2012年西城区高三二模数学试卷及答案(理科)
- 格式:doc
- 大小:1.16 MB
- 文档页数:11
2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合A ={x|1x ≥1},则∁U A( )A (0, 1)B (0, 1]C (−∞, 0]∪(1, +∞)D (−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x =2,则输出y 的值为( )A 2B 5C 11D 233. 若实数x ,y 满足条件{x +y ≥0x −y +3≥00≤x ≤3,则z =2x −y 的最大值为( )A 9B 3C 0D −34. 已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )A 4√3cm 2B 2√3cm 2C 8cm 2D 4cm 25. 已知函数f(x)=sin 4ωx −cos 4ωx 的最小正周期是π,那么正数ω=( )A 2B 1C 12D 14 6. 若a =log 23,b =log 32,c =log 46,则下列结论正确的是( )A b <a <cB a <b <cC c <b <aD b <c <a7. 设等比数列{a n }的各项均为正数,公比为q ,前n 项和为S n .若对∀n ∈N ∗,有S 2n <3S n ,则q 的取值范围是( )A (0, 1]B (0, 2)C [1, 2)D (0,√2)8. 已知集合A ={x|x =a 0+a 1×3+a 2×32+a 3×33},其中a k ∈{0, 1, 2}(k =0, 1, 2, 3),且a 3≠0.则A 中所有元素之和等于( )A 3240B 3120C 2997D 2889二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.10. (x −2)6的展开式中x 3的系数是________.(用数字作答)11. 如图,AC 为⊙O 的直径,OB ⊥AC ,弦BN 交AC 于点M .若OC =√3,OM =1,则MN =________. 12. 在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.13. 已知函数f(x)={x 12,0≤x ≤c x 2+x,−2≤x <0其中c >0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c 的取值范围是________.14. 在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. 在△ABC 中,已知sin(A +B)=sinB +sin(A −B).(1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.16. 乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.17. 如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.18. 已知函数f(x)=e ax⋅(ax+a+1),其中a≥−1.(1)当a=1时,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.19. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B1,B2,且MB1⊥MB2.(1)求椭圆C的方程;(2)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.20. 对于数列A n:a1,a2,…,a n(a i∈N, i=1, 2,…,n),定义“T变换”:T将数列A n变换成数列B n:b1,b2,…,b n,其中b i=|a i−a i+1|(i=1, 2,…,n−1),且b n=|a n−a1|,这种“T 变换”记作B n=T(A n).继续对数列B n进行“T变换”,得到数列C n,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A3:4,2,8和A4:1,4,2,9经过不断的“T变换”能否结束?若能,请依次写出经过“T变换”得到的各数列;若不能,说明理由;(2)求A3:a1,a2,a3经过有限次“T变换”后能够结束的充要条件;(3)证明:A4:a1,a2,a3,a4一定能经过有限次“T变换”后结束.2012年北京市西城区高考数学一模试卷(理科)答案1. C2. D3. A4. A5. B6. D7. A8. D9. 5410. −16011. 112. √213. −1和0,0<c≤414. √32,2(1+√2)15. 解:(1)原式可化为:sinB=sin(A+B)−sin(A−B)=sinAcosB+cosAsinB−sinAcosB+cosAsinB=2cosAsinB,…∵ B∈(0, π),∴ sinB>0,∴ cosA=12,…又A∈(0, π),∴ A=π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cosA ,…∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cosA =20,∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.…16. 解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. … (2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,… 所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. … 比赛局数的分布列为: 84161617. (1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF ,所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,因为AD ∩DE =D ,BC ∩BF =B ,所以 平面FBC // 平面EAD .又FC ⊂平面FBC ,所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以OB =1,OA =OF =√3. 所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3).所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z),则有{√3x +√3z =0√3x +y =0, 取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得|cos <n →,v →>|=|n →⋅v →|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 18. 解:(1)当a =1时,f(x)=e x ⋅(1x+2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0.(2)f ′(x)=ae ax (x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞);当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞),单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间;④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1),单调递增区间为(−∞, −1),(1a+1,+∞). 19. 解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 b a =23.… 依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.…设P(a, 0),则有 y 1x 1−a +y 2x 2−a =0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0, 所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.…由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…20. (1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. … 数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.…若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”.当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。
西城区2012年高三一模试卷(理科)2012.4一、选择题共8小题,每小题5分,共40分. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1)(B )(0,1](C )(,0](1,)-∞+∞(D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9(B )3(C )0(D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3123cm . 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )243cm (B )223cm (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a <<(D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1](B )(0,2)(C )[1,2)(D )(0,2)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒 与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M .若3OC =,1OM =,则MN =_____. 12. 在极坐标系中,极点到直线:l πsin()24ρθ+=的距离是_____. 13. 已知函数122,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B 分别在射线3(0)3y x x =≥和3(0)y x x =-≥上运 动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是 _____.三、解答题共6小题,共80分.15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ; (Ⅱ)若||7BC = ,20=⋅AC AB ,求||AB AC +.ABCOM N16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axa f x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间.ECBADF19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为53,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=- ,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1. C ;2. D ;3. A ;4.A ;5. B ;6. D ;7. A ;8. D .二、填空题:本大题共6小题,每小题5分,共30分.9.54; 10.160-; 11.1; 12.2; 13.1-和0,(0,4]; 14.32,2(12)+. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分 因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC = ,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC += . ………………10分 因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分 所以 ||129AB AC +=. ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分 记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. ………………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分 (Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分 334341111(5)2C ()()2224P X -===, ………………10分 335251115(6)2C ()()22216P X -==⋅=, ………………11分 336361115(7)2C ()()22216P X -==⋅=. ………………12分 比赛局数的分布列为:X45 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . ………………7分 又⊂FC 平面FBC ,所以FC // 平面EAD . ………………8分 (Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,3OA OF ==.所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以 (3,0,3)CF = ,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得 15cos ,5⋅〈〉==n v n v n v . 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x'=⋅+-. ………………2分 由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()eaxx a x f x a x++-'=,0x ≠. ………………6分 ① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……………8分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(1,0)-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a -===-, 得23b a =. ………………2分 依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C 的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x 得 22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分 若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补,所以0=+PB PA k k . ………………9分 设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分 将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分 由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分 (Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分 当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也 为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.(Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤. 令()n n B T A =,i p q b a a =-,其中p q a a ≥. 因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分 现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c --,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a bb -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b --,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列 各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列 各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a ,(()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T 变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束. ………………13分。
五、三角函数(必修四)1.(2012年西城二模理9)在△ABC 中,BC =,AC =,π3A =,则B = _____. 答案:π4. 2.(2012年海淀二模理1)若sin cos 0θθ<,则角θ是( D ) A .第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角3.(2012年朝阳二模理4)在△ABC 中, 2AB =,3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠等于( C ) A .60或120 B .120 C .150 D .30或150 4.(2012年丰台二模理7)已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( C )A .B .C .D .5.(2012年昌平二模理9)在∆ABC 中,4,2,2π===A b a 那么角C =_________.答案:127π。
6.(2012年东城二模理11)在平面直角坐标系xOy 中,将点A 绕原点O 逆时针旋转90到点B ,那么点B 的坐标为____,若直线OB 的倾斜角为α,则sin2α的值为 .答案:)3,1(-2-7.(2012年海淀二模理11)在ABC ∆中,若120=∠A ,5c =,ABC ∆的面积为,则a = .。
8.(2012年西城二模理15)已知函数22π()cos ()sin 6f x x x =--.(Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围. 解:(Ⅰ)22ππππ()cos ()sin cos 12121262f =--==. ………………5分 (Ⅱ) 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)3x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x 取得最大值2. ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c的取值范围是)+∞. ………………13分 9.(2012年朝阳二模理15) 已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M .(Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.解:(Ⅰ)由()12(cos 21)2f x x x m =-++π1sin(2)62x m =--+.…3分因为点π(,0)12M 在函数()f x 的图象上, 所以ππ1sin(2)01262m ⋅--+=,解得12m =. …5分 (Ⅱ) 因为cos +cos =2cos c B b C a B ,所以sin cos sin cos C B B C +=2sin cos A B ,所以sin(+)2sin cos B C A B =,即sin 2sin cos A A B =. ……7分 又因为(0,A ∈π),所以sin 0A ≠,所以1cos 2B =. ……8分 又因为(0,B ∈π),所以π3B =,2π3A C +=. ……10分所以2π03A <<, ππ7π2666A -<-<,所以πsin(2)6A -∈1(,1]2-.…12分所以()f A 的取值范围是1(,1]2-. ……13分10.(2012年丰台二模理15)已知函数()cos sin )f x x x x =-(Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值. 解:因为()cos sin )f x x x x =-2sin cos x x x -=1cos 21)sin 222x x +--12sin 22x x -=cos(2)6x π+(Ⅰ)()cos(2)336f πππ=⨯+==7分 (Ⅱ)因为 [0,]2x π∈, 所以2666x ππ7π≤+≤.当 26x π+=π,即512x π=时,函数()y f x =有最小值是12--. 当512x π=时,函数()y f x =有最小值是12--. …13分 11.(2012年昌平二模理15)已知向量a (cos ,sin ),θθ= b = (13-,), 22π≤θ≤π-.(Ⅰ)当b a ⊥时,求θ的值;(Ⅱ)求||b a +的取值范围.解:(Ⅰ) a ⊥b ∴b a ⋅0sin cos 3=-=θθ ……… 2分 得3tan =θ 又∵22π≤θ≤π-……… 4分 即:θ=3π……6分 (Ⅱ)||b a +=4)sin cos 3(21||2||22+-+=+⋅+θθb b a a )3sin(45π--=θ ……… 9分22π≤≤π-θ 6365π≤π-≤π-∴θ … 11分 21)3sin(1≤π-≤-∴θ 4)3sin(42≤π--≤-∴θ∴33≤+≤||b a … 13分12.(2012年东城二模理15)已知函数()sin()f x A x =+ωϕ(其中∈R x ,0A >,ππ0,22ωϕ>-<<)的部分图象如图所示.(Ⅰ)求函数()f x 的解析式;(Ⅱ)已知在函数()f x 的图象上的三点,,M N P 的横坐标分别为-解:(Ⅰ)由图可知,1A =,最小正周期428T =⨯=.由2π8T ==ω,得4π=ω. ………3分又π(1)sin()14f ϕ=+= ,且ππ22ϕ-<<,所以ππ42+=ϕ, 即4π=ϕ . ………5分 所以π()sin()sin (1)444f x x x =+=+ππ. ………6分(Ⅱ)因为(1)0,(1)1,f f -==π(5)sin (51)1,4f =+=-所以(1,0),(1,1),(5,1)M N P --. …………7分所以MN PN MP ===由余弦定理得3cos5MNP ∠==-. ………11分因为[)0,MNP ∠∈π, 所以4sin 5MNP ∠=. ……13分。
北京市西城区2012年高三二模试卷数 学(理科)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞ (C )(0,2] (D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e xf x =; ②()e xf x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35 (B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差s =x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中,正确结论的个数是( ) (A )0 (B )1(C )2(D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在△ABC 中,BC ,AC =π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____; EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.C三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围.20.(本小题满分13分) 若12(0n n i A a a a a ==或1,1,2,,)i n =,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -记为1()n R A ;将排列112n n n a a a a --记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =-,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)in n t A R A i n =-=-,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4; 12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) (Ⅰ)解:22ππππ()cos ()sin cos 1212126f =--==. ………………5分 (Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)3x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x . ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于2c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c的取值范围是)+∞. ………………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分 因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分 (Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =. ………………7分 设直线EC 与平面ABE 所成的角为θ, 所以 ||3sin |cos ,|||||EC OD ECOD EC OD θ⋅=〈〉==, 即直线EC 与平面ABE ………………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC // 平面FBD . ………………10分证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)32,0,34(-=FB . 设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩v v所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分因为 ⋅v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13EF EA =时,有EC // 平面FBD . ………………14分17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分……………6分155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分 511()12122P B =+=. ………………11分 故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y,得4m =±. ………6分 所以直线AB的斜率是±. ………………7分(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. ……………… 9分 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅- ………………10分== ………………12分所以 0m =时,四边形OACB 的面积最小,最小值是4. ………………13分19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分① 当0a =时,22()1xf x x '=+. 所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞,(,)a -+∞;单调减区间是1(,)a a-………………9分(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a 单调递增,在1(,)a +∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a=>.设0x 为)(x f 的零点,易知2012a x a-=,且01x a <.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-. 所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-.综上,a 的取值范围是(,1](0,1]-∞-. ………………14分20.(本小题满分13分) (Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1. 按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==或1,1,2,,21)i k =+,得 12121122()k k k R A a a a a ++=, 2212211221()k k k k R A a a a a a ++-=, (212134)2112()k k k R A a a a a a -++=, 22123211()k k k R A a a a a ++=. 因为 2121(,())1(1,2,,2)i k k t A R A i k ++=-=, 所以 21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+, 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+, 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+.以上各式求和得, (1)2S k k =+⨯. ………………10分另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S x y =. ………………11分所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C PE )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD =v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =. 将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分。
2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U=R,集合A={x|1x≥1},则∁U A()A.(0, 1)B.(0, 1]C.(−∞, 0]∪(1, +∞)D.(−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.233. 若实数x,y满足条件{x+y≥0x−y+3≥00≤x≤3,则z=2x−y的最大值为()A.9B.3C.0D.−34. 已知正六棱柱的底面边长和侧棱长均为2cm,其三视图中的俯视图如图所示,则其左视图的面积是()A.4√3cm2B.2√3cm2C.8cm2D.4cm25. 已知函数f(x)=sin4ωx−cos4ωx的最小正周期是π,那么正数ω=()A.2B.1C.12D.146. 若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<cB.a<b<cC.c<b<aD.b<c<a 7. 设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N∗,有S2n<3S n,则q的取值范围是()A.(0, 1]B.(0, 2)C.[1, 2)D.(0,√2)8. 已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a k∈{0, 1, 2}(k=0, 1, 2, 3),且a3≠0.则A中所有元素之和等于()A.3240B.3120C.2997D.2889二、填空题共6小题,每小题5分,共30分.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.(x−2)6的展开式中x3的系数是________.(用数字作答)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=√3,OM=1,则MN=________.在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.已知函数f(x)={x12,0≤x≤cx2+x,−2≤x<0其中c>0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c的取值范围是________.在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,已知sin (A +B)=sin B +sin (A −B). (1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.对于数列A n :a 1,a 2,…,a n (a i ∈N, i =1, 2,…,n),定义“T 变换”:T 将数列A n 变换成数列B n :b 1,b 2,…,b n ,其中b i =|a i −a i+1|(i =1, 2,…,n −1),且b n =|a n −a 1|,这种“T 变换”记作B n =T(A n ).继续对数列B n 进行“T 变换”,得到数列C n ,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A 3:4,2,8和A 4:1,4,2,9经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)求A 3:a 1,a 2,a 3经过有限次“T 变换”后能够结束的充要条件;(3)证明:A 4:a 1,a 2,a 3,a 4一定能经过有限次“T 变换”后结束.参考答案与试题解析2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】求出集合A的不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵全集U=R.集合A={x|1x≥1}={x|0<x≤1},∴∁U A={x|x≤0, 或x>1}.故选C.2.【答案】D【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y是否继续循环循环前25是第一圈511是第二圈1123否故输出y的值为23.故选D.3.【答案】A【考点】简单线性规划【解析】画出不等式表示的平面区域,z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,根据图形可得结论.【解答】解:画出不等式表示的平面区域z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,由{x=3x+y=0可得交点坐标为(3, −3),根据图形可知在点(3, −3)处,z=2x−y取得最大值,最大值为9故选A.4.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.5.【答案】B【考点】二倍角的三角函数【解析】利用平方差公式化简函数y=sin4ωx−cos4ωx,再利用二倍角公式化为一个角的一个三角函数的形式,根据周期求出ω.【解答】y=sin4ωx−cos4ωx=sin2ωx−cos2ωx=−cos2ωx因为T=π,所以ω=16.【答案】D【考点】不等式比较两数大小【解析】根据a=lg3lg2>1,b=lg2lg3<1,c=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=a,从而得出结论.【解答】解:∵a=log23=lg3lg2>1,b=log32=lg2lg3<1,c=log46=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=lg3lg2,故有b<c<a,故选D.7.【答案】A【考点】数列的求和【解析】当q=1时,S2n<3S n成立容易检验,当q≠1时,由S2n<3S n恒成立可得a1(1−q2n)1−q <3a1(1−q n)1−q,讨论整理可求q的范围.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴a1(1−q2n)1−q <3a1(1−q n)1−q∵q>1,显然不恒成立,则q2n−3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选A8.【答案】D【考点】集合的确定性、互异性、无序性数列的求和【解析】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.【解答】由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2187=2889.二、填空题共6小题,每小题5分,共30分.【答案】54【考点】分布和频率分布表频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数.【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1,∴最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920,由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人)【答案】−160【考点】二项式定理及相关概念【解析】根据题意,由二项式定理可得(x−2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=−160x3,即可得答案.【解答】根据题意,(x−2)6的展开式的通项为T r+1=C6r x6−r(−2)r=(−1)r⋅2r⋅C6r x6−r,令6−r=3可得r=3,此时T4=(−1)3⋅23⋅C63x3=−160x3,即x3的系数是−160;【答案】1【考点】与圆有关的比例线段【解析】根据题设条件,先由勾股定理求出BM,再由相交弦定理求MN.【解答】解:∵AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.OC=√3,OM=1,∴OB=√3,BM=√3+1=2,设MN=x,∵CM⋅AM=BM⋅MN,∴(√3+1)(√3−1)=2x,∴x=1,即MN=1.故答案为:1.【答案】√2【考点】圆的极坐标方程【解析】利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程,再利用点到直线的距离公式求解即可.【解答】解:直线方程ρsin(θ+π4)=√2,即为ρ(√22cosθ+√22sinθ)=√2,化为普通方程为x+y−2=0,极点的直角坐标为(0, 0),根据点到直线的距离公式求得d=√2=√2故答案为:√2;【答案】−1和0,0<c≤4【考点】函数的值域及其求法函数的零点【解析】分x为正数和负数两种情况讨论,分别解方程即可得到么f(x)的零点.根据二次函数的图象与性质,求出当x∈[−2, 0)时,函数f(x)的值域恰好是[−14,2],所以当0≤x≤c时,f(x)=x12的最大值不超过2,由此建立不等式,可解出实数c的取值范围.【解答】当x≥0时,令x 12=0,得x=0;当x<0时,令x2+x=0,得x=−1(舍零)∴f(x)的零点是−1和0∵函数y=x2+x在区间[−2, −12)上是减函数,在区间(−12, 0)上是增函数∴当x∈[−2, 0)时,函数f(x)最小值为f(−12)=−14,最大值是f(−2)=2∵当0≤x≤c时,f(x)=x12是增函数且值域为[0, √c]∴当f(x)的值域是[−14,2],√c≤2,即0<c≤4【答案】√32,2(1+√2)【考点】基本不等式在最值问题中的应用直线的点斜式方程【解析】根据题意,OA、OB的斜率之积为−1,得OA⊥OB.设A(x1, √33x1),B(x2, −√3x2),算出|OA|=2√33x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=√32.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2√2,当且仅当2√33x1=2x2=√2时,△OAB周长取最小值2(1+√2).【解答】解:∵y =√33x的斜率k1=√33,y=−√3x的斜率k2=−√3∴k1⋅k2=−1,可得OA⊥OB设A(x1, √33x 1),B(x2, −√3x2)∴|OA|=√x12+13x12=2√33x1,|OB|=√x22+3x22=2x2,可得△OAB的面积为S=12|OA|×|OB|=12×2√33x1×2x2=1解之,得x1x2=√32∵|AB|2=|OA|2+|OB|2=43x12+4x22∴|AB|=√(43x12+4x22)≥×2√33x12=√8√33x12=√8√33×√32=2又∵|OA|+|OB|=2√33x1+2x2≥2√2√33x1×2x2=2√4√33x1x2=2√4√33×√32=2√2∴△OAB周长|OA|+|OB|+|AB|≥2+2√2=2(1+√2)当且仅当2√33x1=2x2=√2,即x1=√62,x2=√22时,△OAB周长取最小值2(1+√2)故答案为:√32,2(1+√2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)原式可化为:sin B=sin(A+B)−sin(A−B)=sin A cos B+cos A sin B−sin A cos B+cos A sin B=2cos A sin B,…∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【考点】求两角和与差的正弦 向量的模平面向量数量积的性质及其运算律【解析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,将已知条件利用平面向量的数量积运算法则化简后代入求出|AB →|2+|AC →|2的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【解答】 解:(1)原式可化为:sin B =sin (A +B)−sin (A −B)=sin A cos B +cos A sin B −sin A cos B +cos A sin B =2cos A sin B ,… ∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【答案】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,…乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,… P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:【考点】离散型随机变量及其分布列 互斥事件的概率加法公式 相互独立事件的概率乘法公式【解析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比1获胜,根据独立重复试验公式公式,列出算式,得到结果.(2)记“乙获胜且比赛局数多于5局”为事件B .B 包括乙以4:2获胜和乙以4:3获胜,根据独立重复试验公式列出算式,得到结果.(3)比赛结束时比赛的局数为X ,则X 的可能取值为4,5,6,7,根据独立重复试验公式计算出各自的概率即可得到分布列. 【解答】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0). 由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【考点】直线与平面垂直的判定 直线与平面平行的判定 用空间向量求平面间的夹角【解析】(1)设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.由FA =FC ,知AC ⊥FO .由此能够证明AC ⊥平面BDEF .(2)因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,平面FBC // 平面EAD .由此能够证明FC // 平面EAD .(3)因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以 CF →=(√3,0,√3),CB →=(√3,1,0).求得平面BFC 的法向量为n →=(1,−√3,−1),平面AFC 的法向量为v →=(0, 1, 0).由此能求出二面角A −FC −B 的余弦值. 【解答】(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点, 所以FO ⊥BD , 故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0). 设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【答案】解:(1)当a =1时,f(x)=e x ⋅(1x+2),f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(1)先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】解:(1)当a =1时,f(x)=e x ⋅(1x +2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【答案】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 ba =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m +9,y 1y 2=−204m +9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x 2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得 2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…【考点】直线与椭圆结合的最值问题 椭圆的标准方程 【解析】(1)利用离心率为√53,可得b a=23,由椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2,可得△MB 1B 2是等腰直角三角形,由此可求椭圆C 的方程;(2)设线AB 的方程与椭圆C 的方程联立,利用韦达定理,结合PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,建立方程,即可求得结论.【解答】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得b a =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.…所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m +9,y 1y 2=−204m +9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92. 综上,存在定点P(92,0),使PM 平分∠APB .…【答案】(1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. …数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.… (2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.… 若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”. 当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列. 其它情形同理,得证.在数列A 3经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A 3也为常数列. …所以,数列A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.(3)证明:先证明引理:“数列T(A n )的最大项一定不大于数列A n 的最大项,其中n ≥3”. 证明:记数列A n 中最大项为max (A n ),则0≤a i ≤max (A n ). 令B n =T(A n ),b i =a p −a q ,其中a p ≥a q . 因为a q ≥0,所以b i ≤a p ≤max (A n ),故max (B n )≤max (A n ),证毕. … 现将数列A 4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max (B 4)≤max (A 4)−1.第二类是含有为0的项,且与最大项相邻,此时max (B 4)=max (A 4). 下面证明第二类数列A 4经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…【考点】数列的应用【解析】(1)根据新定义,可得数列A3:4,2,8不能结束,数列A4:1,4,2,9能结束,并可写出各数列;(2)A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3,先证明a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束,再证明命题“若数列T(A3)为常数列,则A3为常数列”,即可得解;(3)先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”,再分类讨论:第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.【解答】(1)解:数列A3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形.…数列A4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.…若a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束.…当数列A3经过有限次“T变换”后能够结束时,先证命题“若数列T(A3)为常数列,则A3为常数列”.当a1≥a2≥a3时,数列T(A3):a1−a2,a2−a3,a1−a3.由数列T(A3)为常数列得a1−a2=a2−a3=a1−a3,解得a1=a2=a3,从而数列A3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T (T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。
2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U=R,集合A={x|1x≥1},则∁U A()A.(0, 1)B.(0, 1]C.(−∞, 0]∪(1, +∞)D.(−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.233. 若实数x,y满足条件{x+y≥0x−y+3≥00≤x≤3,则z=2x−y的最大值为()A.9B.3C.0D.−34. 已知正六棱柱的底面边长和侧棱长均为2cm,其三视图中的俯视图如图所示,则其左视图的面积是()A.4√3cm2B.2√3cm2C.8cm2D.4cm25. 已知函数f(x)=sin4ωx−cos4ωx的最小正周期是π,那么正数ω=()A.2B.1C.12D.146. 若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<cB.a<b<cC.c<b<aD.b<c<a 7. 设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N∗,有S2n<3S n,则q的取值范围是()A.(0, 1]B.(0, 2)C.[1, 2)D.(0,√2)8. 已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a k∈{0, 1, 2}(k=0, 1, 2, 3),且a3≠0.则A中所有元素之和等于()A.3240B.3120C.2997D.2889二、填空题共6小题,每小题5分,共30分.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.(x−2)6的展开式中x3的系数是________.(用数字作答)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=√3,OM=1,则MN=________.在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.已知函数f(x)={x12,0≤x≤cx2+x,−2≤x<0其中c>0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c的取值范围是________.在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,已知sin (A +B)=sin B +sin (A −B). (1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.对于数列A n :a 1,a 2,…,a n (a i ∈N, i =1, 2,…,n),定义“T 变换”:T 将数列A n 变换成数列B n :b 1,b 2,…,b n ,其中b i =|a i −a i+1|(i =1, 2,…,n −1),且b n =|a n −a 1|,这种“T 变换”记作B n =T(A n ).继续对数列B n 进行“T 变换”,得到数列C n ,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A 3:4,2,8和A 4:1,4,2,9经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)求A 3:a 1,a 2,a 3经过有限次“T 变换”后能够结束的充要条件;(3)证明:A 4:a 1,a 2,a 3,a 4一定能经过有限次“T 变换”后结束.参考答案与试题解析2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】求出集合A的不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵全集U=R.集合A={x|1x≥1}={x|0<x≤1},∴∁U A={x|x≤0, 或x>1}.故选C.2.【答案】D【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y是否继续循环循环前25是第一圈511是第二圈1123否故输出y的值为23.故选D.3.【答案】A【考点】简单线性规划【解析】画出不等式表示的平面区域,z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,根据图形可得结论.【解答】解:画出不等式表示的平面区域z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,由{x=3x+y=0可得交点坐标为(3, −3),根据图形可知在点(3, −3)处,z=2x−y取得最大值,最大值为9故选A.4.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.5.【答案】B【考点】二倍角的三角函数【解析】利用平方差公式化简函数y=sin4ωx−cos4ωx,再利用二倍角公式化为一个角的一个三角函数的形式,根据周期求出ω.【解答】y=sin4ωx−cos4ωx=sin2ωx−cos2ωx=−cos2ωx因为T=π,所以ω=16.【答案】D【考点】不等式比较两数大小【解析】根据a=lg3lg2>1,b=lg2lg3<1,c=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=a,从而得出结论.【解答】解:∵a=log23=lg3lg2>1,b=log32=lg2lg3<1,c=log46=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=lg3lg2,故有b<c<a,故选D.7.【答案】A【考点】数列的求和【解析】当q=1时,S2n<3S n成立容易检验,当q≠1时,由S2n<3S n恒成立可得a1(1−q2n)1−q <3a1(1−q n)1−q,讨论整理可求q的范围.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴a1(1−q2n)1−q <3a1(1−q n)1−q∵q>1,显然不恒成立,则q2n−3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选A8.【答案】D【考点】集合的确定性、互异性、无序性数列的求和【解析】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.【解答】由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2187=2889.二、填空题共6小题,每小题5分,共30分.【答案】54【考点】分布和频率分布表频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数.【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1,∴最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920,由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人)【答案】−160【考点】二项式定理及相关概念【解析】根据题意,由二项式定理可得(x−2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=−160x3,即可得答案.【解答】根据题意,(x−2)6的展开式的通项为T r+1=C6r x6−r(−2)r=(−1)r⋅2r⋅C6r x6−r,令6−r=3可得r=3,此时T4=(−1)3⋅23⋅C63x3=−160x3,即x3的系数是−160;【答案】1【考点】与圆有关的比例线段【解析】根据题设条件,先由勾股定理求出BM,再由相交弦定理求MN.【解答】解:∵AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.OC=√3,OM=1,∴OB=√3,BM=√3+1=2,设MN=x,∵CM⋅AM=BM⋅MN,∴(√3+1)(√3−1)=2x,∴x=1,即MN=1.故答案为:1.【答案】√2【考点】圆的极坐标方程【解析】利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程,再利用点到直线的距离公式求解即可.【解答】解:直线方程ρsin(θ+π4)=√2,即为ρ(√22cosθ+√22sinθ)=√2,化为普通方程为x+y−2=0,极点的直角坐标为(0, 0),根据点到直线的距离公式求得d=√2=√2故答案为:√2;【答案】−1和0,0<c≤4【考点】函数的值域及其求法函数的零点【解析】分x为正数和负数两种情况讨论,分别解方程即可得到么f(x)的零点.根据二次函数的图象与性质,求出当x∈[−2, 0)时,函数f(x)的值域恰好是[−14,2],所以当0≤x≤c时,f(x)=x12的最大值不超过2,由此建立不等式,可解出实数c的取值范围.【解答】当x≥0时,令x 12=0,得x=0;当x<0时,令x2+x=0,得x=−1(舍零)∴f(x)的零点是−1和0∵函数y=x2+x在区间[−2, −12)上是减函数,在区间(−12, 0)上是增函数∴当x∈[−2, 0)时,函数f(x)最小值为f(−12)=−14,最大值是f(−2)=2∵当0≤x≤c时,f(x)=x12是增函数且值域为[0, √c]∴当f(x)的值域是[−14,2],√c≤2,即0<c≤4【答案】√32,2(1+√2)【考点】基本不等式在最值问题中的应用直线的点斜式方程【解析】根据题意,OA、OB的斜率之积为−1,得OA⊥OB.设A(x1, √33x1),B(x2, −√3x2),算出|OA|=2√33x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=√32.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2√2,当且仅当2√33x1=2x2=√2时,△OAB周长取最小值2(1+√2).【解答】解:∵y =√33x的斜率k1=√33,y=−√3x的斜率k2=−√3∴k1⋅k2=−1,可得OA⊥OB设A(x1, √33x 1),B(x2, −√3x2)∴|OA|=√x12+13x12=2√33x1,|OB|=√x22+3x22=2x2,可得△OAB的面积为S=12|OA|×|OB|=12×2√33x1×2x2=1解之,得x1x2=√32∵|AB|2=|OA|2+|OB|2=43x12+4x22∴|AB|=√(43x12+4x22)≥×2√33x12=√8√33x12=√8√33×√32=2又∵|OA|+|OB|=2√33x1+2x2≥2√2√33x1×2x2=2√4√33x1x2=2√4√33×√32=2√2∴△OAB周长|OA|+|OB|+|AB|≥2+2√2=2(1+√2)当且仅当2√33x1=2x2=√2,即x1=√62,x2=√22时,△OAB周长取最小值2(1+√2)故答案为:√32,2(1+√2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)原式可化为:sin B=sin(A+B)−sin(A−B)=sin A cos B+cos A sin B−sin A cos B+cos A sin B=2cos A sin B,…∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【考点】求两角和与差的正弦 向量的模平面向量数量积的性质及其运算律【解析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,将已知条件利用平面向量的数量积运算法则化简后代入求出|AB →|2+|AC →|2的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【解答】 解:(1)原式可化为:sin B =sin (A +B)−sin (A −B)=sin A cos B +cos A sin B −sin A cos B +cos A sin B =2cos A sin B ,… ∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【答案】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,…乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,… P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:【考点】离散型随机变量及其分布列 互斥事件的概率加法公式 相互独立事件的概率乘法公式【解析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比1获胜,根据独立重复试验公式公式,列出算式,得到结果.(2)记“乙获胜且比赛局数多于5局”为事件B .B 包括乙以4:2获胜和乙以4:3获胜,根据独立重复试验公式列出算式,得到结果.(3)比赛结束时比赛的局数为X ,则X 的可能取值为4,5,6,7,根据独立重复试验公式计算出各自的概率即可得到分布列. 【解答】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0). 由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【考点】直线与平面垂直的判定 直线与平面平行的判定 用空间向量求平面间的夹角【解析】(1)设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.由FA =FC ,知AC ⊥FO .由此能够证明AC ⊥平面BDEF .(2)因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,平面FBC // 平面EAD .由此能够证明FC // 平面EAD .(3)因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以 CF →=(√3,0,√3),CB →=(√3,1,0).求得平面BFC 的法向量为n →=(1,−√3,−1),平面AFC 的法向量为v →=(0, 1, 0).由此能求出二面角A −FC −B 的余弦值. 【解答】(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点, 所以FO ⊥BD , 故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0). 设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【答案】解:(1)当a =1时,f(x)=e x ⋅(1x+2),f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(1)先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】解:(1)当a =1时,f(x)=e x ⋅(1x +2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【答案】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 ba =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m +9,y 1y 2=−204m +9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x 2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得 2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…【考点】直线与椭圆结合的最值问题 椭圆的标准方程 【解析】(1)利用离心率为√53,可得b a=23,由椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2,可得△MB 1B 2是等腰直角三角形,由此可求椭圆C 的方程;(2)设线AB 的方程与椭圆C 的方程联立,利用韦达定理,结合PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,建立方程,即可求得结论.【解答】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得b a =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.…所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m +9,y 1y 2=−204m +9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92. 综上,存在定点P(92,0),使PM 平分∠APB .…【答案】(1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. …数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.… (2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.… 若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”. 当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列. 其它情形同理,得证.在数列A 3经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A 3也为常数列. …所以,数列A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.(3)证明:先证明引理:“数列T(A n )的最大项一定不大于数列A n 的最大项,其中n ≥3”. 证明:记数列A n 中最大项为max (A n ),则0≤a i ≤max (A n ). 令B n =T(A n ),b i =a p −a q ,其中a p ≥a q . 因为a q ≥0,所以b i ≤a p ≤max (A n ),故max (B n )≤max (A n ),证毕. … 现将数列A 4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max (B 4)≤max (A 4)−1.第二类是含有为0的项,且与最大项相邻,此时max (B 4)=max (A 4). 下面证明第二类数列A 4经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…【考点】数列的应用【解析】(1)根据新定义,可得数列A3:4,2,8不能结束,数列A4:1,4,2,9能结束,并可写出各数列;(2)A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3,先证明a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束,再证明命题“若数列T(A3)为常数列,则A3为常数列”,即可得解;(3)先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”,再分类讨论:第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.【解答】(1)解:数列A3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形.…数列A4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.…若a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束.…当数列A3经过有限次“T变换”后能够结束时,先证命题“若数列T(A3)为常数列,则A3为常数列”.当a1≥a2≥a3时,数列T(A3):a1−a2,a2−a3,a1−a3.由数列T(A3)为常数列得a1−a2=a2−a3=a1−a3,解得a1=a2=a3,从而数列A3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T (T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。
北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1)(B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c <<(B )a b c <<(C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1] (B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答) 11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.13. 已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运 动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是 _____.ABCOMN三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC = ,20=⋅AC AB ,求||AB AC + .16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:FC ∥平面EAD ;(Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axa f x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间.19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=- ,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1. C ;2. D ;3. A ;4.A ;5. B ;6. D ;7. A ;8. D .二、填空题:本大题共6小题,每小题5分,共30分.9.54; 10.160-; 11.1;12 13.1-和0,(0,4]; 14,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分 因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC = ,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC += . ………………10分 因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||AB AC +=………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分 记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. ………………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分 (Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分 334341111(5)2C ()()2224P X -===, ………………10分 335251115(6)2C ()()22216P X -==⋅=, ………………11分 336361115(7)2C ()()22216P X -==⋅=. ………………12分 比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分 17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . ………………7分 又⊂FC 平面FBC ,所以FC // 平面EAD . ………………8分 (Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以CF =,,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得cos ,5⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分 由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分 (Ⅱ)解:2(1)[(1)1]()eaxx a x f x a x ++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……………8分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(1,0)-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分 ④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分 依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C 的方程是22194x y +=. ………………5分(Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x 得 22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分 若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补,所以0=+PB PA k k . ………………9分 设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分 将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分 由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分 当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也 为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.(Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤. 令()n n B T A =,i p q b a a =-,其中p q a a ≥. 因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分 现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c --,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,,T A a a b b -;4(()):,,|2|,T T A a a b a b a b --- 此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b --,此数列各项均不为0,为第一 类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列 各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列 各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a ,(()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T 变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束. ………………13分。
北京市西城区2011—2012学年度第一学期期末考试数 学 试 题(理)本试卷分第I 卷和第Ⅱ卷两部分,共150分。
考试时长120分钟。
考生务必将答案答在答题纸 上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第I 卷(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数i 1i =+ ( )A .1i 22+B .1i 22- C .1i 22-+ D .1i 22-- 2.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为( )A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-3.已知向量(3,1)=a ,(0,2)=-b .若实数k 与向量c 满足2k +=a b c ,则c 可以是( )A .(3,1)-B .(1,3)--C .(3,1)--D .(1,3)-4.执行如图所示的程序框图,输出的S 值为 ( ) A .3 B .6- C .10 D .15-5.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是 ( ) A .[1,4]B .[1,5]C .4[,4]5D .4[,5]56.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是( )A .1a b >-B .1a b >+C .||||a b >D .22a b >7.某几何体的三视图如图所示,该几何体的体积是( ) A .8 B .83 C .4D .438.已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △ 为正三角形,则称G 为Γ型曲线.给定下列三条曲线: ① 3(03)y x x =-+≤≤; ② 22(20)y x x =--≤≤;③ 1(0)y x x=->. 其中,Γ型曲线的个数是 ( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.函数21()log f x x=的定义域是______. 10.若双曲线221x ky -=的一个焦点是(3,0),则实数k =______. 11.如图,PA 是圆O 的切线,A 为切点,PBC 是圆O 的割线.若32PA BC =,则PBBC=______. 12.已知{}n a 是公比为2的等比数列,若316a a -=,则1a = ;22212111na a a +++=______. 13.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若25b =,4B π∠=,5sin C =,则c = ;a = .14.有限集合P 中元素的个数记作card()P .已知card()10M =,A M ⊆,B M ⊆,A B =∅,且card()2A =,card()3B =.若集合X 满足A X M ⊆⊆,则集合X 的个数是_____;若集合Y 满足Y M ⊆,且A Y --⊄,B Y --⊄,则集合Y 的个数是_____.(用数字作答)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数2()3sin sin cos f x x x x =+,π[,π]2x ∈.(Ⅰ)求()f x 的零点;(Ⅱ)求()f x 的最大值和最小值.16.(本小题满分13分) 盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(Ⅰ)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次 抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取2个零件,使用后...放回盒中,记此时盒中使用过的零件个数为X ,求X 的分布列和数学期望.17.(本小题满分14分)如图,在直三棱柱111C B A ABC -中,12AB BC AA ==,90ABC ︒∠=,D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1ADC ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.18.(本小题满分13分)已知椭圆:C 22221(0)x y a b a b +=>>的一个焦点是(1,0)F ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设经过点F 的直线交椭圆C 于,M N 两点,线段MN 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.19.(本小题满分14分) 已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.20.(本小题满分13分)已知数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-,其中2,3,,k n =,则称n B 为n A 的“衍生数列”.(Ⅰ)若数列41234:,,,A a a a a 的“衍生数列”是4:5,2,7,2B -,求4A ; (Ⅱ)若n 为偶数,且n A 的“衍生数列”是n B ,证明:n B 的“衍生数列”是n A ;(Ⅲ)若n 为奇数,且n A 的“衍生数列”是n B ,n B 的“衍生数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n =项取出,构成数列:,,,i i i i a b c Ω.证明:i Ω是等差数列.。
北京市西城区2012年高三二模试卷数 学(理科) 2012.5第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B = ,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞ (C )(0,2] (D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35(B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列.其中,正确结论的个数是( ) (A )0 (B )1(C )2(D )3第Ⅱ卷(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.在△ABC中,3BC=,2AC=,π3A=,则B=_____.10.已知复数z满足(1i)1z-⋅=,则z=_____.11.如图,△ABC是⊙O的内接三角形,P A是⊙O的切线,P B交A C于点E,交⊙O于点D.若PA PE=,60ABC︒∠=,1P D=,9P B=,则PA=_____;E C=_____.12.已知函数2()1f x x bx=++是R上的偶函数,则实数b=_____;不等式(1)||f x x-<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____.14.曲线C是平面内到定点(0,1)F和定直线:1l y=-的距离之和等于4的点的轨迹,给出下列三个结论:①曲线C关于y轴对称;②若点(,)P x y在曲线C上,则||2y≤;③若点P在曲线C上,则1||4PF≤≤.其中,所有正确结论的序号是____________.EADCB三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--.(Ⅰ)求π()12f 的值;(Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.A B ∥C D ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB D E ⊥;(Ⅱ)求直线EC 与平面A B E 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出E F E A;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(Ⅰ)若2AF FB =,求直线A B 的斜率;(Ⅱ)设点M 在线段A B 上运动,原点O 关于点M 的对称点为C ,求四边形O A C B 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围.20.(本小题满分13分)若12(0n n i A a a a a == 或1,1,2,,)i n = ,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a - 记为1()n R A ;将排列112n n n a a a a -- 记为2()n R A ;依此类推,直至()nn n R A A =.对于排列n A 和()in R A (1,2,,1)i n =- ,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())in n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)in n t A R A i n =-=- ,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i 22+; 11.3,4;12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) (Ⅰ)解:22ππππ3()cos ()sincos 12121262f =--==. ………………5分(Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π133[cos(2)cos 2](sin 2cos 2)23222x x x x =-+=+………………8分3πsin(2)23x =+.………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分 所以当 ππ232x +=,即 π12x =时,()f x 取得最大值32. ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于32c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是3[,)2+∞. ………………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分(Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面A B E 的一个法向量为(0,1,0)O D =. ………………7分设直线EC 与平面A B E 所成的角为θ,所以 ||3sin |cos ,|3||||EC O D EC O D EC O D θ⋅=〈〉==,即直线EC 与平面A B E 所成角的正弦值为33. ………………9分(Ⅲ)解:存在点F ,且13E F E A =时,有EC // 平面FBD . ………………10分证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)32,0,34(-=FB .设平面FBD 的法向量为v ),,(c b a =,则有0,0.B D F B ⎧⋅=⎪⎨⋅=⎪⎩v v 所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13E F E A=时,有EC // 平面FBD . ………………14分17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C12P X =-==; 2155310C C 5(0)C12P X ===;1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:X 15- 0 15 30 P121 125125 121………………6分155115(15)01530121212122E X =⨯-+⨯+⨯+⨯=. ………………7分(Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分511()12122P B =+=. ………………11分故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线A B 方程为1x my =+. ………………1分将直线A B 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y ,得24m =±. ………6分所以直线A B 的斜率是22±. ………………7分(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段O C 的中点,从而点O 与点C 到直线A B 的距离相等,所以四边形O A C B 的面积等于2A O B S ∆. ……………… 9分ABCO MxyF因为 12122||||2A OB S O F y y ∆=⨯⋅⋅- ………………10分221212()441y y y y m =+-=+, ………………12分所以 0m =时,四边形O A C B 的面积最小,最小值是4. ………………13分19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1x f x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分(Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分 ① 当0a =时,22()1x f x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x ax +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a+∞;单调增区间是1(,)a a-. ………7分③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a-∞;单调减区间是1(,)a a--,(,)a -+∞.………………9分x1(,)x -∞1x12(,)x x2x 2(,)x +∞()f x ' -+-()f x↘1()f x↗2()f x↘x2(,)x -∞2x21(,)x x1x1(,)x +∞()f x ' + 0-+()f x↗2()f x↘1()f x↗(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a单调递增,在1(,)a+∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a =>.设0x 为)(x f 的零点,易知2012a x a-=,且01x a<.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-. 所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-.综上,a 的取值范围是(,1](0,1]-∞- . ………………14分20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1. 按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分11(Ⅲ)解:由211221(0k k i A a a a a ++== 或1,1,2,,21)i k =+ ,得12121122()k k k R A a a a a ++= , 2212211221()k k k k R A a a a a a ++-= ,……2121342112()k k k RA a a a a a -++= , 22123211()kk k RA a a a a ++= .因为 2121(,())1(1,2,,2)i k k t A R A i k ++=-= ,所以 21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+ , 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+ ,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+ , 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+ .以上各式求和得, (1)2S k k =+⨯. ………………10分另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S x y=.………………11分所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。