高二数学选修2-1--2-2--2-3-知识点(全面)
- 格式:doc
- 大小:849.50 KB
- 文档页数:12
高二数学选修2-1第三章空间向量的数量积运算知识点高二数学向量的数量积是《向量》这一章的重要内容,下面是店铺给大家带来的高二数学选修2-1第三章空间向量的数量积运算知识点,希望对你有帮助。
高二数学空间向量的数量积运算知识点定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。
若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算率a·b=b·a(交换率);(a+b)·c=a·c+b·c(分配率);向量的数量积的性质a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的数量积不满足消去律,即:由a·b=a·c (a≠0),推不出b=c。
3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b。
高中数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
高二数学选修2-1知识点总结(完整版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高二数学选修2-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x ya b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 )22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 )2211c b e e a a==+>准线方程 2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+;若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02p F x P =-+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+; 若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.21、抛物线的几何性质: 标准方程 22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB .()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=. 47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.。
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
数学选修2-2知识点总结 第一章 导数及其应用 一、导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()limx f x x f x x ∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x ∆→+∆-'=∆二.导数的计算1.函数()y f x c ==的导数2.函数()y f x x ==的导数3.函数2()y f x x ==的导数4.函数1()y f x x ==的导数基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '= 6 若()x f x e =,则()x f x e '=7 若()logxa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x '=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=∙三.导数在研究函数中的应用 1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理. 类比推理的一般步骤:找出两类事物的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
高二数学选修2 2知识点高二数学选修2-2知识点本文将介绍高二数学选修2-2中的重要知识点,包括函数的概念与性质、三角函数的定义与图像、指数函数与对数函数等内容。
一、函数的概念与性质函数是数学中重要的概念,它描述了两个量之间的一种关系。
函数由定义域、值域和对应关系组成。
在函数中,输入的值称为自变量,输出的值称为因变量。
函数可以用图像、表格、公式等形式表示。
函数的性质包括奇偶性、周期性、增减性等,这些性质有助于我们理解函数的特点和行为。
二、三角函数的定义与图像三角函数是描述角度与边长之间关系的函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
正弦函数表示角度与对边比斜边的比值,余弦函数表示角度与邻边比斜边的比值,正切函数表示角度与对边比邻边的比值。
这些三角函数在不同角度下的取值和图像具有一定的规律性,通过研究三角函数的定义和图像,可以加深我们对角度与边长关系的理解。
三、指数函数与对数函数指数函数和对数函数是数学中重要的基础函数。
指数函数的自变量是指数,底数固定,它描述了一个数的多次相同乘积。
对数函数是指数函数的逆运算,它描述了一个数在指定底数下的指数。
指数函数和对数函数在各个领域有广泛的应用,例如在科学计算、金融领域等。
通过学习高二数学选修2-2的知识点,我们能够更好地理解函数的概念与性质,能够更准确地描述角度与边长之间的关系,并且能够运用指数函数和对数函数进行问题求解。
这些知识点对我们继续学习数学以及其他相关学科都具有重要的意义。
总之,掌握了高二数学选修2-2中的知识点,我们能够更好地理解数学的本质和应用,为我们的学习打下坚实的基础。
在今后的学习和应用中,我们将会发现这些知识点的重要性和实用性。
希望大家能够认真学习,牢固掌握这些知识点,为自己的学术发展打下坚实的基础。
高二数学选修2-3
高二数学选修2-3主要学习以下内容:
1. 数列与数学归纳法:包括等差数列、等比数列及其前n 项和的计算,以及利用数学归纳法证明等差数列、等比数列的性质。
2. 不等式与区间:学习一元一次不等式、一元二次不等式和绝对值不等式的解法,了解不等式的性质和图像表示,掌握二次函数解不等式的方法;学习开区间、闭区间、开闭区间的表示方法,并应用于不等式中。
3. 函数基本性质与图像:复习函数的定义与性质,强调一次函数、二次函数、绝对值函数、倒数函数等基本函数的图像特征和性质;学习函数的平移、伸缩与反射等变换,并应用于函数图像的研究。
4. 幂函数与对数函数:学习幂函数的定义与性质,了解指数函数和对数函数的关系,学习对数函数的定义与性质,掌握幂函数和对数函数的图像表示及其性质。
5. 三角函数:学习正弦函数、余弦函数和正切函数的定义与性质,了解三角函数的周期性质和图像表示,掌握三角函数图像的特征及其性质,学习简单的三角函数方程的解法。
6. 平面向量:学习平面向量的基本概念、运算法则,包括向量的加法、数乘、数量积和向量积等运算,了解平面向量的几何意义与性质,应用于几何问题的求解。
以上就是高二数学选修2-3的主要内容。
高二数学选修2-1一、教材简介《高二数学选修2-1》是高中数学选修课程的一部分,适用于高二年级学生。
本教材是由教育出版社出版的,主要内容包括数列与数学归纳法、函数与方程、数学推理等方面的知识。
通过学习本教材,学生将进一步巩固和拓展数学基础,为高中数学学习打下坚实的基础。
二、教学目标《高二数学选修2-1》的教学目标主要包括:1.掌握数列与数学归纳法的基本概念和常见解题方法;2.掌握函数基本性质及其在实际问题中的应用;3.熟练掌握一元二次方程的解法和性质;4.培养学生的数学思维能力、分析问题和解决问题的能力。
通过达到以上教学目标,学生将提高数学学习的兴趣和能力,为更高层次的数学学习打下坚实的基础。
三、教学内容1. 数列与数学归纳法数列是一组数按照一定规律排列的序列。
本章主要涉及数列的基本概念、通项公式,以及数列的求和公式。
数学归纳法是数学中一种常用的证明方法,通过归纳法可以证明数学命题的正确性。
2. 函数与方程函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的一个元素。
本章主要讲解函数的定义、性质,以及函数的图像和应用。
方程是等式的一种特殊形式,本章将介绍一元二次方程的解法和性质。
3. 数学推理数学推理是运用逻辑推理方法解决数学问题的过程。
本章将介绍数学推理的基本思路和方法,并通过一些具体的例题帮助学生理解和掌握数学推理的技巧。
四、教学方法教学方法是指教师在教学过程中所采用的教学策略和教学手段。
对于《高二数学选修2-1》这门课程,教师可以采用以下几种教学方法:1.讲授与演示相结合:教师可以通过讲解数学知识点的基本概念和定理,同时配以具体的例题和实际应用来演示,帮助学生理解和掌握知识。
2.合作学习:鼓励学生之间互相合作,共同解决问题,培养学生的团队合作精神和解决问题的能力。
3.思维导图:可以利用思维导图的形式,将复杂的概念和知识点进行整理和梳理,帮助学生更好地理解和记忆知识。
五、教学评价教学评价是教学活动中的一项重要环节,它可以帮助教师了解学生的学习情况,及时调整教学策略和方法,提高教学效果。
高二数学选修2-1 空间向量的运算及空间向量的基本定理 北师大版(理) 【本讲教育信息】 一、教学内容:选修2-1 空间向量的运算及空间向量的基本定理二、教学目标:1. 理解并掌握空间两个向量的夹角、直线的方向向量、平面的法向量、共面向量等基本概念。
2. 熟练地掌握空间向量的加减运算、数乘运算、空间向量坐标运算的运算法则、运算律及空间向量的数量积的几何意义及性质。
3. 熟练地掌握共线向量定理、空间向量的基本定理,并能利用它们讨论证明空间的线面关系。
4. 体会用类比的数学思想、方程的数学思想、等价转化的数学思想解决问题。
三、知识要点分析:(一)平面向量与空间向量的相同点:1. 向量夹角:过空间一点O 作AOB ,OB b ,OA a ∠==则是向量a 与向量b 的夹角。
X 围:[0,]π2. 加减运算:加减运算法则:向量的平行四边形法则(三角形法则) 运算律:结合律:)()(c b a c b a ++=++,交换律:a b b a +=+3. 数乘运算法则:向量a 与实数λ的乘积是一个向量,记作:a λ,满足(i )||||λλ=a ||a ,(ii )当0>λ时,a λ与a 方向相同,反之,相反。
0a 0=λ=λ时,。
运算律:(i )).(,R a a ∈=λλλ(ii ))R ,(,a a a )(,b a )b a (∈μλμ+λ=μ+λλ+λ=+λ.(iii )),(),()(R a a ∈=μλμλλμ4. 空间向量的数量积:θ⋅=⋅cos |b ||a |b a 。
θ>=<b a ,。
运算律:交换律:a b b a ⋅=⋅分配律:c a b a )c b (a ⋅+⋅=+⋅,(λ)b a ⋅=b )a (⋅λ)b (a λ⋅=性质:(1)a a |a |⋅,(2)0b a b a =⋅⇔⊥,(3)|b ||a ||b a |⋅≤⋅注:向量的数量积运算不满足乘法的结合律。
高中数学重难点知识点高中数学重难点知识点高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。
高二数学选修21知识点一、数列与数学归纳法1. 数列的概念与表示方法数列是指由一系列按照一定规律排列的数所组成的集合。
常见的数列表示方法有通项公式、递推公式和循环节表示法等。
2. 数列的分类数列可以按照递增、递减、等差、等比等规律进行分类。
其中,等差数列是指数列中的相邻两项之间的差值保持恒定;等比数列是指数列中的相邻两项之间的比值保持恒定。
3. 数学归纳法数学归纳法是一种证明数学命题的常用方法。
它分为两个步骤:证明基本情况成立和证明推理关系成立。
通过数学归纳法可以证明一些关于数列的性质,例如等差数列、等比数列的通项公式等。
二、排列与组合1. 排列的概念与计算方法排列是指从若干个元素中取出一部分元素按照一定的顺序排列的方式。
排列的计算可以使用阶乘的方式进行。
2. 组合的概念与计算方法组合是指从若干个元素中取出一部分元素而不考虑排列顺序的方式。
组合的计算可以使用组合数的方式进行。
3. 排列组合的应用排列组合在实际生活中有广泛的应用,例如在概率统计、图论、密码学等领域。
三、三角函数1. 基本概念三角函数是指与角度之间存在某种关系的一类函数,包括正弦函数、余弦函数和正切函数等。
2. 三角函数的性质与公式三角函数具有周期性、奇偶性等性质。
同时,三角函数还有一些重要的和差化积公式和倍角公式等。
3. 三角函数的图像通过绘制三角函数的图像,可以更直观地理解其性质和变化规律。
四、平面向量1. 向量的概念与表示方法向量是具有大小和方向的量,可以使用箭头表示。
向量的表示方法包括坐标表示和模长方向表示等。
2. 向量的加法和减法向量的加法和减法满足平行四边形法则和三角形法则。
3. 向量的数量积和向量积向量的数量积是指两个向量相乘得到一个标量的运算,向量的向量积是指两个向量相乘得到一个向量的运算。
五、函数的应用1. 函数的概念与性质函数是指一个变量和另一个量之间的对应关系。
函数的性质包括定义域、值域、单调性等。
2. 函数的图像与变化规律绘制函数的图像可以帮助我们更好地理解函数的变化规律和特点。
高二数学选修2-1知识点总结(完整版)算术平均数算术平均数是统计学中的一个重要概念,它是指把一组数字的和除以它们的个数,反映在一千个人中有多少人在某一条件方面的平度或中点,用数学公式表示就是:平均数= ∑(x1,x2,...Xn)/n其中,n表示给定的一组数字的个数,Xi表示具体的数字(i= 1,2,3,...n )。
中位数中位数也叫中点数,是统计学中常用的一种量化指标,它表示一组数字中,从小到大排列顺序时,处于中间位置的那个数,或者从大到小排列时,处于中间位置的数字。
当数据由奇数个时,中位数就是处于中间位置的那个数字;而若是数据由偶数个时,中位数就是这组数据所有数字加总后除以2所得的值(例如:1,2,3,3,中位数为2)。
标准差标准差是统计学中的一个重要概念,它可以反映出一组数据的离散程度,是用来衡量一组数据的变异情况的,又称为离散度。
数学公式表达形式为:标准差= ∑( xi-平均数)²/(n-1)其中,n表示样本数,Xi表示具体的数值,平均数表示数据的算术平均数。
众数众数=∑xi /n模数模数是数学中的一项概念,通常可以从1到最大数字取若干个数,这些数中,剩下不能用其他数表示的最大数,就叫做模数。
形式上可以用数学公式表示为:模数=M= GCD (a,b,c,…)其中,GCD表示最大公约数,a,b,c…表示一组数。
伯努利实验伯努利实验是统计学中的基本概念,它是指通过实验中多次试验,对两个或两个以上的事件的发生概率的分析,以估算出某个事件诞生的可能性,数学公式表示形式如下:P(A)= nA/nnA表示事件A成功的实验次数,n表示实验的总次数。
线性相关线性相关是统计学中常用的一种分析方式,它指的是通过查看两组数据间的关系,来判断两个或两个以上的变量之间是否存在直接关系,如果存在,就称之为线性相关。
数学表达式如下:其中,X1、X2、X3…Xn表示两组数据,n表示数据的个数。
高二数学选修2知识点总结高二数学选修2是高中数学课程中的一部分,主要内容涵盖了高等数学的基础知识以及数学问题的解题技巧和方法。
本文将对高二数学选修2的知识点进行总结,以帮助同学们复习和提高数学成绩。
一、函数与导数1. 函数的概念:函数是一种映射关系,将一个自变量映射到一个因变量上。
2. 函数的性质:奇偶性、周期性、单调性、有界性等。
3. 导数的定义:导数表示函数在某一点处的变化率,可以用极限的概念来定义。
4. 导数的计算:常见函数的导数求法,如幂函数、指数函数、对数函数、三角函数等。
5. 函数的应用:利用导数解决最值、单调性、弦切线、曲线图形等问题。
二、不定积分与定积分1. 不定积分的概念:不定积分是导数的逆运算,表示函数的一族原函数。
2. 不定积分的基本积分公式:常见函数的不定积分求法。
3. 定积分的概念:定积分表示函数在一定区间上的累积量。
4. 定积分的性质:线性性、区间可加性、保号性等。
5. 定积分的计算:利用基本积分公式、换元积分法、分部积分法等方法求解。
三、向量与立体几何1. 向量的运算:向量的加法、数乘、模长以及内积、外积等。
2. 空间直线与平面:直线的方向向量、点向式方程、平面的法向量、点法式方程等。
3. 空间立体几何:平面与直线的位置关系、两个平面的位置关系、空间中的距离等。
四、概率与统计1. 概率的基本概念:样本空间、随机事件、概率的定义等。
2. 概率的计算:加法定理、乘法定理、全概率公式、贝叶斯公式等。
3. 随机变量与分布:离散随机变量、连续随机变量、常见分布的特点和应用。
4. 统计的基本概念:总体、样本、频数分布、统计量等。
5. 参数估计与假设检验:点估计、区间估计、正态总体的假设检验等。
总结:高二数学选修2是深化数学学习的重要课程,它涵盖了函数与导数、不定积分与定积分、向量与立体几何、概率与统计等知识点。
同学们在学习过程中要掌握各个知识点的概念、性质和计算方法,并能够熟练运用于解题。
高中数学选修2-1、2-2知识点小结高中数学选修2-1、2-2知识点小结一、函数的概念和性质1. 函数的定义:函数是一个集合,它与另一个集合之间建立了一种特殊的对应关系,其中每一个输入元素对应唯一的输出元素。
2. 函数的性质:a. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
b. 奇偶性:函数的奇偶性取决于其对称性,奇函数关于原点对称,偶函数关于y轴对称。
c. 单调性:函数单调递增或单调递减等取决于导数的符号。
d. 周期性:函数的周期是指输入变量在一个范围内发生改变,输出值也以某种规律重复出现。
e. 增减性:函数增减性是指函数的导数的正负性质,导数大于0时函数增加,导数小于0时函数减少。
二、函数的基本类型1. 幂函数:y = x^a,其中a为常数,a>0时为增函数,a<0时为减函数。
2. 指数函数:y = a^x,其中a为常数,a>1时为增函数,0<a<1时为减函数。
3. 对数函数:y = loga(x),其中a为对数底,a>0且a≠1,a>1时为增函数,0<a<1时为减函数。
4. 三角函数:包括正弦函数、余弦函数、正切函数等。
5. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等。
三、函数的图像与性质1. 函数的图像:通过计算函数的各个点的坐标,可以绘制出函数的图像。
2. 函数的对称性:可以通过判断函数的定义域和图像是否关于某条直线对称来确定函数的对称性。
3. 函数的周期性:可以通过计算函数在一个周期内的取值来确定函数的周期。
4. 函数的最值:可以通过计算函数的导数来确定函数的最值点。
四、函数的运算1. 函数的四则运算:可以通过加减乘除四则运算来得到新的函数。
2. 函数的复合:可以将多个函数合并成一个新函数,合并后的函数相当于依次将原函数的输出作为下一个函数的输入。
五、函数的导数1. 导数的定义:函数f(x)在点x处的导数定义为:f'(x)=lim(h→0)(f(x+h)-f(x))/h,表示函数的变化速率。
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
选修2-1、2-2. 2-3知识点选修2-1第一章 常用逻辑用语 1. 命题及其关系① 四种命题相互间关系: ② 逆否命题同真同假 2. 充分条件与必要条件p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:,p q q p ⇒ p 是q 的必要不充分条件:,q p p q ⇒ p 是q 的既充分不必要条件:,p q q p3. 逻辑联结词 “或”“且”“非”4. 全称量词与存在量词 注意命题的否定形式(联系反证法的反设),主要是量词的变化. 例:“a=1”是“0,21ax x x∀>+≥”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 第二章 圆锥曲线与方程 1.三种圆锥曲线的性质(以焦点在x 轴为例)椭圆双曲线抛物线定义与两个定点的距离和等于常数122 (2||)a a F F >与两个定点的距离差的绝对值等于常数122 (2||)a a F F >与一个定点和一条定直线的距离相等标准方程22221(0)x y a b a b +=>> 22221(,0)x y a b a b-=> 22(0)y px p =>图形顶点坐标 (±a,0),(0,±b) (±a,0) (0,0) 对称轴x 轴,长轴长2a y 轴,短轴长2b x 轴,实轴长2a y 轴,虚轴长2b x 轴焦点坐标 (±22a b -,0)(±22a b +,0)(2p,0) 离心率c a()22101c b e e a a ==-<<()2211c b e e a a==+>e =1互 否为 逆 为 逆 互 否互否互否互 逆原命题 若p 则q互 逆 逆命题 若q 则p逆否命题 若q ⌝则p ⌝逆否命题 若q ⌝则p ⌝2.“回归定义”是一种重要的解题策略。
如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。
3.直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是0∆>、0∆=、0∆<.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:①联立直线与圆锥曲线方程,利用韦达定理等;②点差法(主要适用中点问题,设而不求,注意需检验,化简依据:12122100212,2,22x x y y y yx y kx x++-===-)(2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)①直线具有斜率k,两个交点坐标分别为1122(,),(,)A x yB x y1212AB x y=-==-②直线斜率不存在,则12AB y y=-.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。
考查三个方面:A 存在性(相交);B 中点;C 垂直(121k k=-)注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。
2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。
4.注意向量在解析几何中的应用(数量积解决垂直、距离、夹角等)(4)求曲线轨迹常见做法:定义法、直接法(步骤:建—设—现(限)—代—化)、代入法(利用动点与已知轨迹上动点之间的关系)、点差法(适用求弦中点轨迹)、参数法、交轨法等。
例1.已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是(答:C ); A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF例2已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程(答:221412x y -=) 例3 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若由焦点到直线的距离为3. (1)求椭圆分方程;(2)设椭圆与直线相交于不同的两点M,N ,当|AM|=|AN|时,求m 的取值范围。
(答:2211; (,2)32x y m +=∈) 例4过点A (2,1)的直线与双曲线x y 2221-=相交于两点P 1、P 2,求线段P 1P 2中点的轨迹方程。
第三章 空间向量与立体几何 1. 空间向量及其运算① 21a a a x =⋅=+(d x AB =AB =② 共线向量定理://a b a b λ⇔=(0)b ≠③共面向量定理:,,(,)p a b p xa yb x y R ⇔=+∈共面; 四点共面(,)MP xMA yMB x y R =+∈④空间向量基本定理 (,,)p xa yb zc x y z R =++∈(不共面的三个向量,,a b c 构成一组基 底,任意两个向量都共面)2. 平行:(直线的方向向量,平面的法向量)(,a b 是a,b 的方向向量,n 是平面α的法向量)线线平行://a b ⇔//a b线面平行://a a n α⇔⊥ 或 //a b ,b α⊂ 或 (a xb yc b c =+,是α内不共线向量) 面面平行:12////n n αβ⇔ 3. 垂直线线垂直:a b ⊥⇔0a b a b ⊥⇔⋅=线面垂直://a a n α⊥⇔ 或 , (a b a c b c ⊥⊥,是α内不共线向量) 面面垂直:12n n αβ⊥⇔⊥ 4. 夹角问题线线角 ||,|||||a b a b a b ⋅<>=线面角 ||,|||||a n a n a n ⋅<>=二面角 121212||,|||||n n n n n n ⋅<>=(一般步骤①求平面的法向量;②计算法向量夹角;③回答二面角(空间想象二面角为锐角还是钝角或借助于法向量的方向),只需说明二面角大小,无需说明理由))5. 距离问题(一般是求点面距离,线面距离,面面距离转化为点到面的距离)P 到平面α的距离 ||||PA n n ⋅ (其中A 是平面α内任一点,n 为平面α的法向量) 6. 立体几何解题一般步骤坐标法:①建系(选择两两垂直的直线,借助于已有的垂直关系构造);②写点坐标;③写向量的坐标;④向量运算;⑤将向量形式的结果转化为最终结果。
基底法:①选择一组基底(一般是共起点的三个向量);②将向量用基底表示;③向量运算;④将向量形式的结果转化为最终结果。
异面直线夹角——平移直线(借助中位线平行四边形等平行线); 线面角——找准面的垂线,借助直角三角形的知识解决;二面角——定义法作二面角,三垂线定理作二面角;作交线的垂面.选修2-2第一章 导数及其应用 1. 平均变化率xf x f x y x x ∆-∆+=∆∆)()(00 2. 导数(或瞬时变化率) xx f x x f x f x ∆-∆+='→∆)()(lim)(0000导函数(导数): xx f x x f x f x ∆-∆+='→∆)()(lim )(03.导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0).4. 导数的运算:(1)几种常见函数的导数:①(C )′=0(C 为常数); ②(x α)′=1xαα-(x >0,Q α∈); ③(sin x )′=cos x ;④(cos x )′=-sin x ; ⑤(e x )′=e x ; ⑥(a x )′=a x ln a (a >0,且a ≠1); ⑦xx 1)(ln =; ⑧1(log )ln a x x a =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . 5. 设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'。
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。
6. 定积分的概念,几何意义,区边图形的面积的积分形式表示,注意确定上方函数,下方函数的选取,以及区间的分割.微积分基本定理()()|()()bab f x dx F x F b F a a==-⎰.物理上的应用:汽车行驶路程、位移;变力做功问题。
7. 函数的单调性(1)设函数)(x f y =在某个区间(a ,b )可导,如果'f )(x 0>,则)(x f 在此区间上为增函数;如果'f 0)(<x ,则)(x f 在此区间上为减函数; (2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常数。
★★★反之,若已知可导函数)(x f y =在某个区间上单调递增,且不恒为零;可导函数)(x f y =.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错); ② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。