的增益。
这种方法的优点是电路集成度高、条理较清晰、控制方便、易于数字化用单片机处理。
图 3 可变增益的运放放大器电路图综上所述,选用方案三,采用集成可变增益放大器AD603作增益控制。
AD603是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压(V)成线性关系,因此可以很方便地使用D/A输出电压控制放大器的增益。
1.3 功率输出部分(末级功率放大器)两片AD603级联构成放大器,可对不同的大小的输入信号进行前级放大。
由于AD603的最大输出电压较小,所以需要前级放大信号需经过后级放大达到较高的输出有效值。
方案一:使用集成电路芯片。
使用集成电路芯片电路简单、使用方便、性能稳定、有详细的文档说明。
可是题目要求输出3V以上有效值,而在电子市场很难买到这样的芯片,而我们买到的如AD811,HA-2539 等芯片,虽然输出电压幅度能满足要求,但是很容易发生工作不稳定的情况。
方案二:使用分立元件自行搭建后级放大器。
使用分立元件设计困难,调试繁琐,可是却可以经过计算得到最合适的输入输出阻抗、放大倍数等参数,电阻电容可根据需要更换,在此时看来较集成电路灵活。
因此自行设计后级放大器优势就很明显了。
2、系统硬件设计根据设计的要求,结合考虑过的各种方案,充分利用模拟和数字系统各自的优点,发挥其优势,采用单片机预置和控制放大器增益的方法,大大提高了系统的精度和可控性;后级放大器使用由分立元件设计的推挽互补输出放大器,提高了输出电压有效值,使信号都在单片机的数字算法控制下得到最合理的前级放大,使其放大倍数精确。
输入信号通过前级可控增益放大,放大倍数由单片机通过D/A转换提供的电压控制。
AD603的Vg(=V1-V2)根据公式:增益GAIN=80×Vg+20(dB)来设定,而在AGC模式下,此控制电压Vg是由AGC电路的反馈电压得到,不受单片机控制。
经过前级放大后的信号最后经过后级放大得到需要的输出信号,前级和后级增益的搭配,都是经过精确的测量和计算的。
2.1 输入缓冲和增益控制部分2.1.1 芯片AD603简介AD603是美国AD公司推出的一款宽频带、低噪声、低畸变、增益变化范围连续可调的可控增益放大器,其内部结构如图4所示.AD603的封装引脚及各引脚功能分别如图5和表1所示。
图5 AD603引脚图表1 AD603各引脚功能脚号符号功能1 Vg+ 增益控制输入正端2 Vg- 增益控制输入负端3 Vin 运放输入4 GND 运放公共端5 FDBK 反馈端6 -Vcc 负电源输入7 +Vout 运放输出8 +Vcc 正电源输入工作模式一般,利用反馈网络(VOUT与FDBK端的连接方式)来设计AD603的增益时,可设置为以下3种模式:模式1:将VOUT与FDBK短路,即宽频带模式(90MHz带宽)时增益变化范围为一10~+30dB;模式2:VOUT与FDBK之间外接一个电阻REXT,FDBK与COMM端之间接一个5.6pF的电容用于频率补偿.根据放大器的增益关系式,选取合适的REXT,可获得所需要的模式1与模式3之间的增益值.当REXT=2.15kΩ时,增益变化范围为0~+40dB;模式3:VOUT与FDBK之间开路,FDBK与COMM连接一个18pF的电容用于扩展频率响应,该模式为高增益模式,增益范围为10~50dB,带宽为9MHz。
单个的AD603的增益可以用下式进行计算:Gain(dB)=40+,其中是差动式输入的增益控制电压(1脚到2脚),范围是-500一+500mV,为统一单位量纲,在公式中单位应当使用伏特,即一0.5V~+0.5 V,是增益起点,接不同的反馈网络有所不同。
本设计采用AD603典型接法中通频带最宽的一种(即第二种工作模式),通频带为90MHz,增益为-10~+30dB,输入控制电压U的范围为-0.5~+0.5V。
图6为AD603接成90MHz带宽的典型方法。
图6 AD603接成90MHz带宽的典型电路2.1.2 输入缓冲和增益控制电路输入缓冲和增益控制电路如图7所示,由于AD603的输入电阻只有100Ω,要满足输入电阻大于1kΩ的要求,必须加入输入缓冲部分用以提高输入阻抗;另外前级电路对整个电路的噪声影响非常大,必须尽量减少噪声。
故采用高速低噪声电压反馈型运放OPA642作前级跟随,同时在输入端加上二极管过压保护。
图7 输入缓冲和增益控制电路输入部分先用电阻分压衰减,再由低噪声高速运放OPA642放大,整体上还是一个跟随器,二极管可以保护输入到OPA642的电压峰峰值不超过其极限(2V)。
其输入阻抗大于2.4kΩ。
OPA642的增益带宽积为400MHz,这里放大3.4倍,100MHz以上的信号被衰减。
输入输出端口P1、P2由同轴电缆连接,以防自激。
级间耦合采用电解电容并联高频瓷片电容的方法,兼顾高频和低频信号。
增益和控制电压的关系为:AG(dB)=40×Ug+10,一级的控制范围只有40dB,使用两级串联,增益为AG(dB)=80Ug+20,增益范围是-20~+60dB,满足题目要求。
由于两级放大电路幅频响应曲线相同,所以当两级AD603串联后,带宽会有所下降,串联前各级带宽为90MHz左右,两级放大电路串联后总的3dB带宽对应着单级放大电路1.5dB带宽,根据幅频响应曲线可得出级联后的总带宽为60MHz。
2.2末级放大部分为保证高频端放大器的稳定性和带内幅度的平坦度,宜采用互补推挽和深度电压串联负反馈电路形式,典型电路如图8所示。
高频晶体管2N3904为NPN型,2N3906为PNP型,是配对的互补管,特征频率fT达200MHz,能保证系统性能要求。
由于是深度电压串联负反馈,故输入阻抗较高,输出阻抗低,适合与前端放大器和负载连接。
由图可见,本级AVf≈1/kfV=1+(R10/R9),如R9、R10为图中标注值,则AVf=11,约合20dB。
其中所有电容,均是为了电源去耦或改善频率特性的。
图8 末级功率放大部分原理图2.3 控制部分该部分由这一部分由51系列单片机AT89C52、DAC0832、LM324、键盘等组成。
方框图如图9所示。
单片机DAC LM至AD603增键2.3.1 单片机最小系统设计单片机最小系统是能补足单片机工作的最简单电路,它由单片机、电源、晶体振荡器、复位电路等构成。
它是本系统的处理单元也是控制单元,负责处理信号、外设的接口与控制,同时它也是所有软件的载体。
本系统采用AT89C52是美国Atmel公司生产的低电压、高性能CMOS 8位单片机,片内含8KB的可反复檫写的程序存储器和12B的随机存取数据存储器(RAM),器件采用Atmel公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内配置通用8位中央处理器(CPU)和Flash存储单元,功能强大的AT89C52单片机可灵活应用于各种控制领域。
AT89C52单片机属于AT89C51单片机的增强型,与Intel公司的80C52在引脚排列、硬件组成、工作特点和指令系统等方面兼容。
主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。
RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。
VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。
P0~P3 为可编程通用I/O 脚,其功能用途由软件定义。
其管脚如下图10所示:图10 AT89C52单片机管脚图本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接。
单片机正常工作时,都需要有一个时钟电路和一个复位电路。
本设计中选择了内部时钟方式和按键电平复位电路,来构成单片机的最小电路。
如图11所示。
图11 单片机最小系统2.3.2 DAC0832电压输出电路DAC0832是采样频率为八位的D/A转换器件,芯片内有两级输入寄存器,使DAC0832具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。
D/A转换结果采用电流形式输出。
要是需要相应的模拟信号,可通过一个高输入阻抗的线性运算放大器实现这个供功能。
运放的反馈电阻可通过RFB端引用片内固有电阻,还可以外接。