8.锐角三角函数的定义
- 格式:doc
- 大小:669.50 KB
- 文档页数:5
锐角三角函数知识梳理一、锐角三角函数的定义:在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.二、锐角三角函数的增减性:(1)锐角三角函数值都是正值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,1≥cosA≥0.当角度在0°<∠A<90°间变化时,tanA>0三、同角三角函数的关系:(1)平方关系:sin2A+cos2A=1(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=sinAcosA 或sinA=tanA•cosA.(3)正切之间的关系:tanA•tanB=1.四、互余两角的函数关系:在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°-∠A);②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°-∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.五、特殊角的三角函数值:(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.六、计算器-三角函数(1)用计算器可以求出任意锐角的三角函数值,也可以根据三角函数值求出锐角的度数.(2)求锐角三角函数值的方法:如求tan46°35′的值时,先按键“tan”,再输入角的度数46°35′,按键“=”即可得到结果.注意:不同型号的计算器使用方法不同.(3)已知锐角三角函数值求锐角的方法是:如已知sinα=0.5678,一般先按键“SHIFT”,再按键“sin”,输入“0.5678”,再按键“=”即可得到结果.注意:一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键七、解直角三角形1、(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sinA=∠A的对边斜边=ac,cosA=∠A的邻边斜边=bc,tanA=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)2、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案3、坡度角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=hl=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.4、仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.5、方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.。
锐角三角函数是三角函数的一种,它们通过弧度制或角度制来定义,其中角度制是最常用的,用θ表示角度。
锐角三角函数是指在锐角和限制条件下的三角函数。
锐角三角函数的定义可以表示为:
sinθ=y/r,cosθ=x/r,tanθ=y/x,
其中,θ表示的是锐角的角度,r表示半径,x和y分别表示锐角的横轴和纵轴的长度。
锐角三角函数的定义是以弧度制和角度制为基础,用正弦、余弦和正切函数来表示,即sinθ、cosθ和tanθ,它们用来描述在锐角和限制条件下的三角函数。
在数学中,这些函数可以用来计算三角形的边长、角度等,是广泛应用的三角函数。
初中数学:锐角三角函数定义大全锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a互余角的三角函数间的关系sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1特殊的三角函数值0°30°45°60°90°01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 2tanαtan2α=—————1-tanα三倍角的正弦、余弦和正切公式sin3α=3sinα-4sinαcos3α=4cosα-3cosα3tanα-tanαtan3α=——————1-3tanα。
锐角三角函数的定义的两边上任意取点构作直角三角形.如图,,,,,……,由相似知识可推知即可确定唯一比值“”与点的选择位置无关(1)锐角三角函数是直角三角形的两边的比,是一个实数,没有单位;(2)比值随角度的变化而变化;(3)相等的角的三角函数值相等;1. 当时有:,,;2 ,1. (1)已知,,,分别求、的三个三角函数值;解析:依题设画出图,在图中对应确认条件,依概念定义求出所需.由勾股定理,,,,,;(2)已知,,,求、和的值;解:由可知,∴,,;(3)已知,,,求的值;解:由知,故设,,∴,∴;(4)已知,,,求的三个三角函数值.解:由可设,,∴,∴,,.(1)已知:如图1,△ABC中,,,,求值;解析:(1)∵,∴不是直角三角形不能直接用来求构造直角三角形,过作于(或过C作AB边的高,思考能否过B作高呢?)设,则,由勾股定理,可得∴,∴;(2)已知:如图2,△ABC中,,,,求的三个三角函数值;解: 不在直角三角形中,过D作于,现在来求DB、DE的长,题目中没有告诉我们长度数据,又故设,则,,∵,∴,,在中,∴,,.(3)已知:如图3,在中,,于D,,,求①值;②.解:不同于上两例,在中,,但DC、AC均不知道,,在两个直角三角形中(和)显然通过好计算,,.计算AC,可以考虑用先前所学的相似知识来作.但这里我们还可发现运用三角函数是否会更好呢?由上可知,故评述:1.锐角的三角函数的定义是通过直角三角形的边之比来定义的,在具体图形中计算或使用一个角的三角函数值,首先要关注图中角所在的三角形是否是直角三角形.若不是就不能直接使用、、…等关系.构造直角三角形的方法有多种,如图。
初中锐角三角函数锐角三角函数是数学中重要的概念之一、在初中阶段,我们学习了正弦、余弦和正切三种锐角三角函数。
通过学习锐角三角函数,我们可以计算三角形的边长和角度,解决实际问题,提高数学思维能力。
本文将详细介绍锐角三角函数的定义、性质和应用。
一、正弦函数正弦函数是锐角三角函数中最基本的函数之一、我们用sin表示正弦函数。
设一个锐角的一条直角边的长度为a,斜边的长度为c,则正弦函数的定义如下:sinA = a / c其中A为角的度数,sinA为正弦值。
正弦函数的性质:1. 在0°至90°(不包括90°)的锐角范围内,正弦值的大小从0逐渐增大,最大值为1、所以sin0° = 0,sin90° = 12. 在90°至180°(不包括180°)的锐角范围内,正弦值的大小从1逐渐减小,最小值为0。
所以sin180° = 0。
正弦函数的应用:正弦函数可以用来计算三角形的边长和角度。
通过正弦函数,我们可以解决各种实际问题,例如航海中的船舶位置计算、建筑中的高度计算等。
二、余弦函数余弦函数是锐角三角函数中的另一种函数。
我们用cos表示余弦函数。
设一个锐角的一条直角边的长度为b,斜边的长度为c,则余弦函数的定义如下:cosA = b / c其中A为角的度数,cosA为余弦值。
余弦函数的性质:1. 在0°至90°(不包括90°)的锐角范围内,余弦值的大小从1逐渐减小,最大值为0。
所以cos0° = 1,cos90° = 0。
2. 在90°至180°(不包括180°)的锐角范围内,余弦值的大小从0逐渐增大,最小值为-1、所以cos180° = -1余弦函数的应用:余弦函数可以用来计算三角形的边长和角度。
通过余弦函数,我们可以解决各种实际问题,例如建筑物的倾斜角度计算、物体的投影计算等。
初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。
222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。
“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。
8.锐角三角函数的定义
(20070911190543578657)第1题. (2007甘肃陇南非课改,3分) 如图,P 是∠α的边OA 上一点,
且点P 的坐标为(3,4), 则sin α= ( )
A . 35
B . 4
5 C . 34 D . 43
答案:B
(20070911190544421885)第2题. (2007福建厦门课改,4分)已知在Rt ABC △中,90C ∠=
,直角边AC 是直角边BC 的2倍,则sin A ∠的值是
.
(2007091119054531242)第3题. (2007甘肃兰州课改,4分)把Rt ABC △各边的长度都扩大3倍得Rt A B C '''△,那么锐角A ,A '的余弦值的关系为( ) A.cos cos A A '= B.cos 3cos A A '= C.3cos cos A A '= D.不能确定 答案:A
(20070911190546140878)第4题. (2007甘肃兰州课改,4分)下列函数中,自变量x 的取值范围是2x >的函数是( )
A.y =
B.y =
C.y =
D.y =
答案:C
(20070911190546843991)第5题. (2007广西河池课改,2分)已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin A = . 答案:5
3
(20070911190547625356)第6题. (2007海南课改,2分)在Rt ABC △中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( ) A .
2
1
B .23
C .33
D .3
答案:B
(20070911190548859809)第7题. (2007山西太原课改,3分)在正方形网格中,α∠的位置如图所示,则sin α的值为( )
α
A .
12
B
.
2
C
D
答案:B
(20070911190549734538)第8题. (2007湖南郴州课改,2分)如图,在直角三角形ABC 中∠C=90︒,则sin A=______. 答案:
35
(20070911190550671165)第9题. (2007湖南怀化课改,2分)如图,菱形
ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3
sin 5
A =
,则下列结论正确的有( ) ①6cm DE = ②2cm BE = ③菱形面积为2
60cm
④BD =
A.1个 B.2个 C.3个 D.4个 答案:C
(20070911190551546909)第10题. (2007黑龙江哈尔滨课改,3分)如图,PA 是O 的切线,A 为切点,PO 交O 于点B ,8PA =,6OB =,则tan APO ∠的值是 . 答案:34
(20070911190552281634)第11题. (2007黑龙江佳木斯课改,3分)在Rt ABC △中,90C =
∠,3sin 5
B =,则
BC
AB
= 答案:45
(20070911190554734623)第12题. (2007吉林长春课改,3分)如图,1∠的正切值等于 .
A
B C
3
4
D
C
B
E
A
B P
A O
答案:
13
(20070911190555500142)第13题. (2007山东滨州课改,3分)如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( )
A .sin A 的值越大,梯子越陡
B .cos A 的值越大,梯子越陡
C .tan A 的值越小,梯子越陡
D .陡缓程度与A ∠的函数值无关 答案:A
(20070911190556234774)第14题. (2007江苏南京课改,2分)如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.
12
B.
2
C.1
答案:C
(20070911190557093741)第15题. (2007江苏扬州课改,3分)正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( )
A.
5
B.
5
C.
12
D.2
答案:A
(2007091119055814032)第16题. (2007江西课改,3分)在Rt ABC △中,90C ∠=°,
a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .
答案:
12
知识点:8.锐角三角函数的定义 试题类型:填空题 试题难度:0.0 考查目标:基础知识 录入时间:2007-9-11
(20070911190558906899)第17题. (2007辽宁沈阳课改,3分)如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( ) A .
215 B .25 C .212 D .5
2
答案:B
A
B
O
A
B
b
(20070911190559859727)第18题. (2007宁夏课改,3分)如图,PA为O
的切线,A为切点,PO交O
于点
B,43
PA OA
==
,,则sin AOP
∠的值为()
A.3
4
B.
3
5
C.
4
5
D.
4
3
答案:C
(20070911190600906566)第19题. (2007山东济南课改,4分)已知:如图,O
的半径为3,弦AB的长为4.求sin A的值.
答案:解:过点O作OC AB
⊥,垂足为C,
则有AC BC
=4分
4
AB=
,2
AC
∴=5
在Rt AOC
△中,
OC
=6
sin
3
OC
A
OA
==7分
(20070911190601953337)第20题. (2007山东泰安课改,3分)如图,在ABC
△中,
90
ACB
∠= ,CD AB
⊥于D,若AC=AB=则t a n B C D
∠的值为()
A B.
2
C.
3
D.
3
答案:B
(20070911190603046297)第21题. (2007山东烟台课改,4分)如图,已
知AB是半圆O的直径,弦AD,BC相交于点P,若DPBα
∠=,那
么
CD
AB
等于()
A.sinαB.cosα
C.tanαD.
1
tanα
答案:B
(20070911190603937478)第22题. (2007四川成都课改,3分)如图,已知AB
是O
的直径,弦CD AB
⊥,AC=1
BC=,那么sin ABD
∠的值
是.
A
C
B
D
A B
答案:3
(20070911190604656434)第23题. (2007四川眉山课改,4分)在Rt ABC △中,90C ∠=
,:3:4BC AC =,
则cos A = . 答案:
45
(20070911190605531177)第24题. (2007甘肃庆阳课改,3分)在ABC △中,90C ∠=°,2B A ∠=∠,则c
o s A 等于( )
A B .
12
C D 答案:A
(20070911190606203465)第25题. (2007湖北孝感课改,3分)在Rt △ABC 中,∠C=90°,AB=5,BC=4,则
cos A = .
答案:3
5。