EM算法简介.ppt
- 格式:ppt
- 大小:596.51 KB
- 文档页数:30
最大期望算法(Expectation-Maximization algorithm, EM),或Dempster-Laird-Rubin算法,是一类通过迭代进行极大似然估计(Maximum Likelihood Estimation, MLE)的优化算法,通常作为牛顿迭代法(Newton-Raphson method)的替代用于对包含隐变量(latent variable)或缺失数据(incomplete-data)的概率模型进行参数估计。
EM算法的标准计算框架由E步(Expectation-step)和M步(Maximization step)交替组成,算法的收敛性可以确保迭代至少逼近局部极大值。
EM算法是MM算法(Minorize-Maximization algorithm)的特例之一,有多个改进版本,包括使用了贝叶斯推断的EM算法、EM梯度算法、广义EM算法等。
由于迭代规则容易实现并可以灵活考虑隐变量,EM算法被广泛应用于处理数据的缺测值,以及很多机器学习(machine learning)算法,包括高斯混合模型(Gaussian Mixture Model, GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)的参数估计。
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。
EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster、Laird和Rubin三人于1977年所做的文章《Maximum likelihood from incomplete data via the EM algorithm》中给出了详细的阐述。
其基本思想是:首先根据己经给出的观测数据,估计出模型参数的值;然后再依据上一步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前己经观测到的数据重新再对参数值进行估计,然后反复迭代,直至最后收敛,迭代结束。
EM算法EM算法--应用到三个模型:高斯混合模型,混合朴素贝叶斯模型,因子分析模型判别模型求的是条件概率p(y|x),生成模型求的是联合概率p(x,y).即= p(x|y) ? p(y)常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。
常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、RestrictedBoltzmann Machine等。
所以这里说的高斯混合模型,朴素贝叶斯模型都是求p(x,y)联合概率的。
(下面推导会见原因)套路小结:凡是生产模型,目的都是求出联合概率表达式,然后对联合概率表达式里的各个参数再进行估计,求出其表达式。
下面的EM算法,GMM 等三个模型都是做这同一件事:设法求出联合概率,然后对出现的参数进行估计。
一、EM算法:作用是进行参数估计。
应用:(因为是无监督,所以一般应用在聚类上,也用在HMM 参数估计上)所以凡是有EM算法的,一定是无监督学习.因为EM是对参数聚集给定训练样本是高斯混合模型,混合朴素贝叶斯模型,因子分析模型"> 样例独立,我们想要知道每个样例隐含的类别z,使是p(x,z)最大,(即如果将样本x(i)看作观察值,潜在类别z看作是隐藏变量,则x可能是类别z,那么聚类问题也就是参数估计问题,)故p(x,z)最大似然估计是:高斯混合模型,混合朴素贝叶斯模型,因子分析模型">所以可见用到EM算法的模型(高斯混合模型,朴素贝叶斯模型)都是求p(x,y)联合概率,为生成模型。
对上面公式,直接求θ一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。
EM是一种解决存在隐含变量优化问题的有效方法。
竟然不能直接最大化?(θ),我们可建立?的下界(E步),再优化下界(M步),见下图第三步,取的就是下界高斯混合模型,混合朴素贝叶斯模型,因子分析模型" action-data="http%3A%2F%%2Fbl og%2F515474%2F201305%2F19180744-0ed136937810 4b548dbee01337f6ba69.jpg" action-type="show-slide"> (总式)解释上式:对于每一个样例i,让Qi表示该样例隐含变量z的某种分布,Qi满足的条件是(如果z 是连续性的,那么Qi是概率密度函数(因子分析模型就是如此),需要将求和符号换成积分符号即:高斯混合模型,混合朴素贝叶斯模型,因子分析模型">因子分析模型是如此,这个会用在EM算法的M步求。