第二讲(空间数据模型)
- 格式:pptx
- 大小:14.46 MB
- 文档页数:35
第二讲 面板数据回归模型2.1面板数据回归模型的一般形式 面板数据模型的一般形式如下:it Kk kit ki it u x y +=∑=1β (2.1)其中,N ,,,,i "321=,表示N 个个体;T ,,,,t "321=,表示已知的T 个时点。
it y 是被解释变量对个体i 在t 时的观测值;kit x 是第k 个非随机解释变量对于个体i 在t 时的观测值;ki β是待估计的参数;it u 是随机误差项。
用矩阵表示为i i i i =+Y X βU (N ,,,,i "321=) (2.1’)其中,121i i i iT T y y y ×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦#Y ,112111222212i i Ki i i Ki i iTiTKiT T K x x x x x x x x x ×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦""##"#"X , 121×⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=K Ki i i i βββ#β,121i i iiT T u u u ×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦#U .2.2 面板数据回归模型的分类通常,对模型(2.1)将做许多限制性假设,使其成为不同类型的面板数据回归模型。
一般来说,常用的面板数据回归模型有如下九种模型,下面分别介绍它们。
1混合回归模型从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起,用普通最小二乘法(OLS )估计参数。
即估计模型12Kit k kit it k y x u ββ==++∑ (2.2)=+Y X U β (2.2’)其中,121N NT ×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦#Y Y Y Y ,12N NT K×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦#X X X X ,121×⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=K K βββ#β,121N NT ×⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦#U U U U .实际上,混合回归模型(Pooled Regression Models )假设了解释变量对被解释变量的影响与个体无关。
第二讲 面板数据线性回归模型估计、检验和应用 第一节 单因素误差面板数据线性回归模型对于面板数据y i 和X i ,称it it it y αε′=++X βit i it u εξ=+ 1,,;1,,i N t T ==""为单因素误差面板数据线性回归模型,其中,i ξ表示不可观测的个体特殊效应,it u 表示剩余的随机扰动。
案例:Grunfeld(1958)建立了下面的投资方程:12it it it it I F C αββε=+++这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。
案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。
在EViews6中设定面板数据(GRUNFELD.wf1)Eviews6 中建立面板数据EViews 中建立单因素固定效应模型1.1 混合回归模型1 面板数据混合回归模型 假设1 ε ~ N (0, σ2I NT )对于面板数据y i 和X i ,无约束的线性回归模型是y i = Z i δi + εi i =1, 2, … , N(4.1)其中'i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,'i δ是1×(K +1)的,εi 是T×1的。
注意:各个体的回归系数δi 是不同的。
如果面板数据可混合,则得到有约束模型y = Z δ + ε(4.2)其中Z ′ = ('1Z ,'2Z , … ,'N Z ),u ′ = ('1ε,'2ε, … ,'N ε)。
2 混合回归模型的估计当满足可混合回归假设时,()1''ˆZ Z Z Y −=δ在假设1下,对于Grunfeld 数据,基于EViews6建立的混合回归模型3 面板数据的可混合性检验假设检验原理:基于OLS/ML 估计,对约束条件的检验。